
HAL Id: hal-00404783
https://hal.science/hal-00404783

Submitted on 17 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wreath Products of Forest Algebras, with Applications
to Tree Logics

Mikolaj Bojanczyk, Howard Straubing, Igor Walukiewicz

To cite this version:
Mikolaj Bojanczyk, Howard Straubing, Igor Walukiewicz. Wreath Products of Forest Algebras, with
Applications to Tree Logics. LICS’09, 2009, United States. pp.1–10. �hal-00404783�

https://hal.science/hal-00404783
https://hal.archives-ouvertes.fr

Wreath Products of Forest Algebras, with Applications to Tree Logics

Mikolaj Bojańczyk

University of Warsaw

Howard Straubing

Boston College

Igor Walukiewicz

CNRS, LaBRI, Bordeaux

Abstract—We use the recently developed theory of forest
algebras to find algebraic characterizations of the languages of
unranked trees and forests definable in various logics. These
include the temporal logics CTL and EF, and first-order logic
over the ancestor relation. While the characterizations are in
general non-effective, we are able to use them to formulate
necessary conditions for definability and provide new proofs
that a number of languages are not definable in these logics.

I. INTRODUCTION

Logics for specifying properties of labeled trees play

an important role in several areas of Computer Science.

Recently, attention has turned to logics for unranked trees,

in which there is no a priori bound on the number of

children a node may have. Barceló and Libkin [1] and

Libkin [13] catalogue a number of such logics and contrast

their expressive power. Many fundamental problems in this

domain remain unsolved. For example, we do not as yet

possess an effective criterion for determining whether a

given property of trees is expressible in the temporal logics

CTL, or CTL*, or in first-order logic with the ancestor

relation.

For properties of words, analogous questions have been

fruitfully studied by algebraic means: The logics in question

are typically no more expressive than monadic second-order

logic, and thus the property of words expressed by a formula

defines a regular language L. Expressibility in a given logic

can often be determined by verifying some property of the

syntactic monoid of L—the transition monoid of the minimal

automaton of L. The earliest work in this direction is due to

McNaughton and Papert [16] who studied first-order logic

with linear order, and showed that a language is definable in

this logic if and only if its syntactic monoid is aperiodic—

that is, contains no nontrivial groups. A comprehensive

survey treating many different predicate logics is given in

Straubing [18]; temporal logics are studied by Cohen, Perrin

and Pin [7] and Wilke [19], among others.

There have been a number of efforts to extend this

algebraic theory to trees; a notable recent instance is in

the work of Ésik and Weil on preclones [8], [9]. Recently,

Bojańczyk and Walukiewicz [3] introduced forest algebras,

a generalization of the syntactic monoid for languages of

forests of unranked trees. This algebraic model is rather

simple, and in contrast to others studied in the literature,

has already yielded effective criteria for definability in a

number of logics: see Bojańczyk [4], Bojańczyk-Segoufin-

Straubing [6], Bojańczyk-Segoufin [5]. Forest algebras are

also implicit in the work of Benedikt and Segoufin [2] on

first-order logic with successor.

In the present paper we continue this line of research

by studying the wreath product of forest algebras. Wreath

products of transformation monoids play an important role in

the theory for words, and we find that the definition and im-

portant properties of this product, especially its connection

to a composition operation on languages and to generalized

temporal operators, extend to forest algebras with no real

change. We consider some standard temporal logics, CTL,

CTL* first-order logic with ancestor, PDL, as well as two

less known variants: EF and graded PDL. The first, is the

fragment of CTL with EF as the only operator. The second,

is an extension of PDL allowing us to say, for example, that

there are at least three paths satisfying some property.

We show the following: (a) To each of the logics men-

tioned above, we associate a class of ‘basic’ forest algebras

with the property that a language of forests is definable

in the logic if and only if it is recognized by an iterated

wreath product of the associated basic algebras. (b) For

EF and CTL, the base reduces to a single algebra, but

for the others we show that there is no finite base. As a

consequence, none of these logics can be generated by a

finite collection of generalized temporal operators. By using

our algebraic framework, we are able to give a simple and

general proof of this fact. (c) For the logics that do not have

a finite base, we are nonetheless able to establish effective

necessary and sufficient conditions for a forest algebra to

belong to the associated base. (d) We give a (new) proof of

an effective necessary and sufficient condition for a forest

language to be definable in EF. Our argument shows that

an algebraic decomposition theory for forest algebras is both

feasible and useful. (e) We do not, on the other hand, find

analogous necessary and sufficient conditions for the other

logics mentioned above, and this remains an outstanding

open problem. However, we are able to use our framework

to establish algebraic necessary conditions for definability

in these logics, and consequently to prove that a number

of specific languages are not definable in them. (f) We also

find necessary and sufficient conditions for a given first-order

definable language to be definable in CTL*, and for a given

language definable in graded PDL to be definable in PDL.

We note that Ésik and Ivan [10], [11] have done work of a

similar flavor for CTL (for trees of bounded rank). Our work

here is of considerably larger scope, both in the number of

different logics considered, and the concrete consequences

our algebraic theory permits us to deduce. For reasons of

space, many of the proofs have been reduced to a sketch, or

omitted. These will appear in the full paper.

