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ABSTRACT

The aim of this study is to investigate the capability of the image source method (ISM) for pre-

dicting medium and high frequency flexural vibrations of damped convex polygonal thin plates

including various boundary conditions. Besides its classical use in room acoustics, ISM has al-

ready been applied to polygonal plates comprising simply supported and roller supported edges.

Such boundaries include reflection coefficients that are independent from the angle of incidence

of waves. In order to render ISM applicable to more complex boundary conditions, the existing

formulation must be adapted. In this paper we present a new formulation of ISM which allows to

include angle-dependent reflection coefficients. For practical implementation, an approximation

consisting in neglecting edge effects is investigated. An example of implementation is presented

and the interest of the method for high frequency vibration modelling is discussed.

1 INTRODUCTION

Mainly, three different strategies are of common usage for modelling high-frequency structural dy-

namics. The first consists in extending existing low-frequency methods such as finite elements (FE)

to higher frequency ranges, which is achieved either by improvement of computer hardware ca-

pabilities or by suitably post-processing or adapting FE models to high-frequencies (see Ref. [13]

for example). The second strategy consists in modelling the averaged behaviour of the structure

by energy methods such as statistical energy analysis (SEA) (see Refs. [10, 12]). These methods

are well-suited for high frequency applications but are limited by the high number of preliminary

hypotheses as input parameters. Hybrid FE-SEA methods also exist, for example consisting in sep-

arately describing long wavelength subsystems by FE and short wavelength subsystems by SEA

(see Ref. [4]). The third strategy consists in computations by wave methods [16], i.e. involving

the exact description of the vibrations as a sum of elementary waves. In this direction, one pos-

sible description of the flexural vibrations of plates is the image source method (ISM). The latter

consists in the description of the vibrations of a polygonal domain excited by a point source as

the superposition of the fields resulting from the original source and from its image sources rel-

atively to the boundaries. For a given degree of accuracy to be reached, the number of needed

image sources decreases with frequency [6], which renders the approach convenient for modelling

systems in non-resonant regimes such as high frequency vibrations of plates.
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The present study is based on a recent paper [2], which focuses on the capability of ISM

to accurately compute the displacement field of polygonal plates in the case of simply supported

boundaries. The method allows to analytically derive Green’s functions of plates having particular

polygonal geometries. It is also shown that the numerical implementation of ISM using a truncated

series of image sources accurately predicts the high-frequency vibrating field of arbitrary convex

polygonal plates with a limited number of image sources. The main limitation of the proposed

method is that it exclusively applies to boundary conditions characterised by reflection coefficients

that do not depend on the angle of incidence of waves, such as simply supported or roller supported

boundaries. This is not the case for other kinds of boundary conditions such as clamped, free or

elastically supported. In this paper we propose a formulation of ISM that allows to take into

account boundary conditions that depend on the angle of incidence of waves.

2 STATEMENT OF THE PROBLEM

The system under study is a polygonal plate Ω under the assumption of Kirchhoff’s model for thin

plates, represented in Fig. 1. The boundaries are denoted ∂Ω and the plate is excited by a harmonic

point source of unitary force at r0, normal to the plate surface. The space variable is denoted r.

The plate parameters are: Young’s modulus E, Poisson coefficient ν, density ρ and thickness h,

which yield the bending stiffness of the plate

D =
Eh3

12 (1 − ν2)
(1)

and the wavenumber of flexural waves

kf =

(

ω2ρh

D

)1/4

, (2)

where ω is the circular frequency of the source. In the following, the e−jωt time dependence is

implicit. The displacement field wΩ of the plate is a solution of the set of equations

{

D
(

∇4 − k4
f

)

wΩ(r, r0; kf ) = δ(r − r0), r ∈ Ω, (3)

Boundary conditions, r ∈ ∂Ω. (4)

The aim of the following is to determine wΩ by applying the image source method to the point

source in the convex polygonal plate Ω.

r

r0

∂Ω

Ω

x

y

z 0

k

µ

θ
ξ

αn

z

αn

Vn+1

Vn

Figure 1: Global coordinate system (x, y) and local coordinate system (ξ, µ) for edge n of polyg-
onal plate (Ω, ∂Ω). (Vn, Vn+1), vertices defining ξ axis; k, wavenumber vector associated to a
reflected plane wave on edge n.
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3 ISM USING DIRECT APPROACH

The reflection coefficients associated to the different boundaries of the plate generally depend on

the angle of incidence of waves. However, in some particular cases, such reflection coefficient is

constant. For example, the reflection coefficients of simply supported and roller supported edges

are respectively R = −1 and R = 1. In such cases, the set of Eqs. (3) and (4) can be written [2]

