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ABSTRACT

Yeast Qri7 and human OSGEPL are members of
the orthologous Kae1(OSGEP)/YgjD protein family,
the last class of universally conserved proteins with-
out assigned function. Phylogenetic analyses indi-
cate that the eukaryotic Qri7(OSGEPL) proteins
originated from bacterial YgjD proteins. We have
recently shown that the archaeal Kae1 protein is a
DNA-binding protein that exhibits apurinic endonu-
clease activity in vitro. We show here that the Qri7/
OSGEPL proteins localize in mitochondria and
are involved in mitochondrial genome mainte-
nance in two model eukaryotic organisms,
Saccharomyces cerevisiae and Caenorhabditis ele-
gans. Furthermore, S. cerevisiae Qri7 complements
the loss of the bacterial YgjD protein in Escherichia
coli, suggesting that Qri7/OSGEPL and YgjD pro-
teins have retained similar functions in modern
organisms. We suggest to name members of the
Kae1(OSGEP)/YgjD family UGMP, for Universal
Genome Maintenance Proteins.

INTRODUCTION

The KAE1/osgep/ygjD gene family constitutes the only
class of the universally conserved gene set that still
remains without an assigned function and merits therefore
a particular attention. The genome of all completely
sequenced organisms harbors at least one member of the
KAE1/osgep/ygjD gene family with only two exceptions,
the highly reduced genomes of Carsonella ruddii and
Sulcia muelleri (1–3). Despite their universal distribution,

the precise function of these proteins, which are known
under different names (YgjD/Gcp and YeaZ in Bacteria,
Kae1 in Archaea, Kae1p and Qri7p in yeast, OSGEP and
OSGEPL in human), remains largely unknown. In
Manheimia haemolytica (formerly Pasteurella haemoly-
tica), the Gcp protein was reported to encode an O-sialo-
glycoprotein endopeptidase (4,5), hence the name of the
yeast and human proteins (Kae1 for kinase-associated
endopeptidase, and OSGEP for O-sialoglycoprotein endo-
peptidase, respectively). However, purified bacterial and
archaeal homologs of these proteins, the Escherichia
coli YeaZ and the Pyrococcus abyssi Kae1 proteins,
respectively, do not show such activity in vitro (2,6).
The universal genomic distribution, lack of determined

function and misannotation of this protein family warrant
the priority and importance of its study (7). It has been
reported two years ago that the yeast Kae1 protein is part
of the chromatin associated multi-proteic complex
KEOPS/EKC that is required for telomere maintenance
and efficient gene transcription of essential genes (8–10).
It was proposed that Kae1 controls the activity of this
complex via its proteolytic activity. However, we found
later on that the P. abyssi Kae1 protein is an atypical
DNA-binding protein that exhibits an unusual apurinic
endonuclease activity in vitro (2), suggesting instead that
Kae1 plays a direct role in genome stability maintenance
by anchoring the KEOPS/EKC complex to chromatin.
Interestingly, most eukaryotes harbor two distantly

related homologs that branch in different parts of the
phylogenetic tree of the whole family (2). One copy
forms a monophyletic group that includes the yeast
Kae1 protein identified in the Keops/EKC complex. This
group branches with archaeal sequences suggesting that
it was inherited from the common ancestor of Archaea
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and Eukarya. In contrast, the second copy found in
eukaryotes (dubbed Qri7 in the yeast Saccharomyces
cerevisiae and OSGEPL in human) emerges from within
bacterial YgjD proteins, suggesting a mitochondrial origin
(2). These hypotheses are in agreement with data obtained
in S. cerevisae showing that Kae1p is cytoplamic/nuclear
whereas Qri7p is predicted to be mitochondrial, according
to the yeast GFP Fusion Localization Database (11).
Moreover, a qri7� mutant exhibits growth defect on
non-fermentable carbon sources, such as glycerol or lac-
tate, suggesting that Qri7 is essential for mitochondrial
physiology (12). Similarly, the E. coli ygjD mutation is
lethal (13,14). These observations, together with our
recent finding that the archaeal Kae1 protein is probably
involved in DNA metabolism, suggested that Qri7/
OSGEPL proteins could be involved in mitochondrial
genome maintenance. To test this hypothesis, we investi-
gated the properties of Qri7/OSGEPL proteins in
two eukaryotic model organisms, S. cerevisiae and
Caenorhabditis elegans.