II. TREES, FORESTS AND CONTEXTS

Let A be a finite alphabet. Formally, forests and trees

over A are expressions generated by the following rules:

(i) if s is a forest and a ∈ A then as is a tree; (ii) if

(t1, . . . , tk) is a finite sequence of trees, then t1 + · · · + tk
is a forest. We permit this summation to take place over

an empty sequence, yielding the empty forest, which we

denote 0. This gets the recursion started. So, for example,

s = a(b0 + c(a0 + ab0)) + a(a0 + b0) is a forest. Normally,

when we write such expressions, we delete the zeros. We

depict s in the obvious fashion as an ordered forest of two

ordered trees whose nodes are labeled by the letters a, b, c.
In this example, the two root nodes are both labeled a, and

there are five leaves altogether. The set of forests over A is

a monoid with respect to forest concatenation s + t, with

the empty forest 0 being the identity. We denote this set by

HA.
If x is a node in a forest, then the subtree of x is simply

the tree rooted at x, and the subforest of x is the forest

consisting of all subtrees of the children of x. In other words,

if the subtree of x is as, with a ∈ A and s ∈ HA, then the

subforest of x is s. Note that the subforest of x does not

include the node x itself, and is empty if x is a leaf. A forest

language over A is any subset of HA.

A context p over A is formed by deleting a leaf from

a nonempty forest and replacing it by a special symbol

�. Think of � as a kind of place-holder, or hole. Given

a context p and a forest s, we form a forest ps upon

substituting s for the hole in p.

?

p s ps

In a similar manner, we can substitute another context q for

the hole, and obtain a new context pq. The set of contexts

over A forms a monoid, with respect to context composition

pq, with the empty context � being the identity. We denote

this set by VA.

Note that for all forests s, t ∈ HA, VA contains a context

s+ � + t, in which the hole has no parent, such that (s+
� + t)u = s+ u+ t for all u ∈ HA.

Strictly speaking, our trees, forests and contexts are or-

dered, so that s + t is a different forest from t + s unless

s = t or one of s, t is 0. But all the applications in the

present article effectively concern unordered trees, so there

is no harm in thinking of + as a commutative operation on

forests.

III. LOGICS FOR FOREST LANGUAGES

For a general treatment of predicate and temporal logics

for unranked trees, see Libkin [13]. The logics we describe

below are all fragments of monadic second-order logic,

and thus the languages they define are all regular forest

languages. These languages can be also represented by

automata that are a minor modification of the standard

bottom-up tree automata. The transition function is modified

to cope with unbounded branching, and the definition of

acceptance needs to consider states in the roots of all the

trees in the forest. See [3] for the definition.

A. First-order logic for trees and forests

Let A be a finite alphabet. Consider first-order logic

equipped with unary predicates Qa for each a ∈ A, and

a single binary predicate ≺ . Variables are interpreted as

nodes in forests over A. Qax is interpreted to mean that

node x is labeled a, and x ≺ y to mean that node x is

a (non-strict) ancestor of node y. A sentence φ – that is,

a formula without free variables – consequently defines a

language Lφ ⊆ HA consisting of forests over A that satisfy

φ. For example, the sentence

∃x∃y(Qax ∧Qay ∧ ¬(x ≺ y) ∧ ¬(y ≺ x))

defines the set of forests containing two ≺-incomparable

occurrences of a. We denote this logic by FO[≺]. It is

more traditional to consider logics over trees rather than

over forests. For FO[≺] we need not worry too much

about this distinction, since we can express in first-order

logic the property that a forest has exactly one component

(∃x∀y(x ≺ y)). Thus the property that a set of trees is first-

order definable does not depend on whether we choose to

interpret sentences in trees or in forests.

B. Temporal logics

We describe here a general framework for temporal logics

interpreted in trees and forests. By setting appropriate pa-

rameters in the framework we generate all sorts of temporal

logics that are traditionally studied. The general framework

is sometimes called graded propositional dynamic logic

(graded PDL).

Syntax of temporal formulas. Temporal formulas are built

starting with atomic label formulas a for a ∈ A. We combine

temporal formulas with the usual boolean operations. We

also define a temporal operator: if k > 0, Φ is a finite set

of formulas, and L ⊆ Φ+ is a regular language of words

over the alphabet Φ, then E
kL is a formula. The idea is

that E
kL says there are at least k paths that satisfy L; the

precise semantics are defined below. We place an additional

restriction, called unambiguity, on the use of this operator:

We require that the formulas Φ = {φ1, . . . , φn} are formally

disjoint: that is, for all i > 1, φi has the form ψ∧¬
∨
j<i φj

for some formula ψ. We write EL for E
1L.

Semantics of temporal formulas. Usually, satisfaction for

formulas is defined with respect to trees. For forests, the con-

ventions are less well-established. Nevertheless, semantics

for forests will be important for us, especially in the context

of the wreath products. We will therefore use two notions

of satisfaction: a tree-satisfaction relation t |= ϕ, which

coincides with the usual notion of satisfaction, and a forest-

satisfaction relation t |=f ϕ, which is slightly unusual. The

definition of the two will be mutually recursive. When t is

a forest, then only the forest-satisfaction t |=f ϕ is defined,

but when t is a tree, then both t |=f ϕ and t |= ϕ are

defined, with different meanings.

A label formula a is tree-satisfied by the trees whose root

label is a, but is not forest-satisfied by any forest (even if the

forest contains only a single tree). Whether a formula E
kL

is tree-satisfied by a tree as depends only on the subforest

of the root and not on the root node: that is, as |= ψ if and

only if s |=f ψ. Finally, if s ∈ HA, then s |=f E
kL if and

only if there are at least k distinct paths in s that satisfy

L in the following sense: A path x1 · · ·xn is a sequence of

nodes connected by the child relation, beginning in one of

the roots, and ending in some node, not necessarily a leaf.

The path satisfies L if there is a sequence φ1, . . . , φn ∈ Φ
such that the word φ1 · · ·φn belongs to L and for each i =
1, . . . , n, the subtree of xi tree-satisfies φi. Note that tree,

and not forest, satisfaction is required in the subtree of xj .
Note also that the paths need not end in leaves, and that the

sequence φ1, . . . , φn is uniquely determined by the path, due

to the unambiguity condition on Φ. As the paths need not end

in leaves, some paths may be prefixes of others, for instance,

the tree aaa forest-satisfies E
3a+. Boolean operations have

their usual interpretation.