D
(

∇4 − k4
f

)

wΩ(r, r0) = DΩ(r, r0), (5)

where DΩ(r, r0) contains an infinity of sources needed for satisfying the boundary conditions on

∂Ω. The image sources model the successive reflections of waves on the boundaries. They are

located outside the polygonal plate and are obtained by successive symmetries of the original

source with respect to the boundaries, in the form

DΩ(r, r0) =
∞

∑

s=1

RNr(s)δ(r − rs), (6)

where rs is the location of a given image source s and Nr(s) is the number of reflections needed

for building source s. The solution to Eq. (5) is then

wΩ(r, r0) = DΩ(r, r0) ∗ G∞(r,0), (7)

where G∞ is the infinite plate Green’s function. Eq. (7) allows to compute the Green’s function

of the flexural vibrations of any convex polygonal plate with simply supported or roller supported

edges, which is developed in detail in Ref. [2]. The main limitation of such approach is that Eq. (6)

is not applicable to reflection coefficients depending on the angle of incidence of waves on the

boundaries, such as clamped or free edges. In the following, a different formulation of image

sources is developed in order to render ISM applicable to more complex boundary conditions.

4 ISM USING FOURIER TRANSFORM APPROACH

The solution of Eqs. (3) and (4) is obtained as the superposition of the contributions from the

original (real) source and its successive image (virtual) sources with respect to the boundaries. In

the following, the contributions of the original and image sources are developed. Fig. 2 illustrates

the different steps of the construction of the image source solution.

4.1 Original source contribution

The original source contribution is modelled as the Green’s function G∞ of the associated infinite

plate, which is the solution of the equation

D
(

∇4 − k4
f

)

G∞(r, r0; kf ) = δ(r − r0) (8)

and is obtained as [8]

G∞(r, r0; kf ) =
j

8k2
fD

(

H
(1)
0 (kf |r − r0|) − H

(1)
0 (jkf |r − r0|)

)

, (9)

where H
(1)
0 denotes the Hankel function of the first kind of order 0 and |r − r0| is the source-to-

receiver distance. The first and second terms in G∞ respectively represent propagative and evanes-

cent cylindrical waves outgoing from the point source at r0. The displacement field corresponding

to the original source is represented in Fig. 2(a).
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Computation step Displacement field of sources

(a)

r0

V1 V2

V4

V5
V3

Polygonal plate, original source and vertices Original source contribution; Eq. (9)

(b)

r0

r1

V2V1

Construction of image source 1; Eqs. (15), (16) Image source 1 contribution; Eq. (21)

(c)
r0

r1

r1,2

V2

V3

Construction of image source 1,2; Eqs. (15), (16) Image source 1,2 contribution; Eq. (21)

(d)

Truncation of the image source series; Eq. (23) Total field of the plate; Eq. (22)

Figure 2. Image source model construction.
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4.2 Image sources contributions

Image sources describe wave reflection on the plate boundaries. Each image source is defined

by its location and its amplitude, which depend on the geometry and the boundary conditions

of the plate. Most kinds of boundaries induce wave conversion from propagative to evanescent,

and vice-versa. However, if the frequency of the excitation is sufficiently high, the effects of

evanescent waves are relevant only in a small region near the boundaries. In the present method,

image sources account for the propagative-to-propagative component of the reflected waves on the

boundaries. Propagative-to-evanescent, evanescent-to-propagative and evanescent-to-evanescent

reflections are ignored. The elements composing each image source are developed in the following.

4.2.1 Wave propagation

As in the case of the original source, wave propagation from image sources to the receiver is

described by the Green’s function of the associated infinite plate. The propagative-to-propagative

component of the reflected field corresponding to image source s is given by the first term of the

infinite plate Green’s function G∞ of Eq. (9),

gs(r, rs; kf ) =
j

8k2
fD

H
(1)
0 (kf |r − rs|), (10)

where rs is the location of source s (see section 4.2.3). The function gs is the basic element for

describing an image source. The weights of image sources, which depend on boundary conditions,

are defined hereafter.