MATERIALS AND METHODS

Strains, media and growth conditions

The construction of the conditional ygjD E. coli strain
(JO93) was carried out as described by Datsenko and
Wanner (15). Briefly, E. coli strain BW25141 carrying
the Red helper plasmid pKD46 and (pBADN-
KmR)::ygjD was electroporated with a PCR product
obtained by amplifying a CmR determinant with oligonu-
cleotides complementary to sequences located upstream
and downstream of the ygjD open reading frame.
Colonies were selected at 378C on complete medium con-
taining kanamycin, chloramphenicol and arabinose. These
colonies were then screened for ampicillin sensitivity at
428C, to test for the loss of the Red helper plasmid.
In order to yield JO93, the DygjD::cmR disruption was
subsequently transferred to a different genetic background
by P1 transduction (16). The recipient strain was C600
(Pasteur Institute) containing (pBADN-KmR)::ygjD.
E. coli strains were grown at 378C in LB (Luria Bertani)
broth or LB-agar supplemented with the appropriate
antibiotics. S. cerevisiae strains from the Euroscarf collec-
tion: Y00000 (BY4741, MATa, his3�1, leu2�0, met15�0,
ura3�0), equivalent to SC288c and Y03801 (BY4741,
MATa, his3�1, leu2�0, met15�0, ura3�0, YDL104c::
kanMX4) were obtained from Bernard Dujon. S. cerevi-
siae strains were grown at 308C on YPD, YPD-agar,
YPG-agar (17). Caenorhabditis elegans strains, namely
the wild-type N2, unc-119(ed3)III, eri-1(mg366)IV and
cep-1(lg12501)I strains were obtained from the CGC;
the pmyo-3::mitochondrial signal sequence::GFP strain
was provided by Dr Marta Atal Sanz. The osgpl-1 gene
was inactivated using the double-stranded RNA interfer-
ence using the feeding method (18). The C. elegans double-
mutant eri-1(mg366)IV;cep-1(lg12501)I was constructed
as follows. We crossed cep-1(lg12501) male with eri-
1(mg366) hermaphrodite using standard genetic protocol.
The F1 cross progeny worms have been individualized
on NGM plates to lay eggs for 24 h. Selected F1 were

subsequently genotyped by PCR for the presence of
both insertion in the eri-1 gene, using primers gk138if,
gk138ir, gk138ef and gk138er, and deletion in the cep-1
gene using primers eri-1f and eri-1r. Ten F2 worms from
F1 showing both polymorphisms were individualized to
establish lines. The founder worm and 10 F3 were sub-
sequently genotyped by PCR to select homozygous
eri-1(mg366)IV;cep-1(lg12501)I lines that only segregate
worms harboring both PCR polymorphisms.