Given a temporal formula ψ, we write Lψ for the set of

forests that forest-satisfy ψ.

EF : When ψ describes a property of words, then Fψ
describes the words where ψ holds at some position, possibly

the first. We obtain an analogous temporal operator for trees

and forests by defining EFψ to be EL, where L = (¬ψ)∗ψ.
Thus, when s is a forest, s |=f EFψ if and only if some

subtree of s, possibly rooted at a root of s, tree-satisfies ψ.
When t is a tree, t |= EFψ if some proper subtree of t tree-

satisfies ψ. Note how the tree semantics of this temporal

operator resembles the “strict semantics” of EF in which

one ignores the current node, while the forest semantics

resemble the non-strict semantics. We denote by EF the

forest languages definable by a formula built from the label

formulas a ∈ A using boolean operations and the temporal

operator EF.

CTL : When ψ, φ describe properties of words, then

ψUφ describes the set of words a1 · · · an where for some

i = 1, . . . , n, the word beginning in position i satisfies φ, and

all the words beginning in positions 1, . . . , i − 1 satisfy ψ.

The analogous operator for trees and forests is E(ψ∧¬φ)∗φ,
which we denote EψUφ. The forest semantics is that the

subtree of some node x tree-satisfies the formula φ, and the

subtree at every strict ancestor of x tree-satisfies ψ. For the

tree semantics, the root of the tree is ignored. By nesting this

operator we get the logic CTL. (The dual operator E¬(ψUφ)
is redundant in finite trees.)

First-order logic : We can use the same formalism to

characterize the languages definable in FO[≺] in terms of

a temporal logic.

Theorem 1 A forest language is definable in FO[≺] if and

only if it is definable by a formula in the fragment of the

language of temporal formulas using the operator E
kL only

for word languages L that are first-order definable.

This is a slight adaptation of Hafer and Thomas [12],

and Moller and Rabinovich [14]. We will give the proof

in the full paper. Note that the theorem fails without the

restriction on unambiguity of the alphabet Φ. For instance,

if we took A = {a, b, c}, Φ = {φ1, φ2}, where φ1 = a ∨ c,
φ2 = b ∨ c, then L = (φ1φ2)

+ is first-order definable as a

word language. However, the language defined by EL is not

first-order definable. (If it were, we would be able to define

in first-order logic the set of forests consisting of a single

path with an even number of occurrences of c.)
CTL* and PDL: Finally, we define two more temporal

logics by modifying the definitions above. CTL* is like the

fragment of temporal logic in Theorem 1, except that we

only allow k = 1 in E
kL. In particular, CTL* is a subset

of FO[≺]. We also consider PDL, which is obtained by

restricting the temporal formulas E
kL to k = 1, but without

the restriction on L being first-order definable. If we place no

restriction on either the multiplicity k or the regular language

L, we obtain graded PDL. (Actually, one can show, using

methods similar to Theorem 1, that graded PDL has the

same expressive power as chain logic, which is the fragment

of monadic second order logic where set quantification is

restricted to chains, i.e. subsets of paths.)

C. Language composition and bases

In this section we provide a more general notion of tem-

poral logic, where the operators are given by regular forest

languages. This is similar to notions introduced by Ésik in

[10]. The benefit of the general framework is twofold. First,

it corresponds nicely with the algebraic notion of wreath

product presented later in the paper. Second, it allows us to

state and prove negative results, for instance our infinite base

theorem, which says that the number of operators needed to

obtain first-order logic cannot be finite.

We introduce a composition operation on forest languages.

Fix an alphabet A, and let {L1, . . . , Lk} be a partition of

HA. Let B = {b1, . . . , bk} be another alphabet, with one

letter bi for each block Li of the partition. The partition and

alphabet are used to define a relabeling

t ∈ HA 7→ t[L1, . . . , Lk] ∈ HA×B

in the following manner. The set of nodes in t[L1, . . . , Lk]
is the same as in t, except that each node x gets a label

(a, bi), where the first coordinate a is the old label of x in

t, while the second coordinate bi corresponds to the unique

language Li that contains the subforest of x in t. For the

partition and B as above, and L a language of forests over

A×B, we define L{L1, . . . , Lk} ⊆ HA to be the set of all

forests t over A for which s[L1, . . . , Lk] ∈ L.
The operation of language composition is similar to for-

mula composition. The definition below uses this intuition,

in order to define a “temporal logic” based on operators

given as forest languages. First however, we need to com-

ment on a technical detail concerning alphabets. In the

discussion below, a forest language is given by two pieces of

information: the forests it contains, and the input alphabet.

For instance, we distinguish between the set L1 of all forests

over alphabet {a}, and the set L2 of all forests over the

alphabet {a, b} where b does not appear. The idea is that

sometimes it is relevant to consider a language class L that

contains L1 but does not contain L2 (although such classes

will not appear in this particular paper). This distinction will

be captured by our notion of language class: a language class

is actually a mapping L , which associates to each finite

alphabet a class of languages over this alphabet.

Let L be a class of forest languages, which will be

called the language base. The temporal logic with language

base L is defined to be the smallest class TL[L] of

forest languages that contains L, is closed under boolean

operations and under language composition, i.e.

L1, . . . , Lk, L ∈ TL[L] ⇒ L[L1, . . . , Lk] ∈ TL[L]

By restating the definitions of the temporal logics in terms

of language composition, we get the following theorem.