4.2.2 Amplitude of image sources

Each image source can be defined as a continuous sum of plane waves. Furthermore, the reflection

of a plane wave on a plate boundary is characterised by a reflection coefficient which may depend

on the angle of incidence of the plane wave [5]. The wavenumber vector associated to a reflected

plane wave on edge n is denoted k. The angle between edge n and k is denoted θ, as shown in

Fig. 1. In order to separately describe wave reflection on each edge, a global coordinate system as

a reference and a local coordinate system on each boundary are used. The global coordinates are

denoted r = (x, y). The local coordinate system r = (ξ, µ) is such that ξ is collinear to the edge

and µ is oriented towards the inside of the plate (Fig. 1). In the same way, the wavenumber vector

has the coordinates k = (kx, ky) and k = (kξ, kµ). As a convention, the vertices Vn are numbered

counterclockwise along the plate boundaries ∂Ω and edge n corresponds to the segment between

vertices Vn and Vn+1. Considering the propagation equation of a plane wave in an infinite plate,

the dispersion relation of flexural waves in the plate is obtained as

k4
f = |k|4 =

(

k2
x + k2

y

)2
=

(

k2
ξ + k2

µ

)2
, (11)

which implies the wavenumber components

kξ = kf cos(θ), kµ = kf sin(θ). (12)

The reflection coefficient of edge n for propagative waves is denoted Rn(k) in the local coordinate

system k = (kξ, kµ) and Rn(k, αn) in the global coordinate system k = (kx, ky), where αn is the

angle of orientation of edge n, as shown in Fig. 1. Such reflection coefficient can be represented as

a function of the orientation θ of an elementary plane wave and the frequency, such that Rn(k) =
Rn(θ, ω) in local coordinates. As an example, Fig. 3 shows the reflection coefficients of simply

supported and clamped edges.
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Figure 3: Real part of the propagative-to-propagative reflection coefficient Rn(θ, ω) ni local coor-
dinates of edge n. (a) Simply supported boundary; (b) clamped boundary.

A given image source s is obtained by successive symmetries of the initial source on the

plate boundaries. The amplitude As of source s is therefore obtained as the product of the sequence

of reflection coefficients Rn, in the form

As(k) =

N
(s)
r

∏

i=1

Rn(i)(k, αn(i)), (13)

where N
(s)
r number of reflections giving rise to source s and where n(i) is a sequence giving the

order in which reflections take place. Using Eqs. (11) and (12), As can be written as

As(k) = As(kξ, kf ) = As(θ, ω). (14)

4.2.3 Location of image sources

The location rs of image source s is obtained by successive symmetries of the initial source (located

at r0) on the plate edges. The source immediately giving rise to a new image source s is called

the mother source m of s. Thus, for an image source s descending from m, it is convenient to

note s = m, n, where n denotes the edge at which reflection occurs, also called the generator

edge. The location rm,n of an image source is obtained from its mother source’s location rm by the

geometrical relation

rm,n = −rm + 2vn + 2
(rm − vn) · (vn+1 − vn)

|vn+1 − vn|2
(vn+1 − vn) , (15)

where vn and vn+1 are the vertices of the generator edge. Furthermore, an image source s exists

if it satisfies the boundary conditions at edge n with its immediate mother source m and if it is

visible from an observation point r. Such conditions of existence of image source s are included

in the formulation by using the visibility window function

V (r, rs) =

{

1 in the visibility zone,

0 elsewhere.
(16)

The geometrical construction of image sources is represented in Figs. 2(b) and 2(c).
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4.3 Displacement field of the plate

4.3.1 General expression

The displacement field of the plate is obtained by assembling the elements describing wave prop-

agation and reflection and image source location. For a given image source s, its contribution

to the displacement field of the plate is determined by the propagation function gs(r, rs; kf ), the

amplitude As(k), the location rs and the visibility window V (r, rs).
The one-dimensional Fourier transform of a function w(r) in the local coordinate system

r = (ξ, µ) of the generator edge of source s is defined as



















w̄(kξ, µ) = F [w(ξ, µ)](kξ,µ) =
1√
2π

∫ +∞

−∞

w(ξ, µ)e−jkξξdξ, (17)

w(ξ, µ) = F−1 [w̄(kξ, µ)](ξ,µ) =
1√
2π

∫ +∞

−∞

w̄(kξ, µ)ejkξξdkξ, (18)

It can be shown [5] that the Fourier transform of Eq. (10) is

ḡs(kξ, µ; kf ) =
j

4
√

2πk2
fD

e−jkξξsej
√

k2
f
−k2

ξ
|µ|

√

k2
f − k2

ξ

, (19)

which represents an elementary propagative plane wave. Thus, the plane wave that arises from

source s is given by weighting ḡs(kξ, µ; kf ) by the source’s amplitude, As(kξ, kf ). The displace-

ment field in the spatial domain is given by inverse Fourier transform. Then, by including the

visibility requirements at the receiver, the image source contribution to the total displacement field

of the plate is

ws(ξ, µ, ξs, µs; kf ) = V (ξ, µ, ξs, µs)
1√
2π

∫ +∞

−∞

ejkξξAs(kξ, kf )ḡs(kξ, µ; kf )dkξ, (20)

where coordinates (ξ, µ) are local to the generator edge of each source s. Replacing ḡs by its

explicit expression, the image source contribution takes the form

ws(ξ, µ, ξs, µs; kf ) =
j

8πk2
fD

V (ξ, µ, ξs, µs)