Plasmids and cloning methodology

Plasmid (pBADN-KmR)::ygjD was constructed as fol-
lows: the parental plasmid pBADN-KmR derived from
pBAD24 (19); its unique NdeI restriction site was elimi-
nated by restriction with this enzyme, by Klenow DNA
polymerase treatment and subsequent re-ligation. The
unique NcoI site was converted to NdeI by site-directed
mutagenesis using the Stratagene Quickchange protocol.
The apR determinant was inactivated and replaced by
cloning, into its unique ScaI site, a HincII fragment carry-
ing the kmR gene from pUC4K (Pharmacia). The E. coli
ygjD open reading frame was amplified by PCR using
oligonucleotide primers Y1 and Y2 (Supplementary
Table S3) from a genomic DNA template prepared as
indicated below and cloned between the NdeI and
BamHI sites downstream the arabinose operon promoter
of pBADN-KmR. Vector pZE-JO was constructed by
assembling modules originating from plasmids
pZE12-luc, pZE21-MSC1 and pZA31-luc (20). An
AatII-SacI fragment carrying the ampicillin resistance
determinant, an AatII-AvrII fragment of carrying the
PL-tet0-1 promoter and the cloning polylinker and a
SacI-AvrII fragment carrying the p15A origin of replica-
tion were ligated to generate pZE-JO. The open reading
frames corresponding to the genes from the bacterial and
yeast KAE1/OSGEG family were amplified by polymer-
ase chain reaction using Pfu polymerase (Promega and
Fermentas) using the appropriate genomic DNA tem-
plates, the oligonucleotides shown in Supplementary
Table S3, and conditions recommended by the suppliers.
PCR fragments were gel purified, digested with the appro-
priate restriction enzymes and cloned in plasmid pZE-JO.
E. coli DNA was purified according to Silhavy et al. (16)
and S. cerevisiae DNA was purified with the Wizard� SV
Genomic DNA kit (Promega). High fidelity PCR system
(Invitrogen) was used to amplify a fragment containing
1.5-kb upstream of osgl-1 start codon and the genomic-
coding sequence up to the last coding codon. The primers
used to amplify the osgl-1 genomic fragment were: osgl-
1GFPf and osgl-1GFPr (Supplementary Table S3). The
PCR product was digested with SalI and cloned in the
SalI site of the pPD9575 vector (Fire A., pers. comm.)
to produce pPD-osgl-1::gfp. The pPD-osgl-1::gfp vector
was used for transgenic transformation using a BioRad
Biolistic PDS-1000/HE (BioRad Laboratories, Hercules,
CA, USA49) as described by Praitis et al. (21). The
plasmid containing the C. elegans osgl-1 gene fused
at the C-terminus with GFP and under the control of
pie-1-regulatory sequences was constructed in three steps
using the Gateway cloning technology (22). In the first
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step, the osgl-1::gfp fusion was amplified from pPD-osgl-
1::gfp with primers C01att76f and AttGFPr containing
18 bases from the osgl-1 genomic and gfp sequences,
plus the attB1 or the attB2 sequences (Table S3). The
attB-PCR product was then cloned into the entry vector
named pDONR201 by a BP recombination reaction
(Invitrogen) to produce pENTR-osgl-1::gfp. In the third
step, the osgl-1::gfp fragment flanked by the two attL
sequences in pENTR-osgl-1::gfp was transferred to the
destination vector pID2.02 (23) by LR reaction to produce
the pID-osgl-1::gfp. The destination vector contains pie-1
regulatory elements, as well as unc-119(+). The vector
pID-osgl-1::gfp was introduced into unc-119(ed3) worms
by biolistic bombardment to create integrated lines, as
described above.

In silico analyses

The homologs of the KAE1/QRI7/YGJD family from all
complete genomes available at the NCBI in June 2008
were retrieved using the BLASTp program (24). A multi-
ple alignment of the retrieved homologs was performed
using MUSCLE (25). The resulting alignment was then
visually inspected and manually refined using ED pro-
grams from the MUST package (26). Regions where the
homology between sites was doubtful were removed from
the phylogenetic analysis. A subset of sequences represen-
tative of the diversity of the whole family (but excluding
the bacterial very divergent YeaZ sequences) was selected
and used for phylogenetic analysis. The resulting tree was
constructed with Bayesian methods using the program
MrBAYES 3.1.2 with a mixed substitution model and a
gamma law (four rate categories) and a proportion of
invariant sites to take among-site rate variation into
account (27). The Markov chain Monte Carlo search
was run with four chains for 1 000 000 generations, with
trees being sampled every 100 generations (the first 2500
trees were discarded as ‘burnin’).

Sequence analysis

The sequence of Qri7p was used to perform a BLASTp
search of the C. elegans genome at http://www.sanger
.ac.uk/Projects/C_elegans/blast_server.shtml. We used
default parameters as set on the site at the Sanger
Center with the filters in place. The C01G10.10 gene was
identified as the only matching candidate. The ClustalX
tool (http://www.ch.embnet.org/software/ClustalW.html)
was used to perform multiple sequence alignments.
BoxShade (http://www.ch.embnet.org/software/BOX_
form.html) was used for the graphical representation
of sequence alignments and similarity analysis.
Prediction of the mitochondrial localization was carried
out by Mitoprot (http://ihg.gsf.de/ihg/mitoprot.html).
The BAGET web server (http://archaea.u-psud.fr/bin
/baget.dll) provided assistance for the identification the
open reading frames and the design of the oligonucleotides
for bacterial gene cloning (28).

PCR amplification of S. cerevisiae total DNA

Total DNA from strains SC288C (WT) and Y03801
(qri7D) was extracted as described (29) and subjected to

30 cycles of PCR amplification reactions with GoTaq
DNA polymerase using three pairs of oligonucleotides:
K1-pZE and K2-pZE, MT1-MT2 and MT3-MT4
(Supplementary Table S3).