Theorem 2 The logics EF, CTL, FO[≺], CTL* , PDL and

graded PDL have language bases as depicted in Figure 1.

Note that the part about FO[≺] depends on Theorem 1.

IV. FOREST ALGEBRAS

A. Definition of forest algebras

Forest algebras, introduced by Bojańczyk and

Walukiewicz in [3], extend the algebraic theory of

syntactic monoid and syntactic morphism for regular

languages of words to the setting of unranked trees and

forests. A forest algebra is a pair (H,V) of monoids

together with a faithful monoidal left action of V on the

Logic Languages in the language base for alphabet A
EF {“some node with a” : a ∈ A}
CTL {“some path in B∗b” : B ⊆ A, b ∈ A}
FO[≺] {“at least k paths in L” : k ∈ N, L ∈ FOA[<]}
CTL* {“some path in L” : L ∈ FOA[<]}
PDL {“some path in L ⊆ A+” : L regular}
graded {“at least k paths in L” : k ∈ N, L regular}
PDL

Figure 1. Language bases for temporal logics

set H. This means that for all h ∈ H, v ∈ V, there exists

vh ∈ H such that (i) (vw)h = v(wh) for all v, w ∈ V
and h ∈ H, (ii) if 1 ∈ V is the identity element, then

1h = h for all h ∈ H, and (iii) if vh = v′h for all h ∈ H,
then v = v′. We write the operation in H additively,

and denote the identity of H by 0. We call H and V,
respectively, the horizontal and vertical components of

the forest algebra. The idea is that H represents forests

and V represents contexts. As was the case with the

addition in HA, this is not meant to suggest that H is a

commutative monoid, although in all the applications in

the present paper H will indeed be commutative. Forest

algebras satisfy an additional condition: For each h ∈ H
there are elements 1 + h, h + 1 ∈ V such that for all

g ∈ H, (1 + h)g = g + h, and (h + 1)g = h + g. A

homomorphism of forest algebras consists of a pair of

monoid homomorphisms (αH , αV) : (H,V) → (H ′, V ′)
such that αH(vh) = αV (v)αH(h) for all v ∈ V and

h ∈ H. We usually drop the subscripts on the component

morphisms and simply write α for both these maps.

Of course, if A is a finite alphabet, then (HA, VA) is a

forest algebra. The empty forest 0 is the identity of HA,
and the empty context � is the identity of VA. This is the

free forest algebra on A, and we denote it A∆. It has the

property that if (H,V) is any forest algebra and f : A→ V
is a map, then there is a unique homomorphism α from A∆

to (H,V) such that α(a�) = f(a) for all a ∈ A.

B. Recognition and syntactic forest algebra

Given a homomorphism α : A∆ → (H,V), and a

subset X of H, we say that α recognizes the language

L = α−1(X), and also that (H,V) recognizes L. A

forest language is regular if and only if it is recognized in

this fashion by a finite forest algebra. Moreover, for every

forest language L ⊆ HA, there is a special homomorphism

αL : (HA, VA) → (HL, VL) recognizing L that is minimal

in the sense that αL is surjective, and factors through every

homomorphism that recognizes L. In particular, (HL, VL)
divides—that is, it is a quotient of a subalgebra of—every

forest algebra that recognizes L. We call αL the syntactic

morphism of L, and (HL, VL) the syntactic forest algebra

of L. If s, s′ ∈ HA, then αL(s) = αL(s′) if and only if

for all v ∈ VA, vh ∈ L ⇔ vh′ ∈ L. This equivalence

is called the syntactic congruence of L. An important fact

in applications of this theory is that one can effectively

compute the syntactic morphism and algebra of a regular

forest language L from any automaton that recognizes L.
(See [3].)

C. Wreath product

We are going to give a definition of the wreath product

of two forest algebras. In the case of words, the wreath

product models cascade product of automata, composition

of formulas, or sequential composition of morphisms. This

will be also the case for forests.

It is easier to begin by describing the sequential compo-

sition of two morphisms. Assume that

α : A∆ → (H,V)

is a forest algebra morphism. For a forest t over A, let tα

be the forest over A ×H obtained from t by changing the

label of each node x from its original label a to the pair

(a, h), where h is the value of α on the subforest of x. In

the sequential composition, we will use a second morphism

that reads the relabeling tα, namely

β : (A×H)∆ → (G,W) .

The sequential composition of α and β is the function α⊲β

t 7→ (α⊲ β)(t) = (α(t), β(tα)) .

The wreath product (H,V) ◦ (G,W) of forest algebras is

designed to describe sequential composition. We stated the

correspondence in the following theorem, which, we hope,

will aid the reader in understanding the motivation behind

the wreath product definition.

Theorem 3 For every two morphisms

α : A∆ → (H,V) β : (A×H)∆ → (G,W)

there is a morphism from A∆ into the wreath product

(H,V) ◦ (G,W) that, when restricted to forests, is equal

to the sequential composition α ⊲ β. Conversely, for every

morphism form A∆ into the wreath product there is an

equivalent sequential composition.

It is not surprising that there is an algebraic construction

that models sequential composition. Such constructions have

been long known for monoids, and for word and tree au-

tomata. The noteworthy fact is that the algebraic construction

for forest algebras happens to be the exact same wreath

product as used for transformation monoids. Actually, one

could even argue that the wreath product is better suited

to forest languages, since it works directly on the forest

algebra, while for word languages one goes from monoids

to so-called transformation monoids.

We now proceed to give the definition of wreath product.

A forest algebra is, in particular, a transformation monoid–

so we can form the wreath product of two of these to

obtain another transformation monoid: Given (H1, V1) and

(H2, V2), we define (H1, V1) ◦ (H2, V2) to be the pair

(H1 ×H2, V1 × V H1

2), with the action defined by

(v1, f)(h1, h2) = (v1h1, f(h1)v2).