∫ +∞

−∞

ejkξ(ξ−ξs)As(kξ, kf )
ej
√

k2
f
−k2

ξ
|µ−µs|

√

k2
f − k2

ξ

dkξ. (21)

The total displacement field of the plate is then obtained as the superposition of the individual

contributions from the sources, in the form

wΩ(r, r0; kf ) = G∞(r, r0; kf ) +
∞

∑

s=1

ws(r, rs; kf ). (22)

4.3.2 Truncation of the image source series

The number of sources that is needed for obtaining the displacement field of the plate by Eq. 22 is

infinite. Thus, for practical usage, the image source series must be truncated [2]. The truncation

criterion is such that sources taken into account are inside a truncation circle of radius rt which

is centred on the mean vertex location. For controlling the truncation, we use the dimensionless

parameter

γ =
rt

rc

, (23)
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where rc is an arbitrary distance of reference, taken as the mean free path of the plate [2], as

rc =
πS

p
, (24)

where S and p are, respectively, the surface area and the perimeter of the plate. The truncation of

the image source series is illustrated in Fig. 2(d) for an arbitrary polygonal plate.

5 APPLICATION TO A POLYGONAL PLATE

The application of ISM using the direct approach (section 3) has been validated by comparison to

FE simulations [2, 3] in the case of simply supported plates of arbitrary shape. Fig. 4 shows the

displacement field of a steel triangular plate of vertices (0, 0), (0.75, 0), (0.5625, 0.9) (distances in

meters) with thickness h = 2 mm and damping ratio η = 0.07, for a point source at (0.3, 0.15) and

an observation point at (0.45; 0.225). Computation by ISM using direct approach with 793 sources

(γ = 22.44, rc = 0.39 m), compared to a FE model having 40534 nodes, leads to discrepancies

that are less than 5%, which validates the approach.

frequen
y (Hz)

|w
Ω
|(

d
B
)

⋆

-200

-180

-160

-140

-120

-100

-80

-60

-40

0 500 1000 1500 2000 2500 3000

Figure 4: Displacement field of the plate. —–, FE; - - - -, ISM by direct approach; ⋆, frequency for
computation of harmonic response of Fig. 5.

ISM using Fourier transform approach can be compared to ISM direct approach on the

same triangular plate in order to validate the present method. Figs. 5(a) and 5(b) show the harmonic

response of the triangular plate at 2.5 kHz computed by both approaches. The truncation parameter

is chosen as γ = 2.5, which yields 34 sources. The displacement fields are found to be nearly

identical. The difference can be quantified by using an error estimation, defined as

error =

∣

∣

∣

∣

∣

w
(Fourier)
Ω − w

(direct)
Ω

w
(direct)
Ω

∣

∣

∣

∣

∣

. (25)

Such estimation is represented in Fig. 5(c). It can be observed that the error is near zero on almost

the entire plate, except in regions such as the edges or the corners, where it reaches 5%. Such

increase of the error is due to the fact that evanescent waves are not taken into account in the

present method.
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(a) (b)

(c)

Figure 5: Harmonic response of the triangular plate at 2.5 kHz. (a) ISM using direct approach; (b)
ISM using Fourier transform approach; (c) error, in percent.

6 CONCLUSION

In this paper, we have proposed a formulation of the image source method (ISM) for flexural vi-

brations of polygonal plates, which allows to include boundaries with angle-dependent reflection

coefficients. The edge effects due to evanescent waves have been neglected in order to have a

simplified approach. The advantage of the proposed method is that its accuracy increases with

frequency and with structural damping. Such behaviour is opposite to those of classical FE meth-

ods. Therefore, ISM allows to reach high degrees of accuracy with a limited number of terms, i.e.

image sources, which makes computations fast.

The most important result of this study is that ISM using Fourier transform approach gives

equivalent results than ISM using direct approach. The latter is limited to simply supported or roller

supported boundary conditions, which do not include a dependence on the angle of incidence of

waves. The present approach allows to take into account such dependence. Work is in progress

in order to take advantage of the applicability to the case of boundary conditions involving a

dependence on the angle of incidence of waves.
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