RNA-mediated interference (RNAi)

Caenorhabditis elegans genes were inactivated using the
double-stranded RNA interference using the feeding
method (18). The osgl-1 and mtssb-1 RNAi feeding
E. coli clones were purchased from the MRC
Geneservice (Babrahan Bioincubator, Cambridge, UK).
Synchronous L1 larvae were fed onto modified NGM
plates seeded with E. coli HT115 expressing specific
double stranded RNA as previously described (30). The
plates were incubated routinely at 208C. When worms
reached adulthood they were transferred daily to fresh
RNAi plates. The eggs were counted immediately after
the removal of the parents; 24 h later, the oocytes,
embryos and larvae were counted in order to evaluate
embryonic lethality. The offspring phenotype was subse-
quently inspected for any striking phenotype.
Subsequently, one L4 offspring has been selected and
used for subsequent RNAi experiment using a similar phe-
notype analysis. This analysis has been pursued over three
additional generations. The specificity and effectiveness of
RNAi inactivation of osgl-1 depletion in eri-1 worms was
checked by performing a semiquantitative RT–PCR ana-
lysis of osgl-1 mRNA. Total RNA was isolated from eri-1
animals fed on RNAi bacteria clones using Trizol
reagent (Invitrogen). Seventy five ng of RNA from
either RNAi control or osgl-1(RNAi) animals were trea-
ted with DNaseI, subsequently subjected to cDNA syn-
thesis using SuperScript II reverse transcriptase
(Invitrogen) and PCR amplified with TaqDNA polyme-
rase (Invitrogen). The primers used were osgl-1cDNAl
and osgl-1cDNAr. The amplification of a 426-bp fragment
of the ama-1 cDNA with primers ama-1-f and ama-1-r was
used as internal control.

Pharmacological treatment

Paraquat (Sigma) was disolved in water at 0.8M and
added to melted agar of NGM plates to a final concentra-
tion of 5mM. The young adult RNAi animals were trans-
ferred onto Paraquat plates seeded with RNAi bacterial
clones. The plates were incubated at 208C and observed
once a day for 10 days to count the number of dead
worms. Worms were scored as dead when they no
longer move in response to light touch.
Ethidium bromide (EB) (Sigma) was dissolved in water

at 10mg/ml and incorporated to melted NGM agar to the
desired final concentrations. These plates were seeded with
RNAi bacteria and eri-1 L1 larvae were transferred. The
plates were incubated at 208C and tracked for 5 days by
counting the number of worms that reach the gravid adult
stage.

DAPI and Mitotracker staining

DNA analysis was performed by DAPI (4,6-diamidino-
2-phenylindole; Sigma) staining. Yeast cells were har-
vested in exponential phase and fixed with 70% (v/v)
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ethanol for 30min and then washed two times with PBS.
DAPI was added to a final concentration of 1 mg/ml and
left in the dark for 5–10min. Cells were washed and resus-
pended in a small volume and observed with a fluores-
cence microscope (see below). A culture of E. coli strain
JO93 was grown in permissive conditions; the cells were
harvested, washed and incubated overnight in permissive
and non-permissive conditions. Cells were stained with
DAPI as indicated above. Poor growth in the absence of
arabinose required to concentrate the E. coli cells tenfold.
Mitochondria were visualised using Mitotracker Red
CMXRos (Molecular Probes), a red-fluorescent dye
which stains mitochondria in live cells and for which
uptake is membrane-potential dependant. Mitotracker
Red was dissolved in DMSO.
Transgenic worms expressing pie-1 promoter::osgl-1::

gfp::pie-1 30-UTR transgene were grown for 1 day at
208C on NGM agar supplemented with 1 mg/ml
Mitotracker Red CMXRos. Adult animals were trans-
ferred to a drop of M9 buffer 0.25mM levamisole and
dissected with a syringue needle to extrude the gonad
and early embryos. Subsequently, gonads and eggs were
transferred with a capillary pipette to agarose pads and
mounted for microscopic observations.