As is well known, this definition turns V1 × V H1

2 into a

monoid of faithful transformations on H1 × H2. (Observe

that since we define forest algebras using a left action of V
on H, rather than a right action, our definition of the wreath

product is the reverse of the customary one.) Of course, since

H1, and H2 are themselves monoids, we can give H1 ×H2

a monoid structure through the usual direct product. Finally,

let h1 ∈ H1, h2 ∈ H2 and consider the map f : H1 → V2

that sends every element to (1 + h2). Then for any g1 ∈
H1, g2 ∈ H2, we have

(1 + h1, f)(g1, g2) = ((1 + h1)g1, (1 + h2)g2)

= (g1 + h1, g2 + h2)

= (1 + (h1, h2))(g1, g2).

Similarly, we find V1 × V H1

2 contains the transformation

(h1, h2)+1. Thus the wreath product of two forest algebras

is a forest algebra.

Well-known properties of the wreath product of transfor-

mation semigroups and monoids carry over unchanged to

this setting. In particular, the wreath product is associative,

so we can talk about the wreath product of any sequence

of forest algebras, and about the iterated wreath product

of an arbitrary number of copies of a single forest algebra.

Likewise, the direct product of two forest algebras embeds in

their wreath product in either direction. As a consequence, if

L1, L2 are recognized by forest algebras (H1, V1), (H2, V2)
respectively, then their union and intersection are both

recognized by (H1, V1) ◦ (H2, V2).

V. WREATH PRODUCT CHARACTERIZATIONS

When A is a class of forest algebras, we write TL[A]
for the class of languages recognized by iterated wreath

products of forest algebras from A . The following corollary

to Theorem 3 justifies this notation.

Corollary 4 Let L be the class of languages recognized

by a class of forest algebras A . Then TL[L] = TL[A].

We also say that A is an algebraic base of the language

class TL[A] (note that there may be several algebraic bases,

just as there may be several language bases). We will

now provide algebraic bases for the logics discussed in

Section III. By the above corollary, all we need to do is

to provide, for each logic, a class of forest algebras that

Logic Algebraic base

EF U1

CTL U2

FO[≺] aperiodic path algebras

CTL* distributive aperiodic algebras

PDL distributive algebras

graded PDL path algebras

Figure 2. Algebraic bases for temporal logics

captures the language base. This is stated in the following

theorem; the algebras used in the statement are described

immediately afterwards.

Theorem 5 The logics EF, CTL, FO[≺], CTL*, PDL and

graded PDL have algebraic bases as depicted in Figure 2.

We proceed to describe the algebras mentioned in Fig-

ure 2. As we will see later, there are no finite bases for

the last four logics in the figure. For the infinite bases we

propose, we will give effective characterizations in terms of

identities in forest algebras. Therefore, to check if a given

forest language belongs to the base it is enough to check if

the identities hold in the finite, syntactic forest algebra of

the language.

First, we recall that an aperiodic finite semigroup S is

one that contains no nontrivial groups. Equivalently, there

exists m > 0 such that sm = sm+1 for all s ∈ S. When we

say that a forest algebra (H,V) is aperiodic, we mean that

the vertical monoid V is aperiodic (which implies that H is

aperiodic).

U1 is the forest algebra ({0,∞}, {1, 0}), with 0 · ∞ =
0 · 0 = ∞. Note that since we use additive notation

in the horizontal monoid, the additive absorbing element

is denoted ∞, while the multiplicative absorbing element

is 0. The vertical monoid of U1 is the unique smallest

nontrivial aperiodic monoid, denoted U1 in the literature.

Every language in the language base of EF is recognized

by U1, and every language recognized by U1 is a boolean

combination of members of the language base of EF, so this

algebra forms an algebraic base for EF.

U2 is the forest algebra ({0,∞}, {1, c0, c∞}) with ch ·
h′ = h for all horizontal elements h, h′. If one reverses the

action from left to right and ignores the additive structure,

U2 is the aperiodic unit in the Krohn-Rhodes Theorem.

The underlying monoid of this transformation semigroup is

usually denoted U2. Every language in the language base

of CTL can be recognized by U2, and conversely, every

language recognized by U2 is a boolean combination of

members of the language base of CTL. So U2 forms an

algebraic base for CTL.

A distributive algebra is a forest algebra (H,V) such

that H is commutative and such that the action of V on

H is distributive: v(h1 + h2) = vh1 + vh2 for all v ∈ V,
h1, h2 ∈ H.

Theorem 6 A forest language is a boolean combination of

languages EL (respectively, languages EL with L first-order

definable) if and only if it is recognized by a distributive

forest algebra (respectively, an aperiodic distributive forest

algebra).

Let us define a path language to be any boolean com-

bination of members of the language base of graded PDL,

and an FO-path language if it is a boolean combination of

members of the language base of FO[≺].

Theorem 7 A finite forest algebra (H,V) recognizes only

path languages if and only if H is aperiodic and commuta-

tive and

vg + vh = v(g + h) + v0 (1)

u(g + h) = u(g + uh) (2)

hold for all g, h ∈ H and u, v ∈ V with u2 = u. (H,V)
recognizes only FO-path languages if and only if H is

aperiodic and commutative, V is aperiodic, and (H,V)
satisfies the two identities above.

We define a path algebra to be a forest algebra (H,V)
satisfying identities 1 and 2 with H aperiodic and commu-

tative.

Because of the connection with logic, we will call divisors

of the six kinds of iterated wreath products described above

EF-algebras, CTL-algebras, CTL*-algebras, FO-algebras,

PDL-algebras, and graded PDL-algebras, respectively.

Note that for EF and CTL, the algebraic base had one

algebra, while our other bases contained infinitely many

algebras. This turns out to be optimal, as stated below.

Theorem 8 (Infinite base theorem) Suppose a language

class L contains all languages Ln = “exists a path in

(anb)∗c”. Then L cannot have a finite algebraic base.

Here is a brief idea of the proof for aperiodic language

classes (like CTL* and FO[≺]): If there were a finite

algebraic base for these classes, there would exist an integer

m such for every algebra (H,V) of the base and all v ∈ V,
vm = vm+1. It is shown, by induction on the length of

the product, that an iterated wreath product of algebras

satisfying vm = vm+1 cannot recognize Lm.

VI. EF

The following theorem is proved in [3].

Theorem 9 L ⊆ HA is in EF if and only if (i) HL is

idempotent and commutative, and (ii) for every v ∈ VL,
h ∈ HL, we have vh+ h = vh.

Because this property can be effectively verified from the

multiplication tables of HL and VL, we have a decision

procedure for determining whether or not a forest language

given, say, by an automaton that recognizes it, is definable

in EF. This procedure can also be adapted to testing whether

a tree language is EF-definable with tree semantics.

In light of Theorem 5, we have the following result:

Theorem 10 A forest algebra (H,V) divides an iterated

wreath product of copies of U1 if and only if H is idempotent

and commutative, and vh+ h = vh for all h ∈ H, v ∈ V.

Note that this statement is purely algebraic—it makes no

mention of trees, forests, languages or logic. This suggests

that it might be proved in quite a different fashion, reasoning

solely from the structure of the forest algebra. This would

provide a different proof of Theorem 9.

We will present precisely such a proof of Theorem 10 in

the full paper. Here we give a rough outline. It is straight-

forward to show that iterated wreath products of copies of

U1 satisfy the given identities: We simply verify them for U1

and show that they are preserved under wreath product and

division. For the hard direction, we suppose (H,V) satisfies

the identities. The sum of all elements of H is necessarily

the unique absorbing element, which, following our usual

practice, we denote ∞. A subminimal element h of H has

the property that for all v ∈ V, vh = h or vh = ∞. For each

such h, we define Hh to be the set {∞}∪{h′ : h ∈ V h′}. It

is possible to define an additive structure and an action Vh
on each Hh so that (H,V) embeds into the direct product

of the (Hh, Vh) over all subminimal elements h, and such

that each of the algebras (Hh, Vh) satisfies the identities.

If there is more than one subminimal element, then each

Hh has cardinality strictly smaller than H, and the result

follows by induction on |H|. If H has a unique subminimal

element, then it is possible to define an additive structure on

H −{0} and an action V ′ such that (H −{0}, V ′) satisfies

the identities, and such that (H,V) embeds in the wreath

product (H − {0}, V ′) ◦ U1. Again the result follows by

induction on |H|.
Theorem 10 is the exact analogue for forest algebras of

a Theorem of Stiffler [17] that a monoid is R-trivial if and

only if it divides a wreath product of copies of U1.

VII. MULTICONTEXTS AND CONFUSION

Here we find necessary conditions for a forest algebra to

be a CTL-algebra, an FO-algebra or a graded PDL-algebra.

We will apply these results in the next subsection to prove

nonexpressibility results for these logics. The conditions we

find are essentially the absence of certain kinds of config-

urations in the forest algebra, analogous to the ‘forbidden

patterns’ of Cohen-Perrin-Pin [7] and Wilke [19].

Let A be a finite alphabet. A multicontext p over A is a

forest in which some of the leaves have been replaced by a

special symbol �, each occurrence of which is called a hole

of the multicontext. A special kind of multicontext, called

a uniform multicontext, is one in which every leaf node is

a hole, and all subtrees at the same level are identical. For

example

a(b(c� + c�)) + a(b(c� + c�))

is a uniform multicontext.

The set of holes of a multicontext p is denoted holes(p).
A valuation on p is a map µ : holes(p) → X, where X can

be a set of forests, or of multicontexts, or elements of H,
where (H,V) is a forest algebra. The resulting value, p[µ],
found by substituting µ(x) for each hole x, is consequently

either a multicontext, a forest, or an element of H. In the

last case, we are assuming the existence of a homomorphism

α : A∆ → (H,V), evaluated at the nodes of p.
Given a set G ⊆ H we write p[G] for the set of all

possible values of p[µ] where µ : holes(p) → G. When

G = {g} is a singleton, we just write p[g]. For g ∈ G and

x ∈ holes(p) we define p[g/x] to be the multicontext that

results from p by putting a tree that evaluates to g in the

hole x. (In particular, p[g/x] has one less hole than p.)

Let (H,V) be a forest algebra. As above, we assume

the existence of a homomorphism from A∆ into (H,V) in

order to define the valuations on p with values in H . We

say that (H,V) has horizontal confusion with respect to a

multicontext p and a set G ⊆ H with |G| > 1 if for every

g ∈ G and x ∈ holes(p):

G ⊆ p[g/x][G].

Intuitively, this means that fixing the value of one of the

holes of p still allows us to obtain any element of G by

putting suitable elements of G into the remaining holes.

We say that (H,V) has vertical confusion with respect to

a multicontext p and a set {g0, . . . , gk−1} ⊆ H with k > 1
if for every i = 0, . . . , k − 1:

p[gi] = gj where j = (i+ 1) (mod k).

This condition is weaker than periodicity of vertical monoid,

because p is a multicontext, and not just a context.

Theorem 11

• If (H,V) is a CTL-algebra, it does not have vertical

confusion with respect to any multicontext.