Life-span assay

Caenorhabditis elegans life-span assays were performed at
208C. eri-1 synchronous L1 larvae were transferred to
RNAi plates. Once the animals reached the adult stage
they were transferred to fresh plates once a day to keep
them separate from the offspring. The animals’ viability
was determined daily by assaying for movement in
response to agitation of the plate or gentle prodding.
Animals that did not respond to nose and tail prodding
were scored as dead. Animals that crawled off the plate,
exploded or bagged were censored.

Microscopy and image analysis

Epifluorescence images were collected using an inverted
microscope (Leica DMIRE2) equipped with a digital
camera. Acquisition software used was MetaMorph
(Universal Imaging). Deconvolution analysis was per-
formed with Metamorph Offline. The images were further
processed and assembled with Adobe Photoshop 7.0.

RESULTS

Identification and phylogeny of Qri7 orthologs in
Eukarya and Bacteria

We performed an up-to-date phylogenetic analysis of
the whole Kae1/YgjD/Qri7 family that strongly supports
the emergence of eukaryotic Qri7 within bacterial YgjD/
Gcp [posterior probability (PP)=1.0, Supplementary
Figure S1]. This analysis confirms our previous phyloge-
netic analysis (2). More precisely, the Qri7/Gcp eukaryotic
sequences form a monophyletic group (PP=1.0) and
emerge as sister group of Alpha-Proteobacteria—albeit
with a moderate statistical support (PP=0.81), pointing
to a mitochondrial origin. We performed an exhaustive

search of Qri7 homologs within complete or ongoing
eukaryotic genomes (Supplementary Table S1). This
showed that Qri7 proteins are ubiquitous in most eukary-
otic supergroups, stressing the important role this protein
would play in mitochondria. In fact, in agreement with a
mitochondrial origin, Qri7 is absent from all genomes of
amitochondriate eukaryotes (Microsporidia, Entamoeba
and two excavate Giardia lamblia and Trichomonas).
However, orthologs of this gene are also missing in
some protists such as Kinetoplastids (a subgroup of
Excavata) or in a number of Alveolata. The absence of
Qri7 in available genomes of excavata is particularly
appealing since representatives of this supergroup either
lack mitochondria or have modified mitochondria (31).
For example, Kinetoplastids have unique molecular fea-
tures such as extensive RNA editing of mitochondrial
genes that is templated by minicircle DNA (32). The
Qri7 sequences found in few alveolata are highly diver-
gent. Accordingly, the apparent absence of Qri7 in most
Alveolata may be linked either to secondary losses or to
a too high divergence (i.e. beyond detection) of the corre-
sponding gene.

Escherichia coli ygjD mutant cells lose their nucleoid

We constructed an E. coli strain, JO93, carrying a condi-
tional ygjD allele under the control of the arabinose
operon promoter (see ‘Materials and Methods’ section).
The JO93 mutant formed colonies of wild-type size on
plates containing complete LB medium supplemented
with 0.2% arabinose (expression of ygjD), whereas the
strain failed to grow in the absence of arabinose (no
expression of ygjD), indicating that YgjD is essential for
growth in E. coli, in agreement with a previous report (13).
Strain JO93 was grown overnight in permissive and non-
permissive conditions and the resulting cells were observed
under DAPI-epifluorescence microscopy (see ‘Materials
and Methods’ section). In the absence of ygjD expression,
E. coli cells displayed a reduced size and a high proportion
lost their nucleoid (Figure 1).

A S. cerevisiae qri7-deletion mutant harbors
mitochondria with abnormal morphology
and no detectable DNA