• If (H,V) is an FO-algebra, it does not have vertical

confusion with respect to any uniform multicontext.

• If (H,V) is a graded PDL-algebra, it does not have

horizontal confusion with respect to any multicontext.

The proofs of all three assertions follow the same general

outline: We show that the base algebras for each class satisfy

the relevant non-confusing condition, and that the condition

is preserved under wreath product and homomorphic images.

(Preservation by subalgebras is trivial.) It is somewhat

difficult to prove this directly for the base algebras for

FO[≺] and graded PDL, but in these instances we can

decompose further, and obtain a base with two different

kinds of algebras: E
kL is the composition of languages of

the form E
ka and languages of the form EL′, where L′ is

first-order definable if L is. Since languages of the form EL
have distributive syntactic algebras, this is an easier base to

work with.

Theorem 12 It is decidable if a given algebra has a hori-

zontal or vertical confusion.

The first observation needed for the proof is that it is

enough to consider multicontexts over alphabets consisting

of vertical elements of the algebra. Then one can just

enumerate all possible candidates, as what matters is not

really the shape of a multicontext, but the behavior of

a multicontext as function. This is rather straightforward

for vertical confusion. It is bit more complicated for the

horizontal variant.

VIII. APPLICATIONS

Example: (Binary trees with every leaf at even depth.) A

labeled binary tree is a tree where every node is either a

leaf, or has exactly two children: one with label a and the

other with label b. (The root label is irrelevant.) Let L1 be

the set of labeled binary trees t over A = {a, b} where every

leaf is at even depth.

A trick due to Potthoff [15] can be used to show, some-

what surprisingly, that L1 is definable in FO[≺]. Here we

use Theorem 11 to show that L1 is not definable in CTL. We

will use two classes of the syntactic congruence: the class h0

(respectively, h1), which contains all concatenations s+ t of

two labeled binary trees with different root labels, such that

all leaves in s+ t are at even (respectively, odd) depth. Now

let p be the multicontext a�+ b�. Observe that p[h0] = h1

and p[h1] = h0. So (HL1
, VL1

) has vertical confusion with

respect to p. By Theorem 11, (HL1
, VL1

) is not a CTL-

algebra, and thus L1 is not definable in CTL.

Example: (Binary trees with every leaf at even depth,

continued) Now we consider the set L2 of unlabeled binary

trees (that is, trees over a one-letter alphabet {a} where

every node is either a leaf, or has exactly two children)

such that every path from the root to a leaf has even length.

Pothoff’s method just cited can be used to show that this

is definable in first-order logic with the ancestor and next-

sibling relations (the next-sibling relation is used to recover

the a and b labels). We will show, however, that the ancestor

relation alone is not sufficient to recognize L2. In other

words, L2 is not definable in FO[≺]. Let h0 (respectively,

h1) be the set of binary trees where every leaf is at even

(respectively, odd) depth. (Note that h0 is the language L2

itself.) Let p = a(� + �). This is a uniform multicontext,

and we have p[h0] = h1, p[h1] = h0, so by Theorem 11,

L2 is not FO[≺]-definable.

Languages definable in FO[≺] are obviously in the inter-

section of the class of languages definable in FO with ≺
and the next-sibling relationship, and the class of languages

L with commutative HL. This example shows that the

containment is strict. Note that L2 is expressible in graded

PDL so we have also established that the languages in graded

PDL with aperiodic forest algebras need not be definable

in FO[≺] (there is even an example, also due to Potthoff,

which shows that languages definable in graded PDL with

aperiodic forest algebras need not be definable in FO with

≺ and the next-sibling relationship).

Example: (Boolean expressions). Consider the set L3 of

trees over the alphabet {0, 1,∨,∧} that are well-formed

boolean expressions (i.e., all the leaf nodes are labeled 0

or 1, and all the interior nodes are labeled ∨ or ∧) that

evaluate to 1. L3 is contained in a single equivalence class

of the syntactic congruence, as is the set of well-formed trees

that evaluate to 0. We denote the corresponding elements of

HL3
by h1 and h0.

Now consider the uniform multicontext p = ∨(∧(� +
�) + ∧(� + �)). If we put h0 in one of the holes then by

putting hi in all other holes we will , obtain hi (for i = 0, 1),

and analogously if we put h1 in one of the holes. So the

syntactic algebra of L3 has horizontal confusion with respect

to p. Thus L3 is not definable in graded PDL. Observe that

the vertical component of the syntactic algebra of L3 is

aperiodic: In contrast to the word case, languages recognized

by aperiodic algebras are not necessarily expressible in first-

order logic, or even in graded PDL.

Obviously, we can separate CTL∗ and PDL from FO[≺]
and graded PDL, respectively, because the syntactic algebras

for the former classes have idempotent and commutative hor-

izontal parts, while for the latter the horizontal components

need only be aperiodic and commutative. Thus, for example,

any language in FO[≺] that fails to satisfy the idempotency

condition is not in CTL∗. We can use our algebraic methods

to show that this is in fact the only distinction. In the full

paper, we will prove the following fact.

Theorem 13 Let (H,V), (Hj , Vj), j = 1, . . . , k be forest

algebras such that H is idempotent and commutative, each

(Hi, Vi) is a path algebra, and such that (H,V) divides

(H1, V1)◦ · · · ◦ (Hk, Vk). Then each (Hi, Vi) has a distribu-

tive homomorphic image (H ′

i, V
′

i) such that (H,V) divides

(H ′

1, V
′

1) ◦ · · · ◦ (H ′

k, V
′

k).

Theorem 5 immediately yields the following corollary:

Theorem 14 A forest language is definable in CTL∗ (re-

spectively PDL) if and only if it is definable in FO[≺]
(respectively graded PDL) and its syntactic algebra is hor-

izontally idempotent.

The first of of these facts is already known in a somewhat

different form: properties expressible in CTL∗ are exactly

the bisimulation-invariant properties expressible in monadic

path logic (see Moller and Rabinovich [14].)

IX. CONCLUSION AND FURTHER RESEARCH

Results like those in Section VIII are typically proved

by model-theoretic methods. Here we have demonstrated a

fruitful and fundamentally new way, based on algebra, to

study the expressive power of these logics.

Of course, the big question left unanswered is whether we

can establish effective necessary and sufficient conditions

for membership in any of these classes. We do not expect

that the conditions established in Theorem 11 are sufficient.

The approach outlined in Section VI may constitute a model

for how to proceed: a deeper understanding of the ideal

structure of forest algebras can lead to new wreath product

decomposition theorems.

In a sense, we are searching for the right generalization of

aperiodicity. For regular languages of words, aperiodicity of

the syntactic monoid, expressibility in first-order logic with

linear ordering, expressibility in linear temporal logic, and

recognizability by an iterated wreath product of copies of

the aperiodic unit U2 are all equivalent. For forest algebras,

the obvious analogues are, respectively, aperiodicity of the

vertical component of the syntactic algebra, expressibility

in FO[≺], expressibility in CTL, and recognizability by an

iterated wreath product of copies of U2. As we have seen,

only the last two coincide. Understanding the precise rela-

tionship among these different formulations of aperiodicity

for forest algebras is an important goal of this research.

Another way of looking at this research is that it sets the

scene for a Krohn-Rhodes theorem for trees. The Krohn-

Rhodes theorem states that every transformation monoid

divides a wreath product of transformation monoids which

are either U2 or groups that divide the original monoid. The

ingredients of the theorem are therefore: a notion of wreath

product, a notion of an easy transformation monoid U2, and a

notion of a difficult transformation monoid (a group). In this

paper, we have provided some of the ingredients: the wreath

product and the easy objects. (There are several candidates

for the easy objects, e.g. simply U2 or maybe path algebras.

There are probably several Krohn-Rhodes theorems). We

have provided examples of properties one expects from the

difficult objects (the various types of confusion), but we still

have no clear idea what they are (in other words, what is a

tree group?). We have also shown that the wreath product is

strongly related to logics and composition, just as in the case

of words. Finding (at least one) Krohn-Rhodes theorem for

trees is probably the most ambitious goal of this research.

REFERENCES

[1] P. Barceló and L. Libkin, “Temporal logics over unranked
trees,” in LICS, 2005, pp. 31–40.

[2] M. Benedikt and L. Segoufin, “Regular tree languages de-
finable in FO,” in STACS, ser. LNCS, vol. 3404, 2005, pp.
327–339.

[3] M. Bojanczyk and I. Walukiewicz, “Forest algebras,” in Logic
and Automata: History and Perspectives, J. Flum, E. Graedel,
and T. Wilke, Eds. Amsterdam University Press, 2008.

[4] M. Bojanczyk, “Two-way unary temporal logic over trees,”
in LICS, 2007, pp. 121–130.

[5] M. Bojanczyk and L. Segoufin, “Tree languages defined in
first-order logic with one quantifier alternation,” in ICALP,
ser. LNCS, vol. 5126, 2008, pp. 233–245.

[6] M. Bojanczyk, L. Segoufin, and H. Straubing, “Piecewise
testable tree languages,” in LICS, 2008, pp. 442–451.

[7] J. Cohen, D. Perrin, and J.-E. Pin, “On the expressive power
of temporal logic,” J. Comput. Syst. Sci., vol. 46, no. 3, pp.
271–294, 1993.

[8] Z. Ésik and P. Weil, “On logically defined recognizable tree
languages,” in FSTTCS, ser. LNCS, vol. 2914, 2003, pp. 195–
207.

[9] ——, “Algebraic recognizability of regular tree languages,”
Theor. Comput. Sci, vol. 340, no. 1, pp. 291–321, 2005.

[10] Z. Ésik, “Characterizing CTL-like logics on finite trees,”
Theor. Comput. Sci., vol. 356, no. 1-2, pp. 136–152, 2006.

[11] Z. Ésik and S. Iván, “Aperiodicity in tree automata,” in CAI,
ser. LNCS, vol. 4728, 2007, pp. 189–207.

[12] T. Hafer and W. Thomas, “Computation tree logic CTL and
path quantifiers in the monadic theory of the binary tree,” in
ICALP, ser. LNCS, vol. 267, 1987, pp. 260–279.

[13] L. Libkin, “Logics for unranked trees: an overview,” in
ICALP, ser. LNCS, vol. 3580, 2005, pp. 35–50.

[14] F. Moller and A. M. Rabinovich, “Counting on CTL*: on the
expressive power of monadic path logic,” Inf. Comput., vol.
184, no. 1, pp. 147–159, 2003.

[15] A. Potthoff, “First-order logic on finite trees,” in Theory and
Practice of Software Development, ser. LNCS, vol. 915, 1995,
pp. 125–139.

[16] R. McNaughton and S. Papert, Counter-free Automata. MIT
Press, Cambridge, USA, 1971.

[17] P. Stiffler, “Extensions of the fundamental theory of finite
semigroups,” Advances in Mathematics, vol. 11, pp. 159–209,
1973.

[18] H. Straubing, Finite automata, formal logic, and circuit
complexity, ser. Progress in Theoretical Computer Science.
Boston, MA: Birkhäuser Boston Inc., 1994.

[19] T. Wilke, “Classifying discrete temporal properties,” in
STACS, ser. LNCS, vol. 1563, 1999, pp. 32–46.