According to the Saccharomyces Genome Database
(http://www.yeastgenome.org), Qri7p is essential for res-
piration but dispensable for fermentation. In order to
verify this phenotype, we compared the growth of the
S. cerevisiae wild-type (Y00000) and qri7� (Y03801)
mutant strains on solid complete media containing either
glucose (YPD) or glycerol (YPG) as carbon sources. The
wild-type strain was able to form colonies on both media,
albeit more slowly on YPG, as expected. In contrast, the
qri7� strain grew normally on YPD but failed to form
colonies after five days on YPG, as previously reported
(12) (Supplementary Figure S2). To determine if the
absence of Qri7p has an effect on mitochondrial DNA,
we investigated by microscopy analysis, DAPI stained
samples of wild-type and qri7� cells (see ‘Materials and
Methods’ section). Interestingly, whereas small fluorescent
spots corresponding to mitochondrial DNA (mtDNA)
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were clearly visible in wild-type cells beside the large spot
corresponding to nuclear DNA, only the latter was visible
in qri7� cells. This result indicated that qri7� mutants
have lost mtDNA, while nuclear DNA was unaffected
(Figure 2). The absence of detectable mtDNA in the
yeast qri7� mutant observed by DAPI staining could be
primarily associated with an alteration in mitochondrial
morphology. To determine if it was the case, wild-type and
qri7� mutant yeast cells were transformed with plasmid
pXY142-mtGFP which expresses a mitochondria-targeted
green fluorescent protein (33). The localization of mtGFP
demonstrated that mitochondria were still present in the
qri7� mutant. However, contrarily to wild-type cells
where mitochondria form a tubular network, qri7� cells
clearly showed highly fragmented mitochondria (Figure 3,
left). These results have been confirmed by specific mito-
chondria staining of the same cells with the Mitotracker
Red dye which is specifically oxidized to a fluorescent
compound in mitochondria (Figure 3, right). In order to
verify the absence of mitochondrial DNA in the in the
qri7� mutant, a set of PCR reactions were performed
on the total DNA extracted from wild-type and mutant
cells (see ‘Materials and Methods’ section). The amplifica-
tion of two individual mitochondrial DNA genes, encod-
ing respectively the COX1 protein and the 21S rRNA
yielded no detectable signal in the yeast mutant

(Figure 4). These data thus clearly indicate that loss of
QRI7 leads to the formation of mitochondria with abnor-
mal morphology and no DNA.

Complementation of the E. coli ygjD conditional
lethal mutant

A complementation test was designed to compare the
function of the bacterial YgjD to that of its eukaryotic
nuclear and mitochondrial counterparts, Kae1p and
Qri7p. The conditional lethal ygjD allele was used for
complementation tests with the S. cerevisiae QRI7 gene
(from which the 30 first codons, encoding the mitochon-
drial-targeting sequence were deleted) expressed from
the pZE-JO vector (see ‘Materials and Methods’ section).
The expression of S. cerevisiae mitochondrial Qri7p
restored the viability of the YgjD mutant in non-
permissive conditions (absence of arabinose) with a wild-
type colony size indistinguishable from those obtained by
complementation with a control plasmid carrying ygjD.
In contrast, we obtained no complementation with the
S. cerevisiae KAE1 gene expressed in the same conditions
(Supplementary Figure S3). This indicates that YgjD and
Kae1 have either different functions or interact with dif-
ferent partners in Bacteria and Archaea/Eukarya, respec-
tively. In agreement with this conclusion, Kae1 is known
to interact in Eukarya and Archaea with the kinase
Bud32(Prpk) which has no bacterial homolog (9,34).

The C. elegans Qri7 protein localizes to mitochondria

As expected, we identified two genes-encoding Qri7 homo-
logs in the genome of C. elegans. The C01G10.10 protein
corresponds to the bona fide Qri7p homolog (see
Supplementary Figure S4 for an alignment with the yeast
Qri7) whereas the Y71H2AM.1 protein is the nuclear
Kae1/OSGEP ortholog. In agreement with these sequence
data, we noticed that the amino-terminal region of
C01G10.10 is predicted to be a mitochondrial targeting
signal (iPSORT analysis, P=0.93). For simplicity, we
named the C. elegans CO1G10.10 gene osgl-1. To confirm
experimentally the mitochondrial localization of osgl-1, we
constructed and expressed an osgl-1::GFP fusion construct
in transgenic animals. The OSGL-1 fusion protein was
under the control of the pie-1 promoter and 30 UTR regu-
latory sequences, in order to enhance their expression in
germ line cells of adult hermaphrodites and blastomeres of
early C. elegans embryos (35). As shown in Figure 5, the
OSGL-1::GFP was detected with a high intensity within
the cytoplasm of both germ line cells of adult animals
and blastomeres of early embryos and co-localized with
the Mitotracker Red dye, indicating that the fusion protein
had been indeed addressed to the mitochondria. We then
examined, in transgenic animals, the in vivo expression
pattern of OSGL-1::GFP when placed under the con-
trol of its own promoter (see ‘Materials and Methods’ sec-
tion). The GFP signal was detected at a low level in most
C. elegans cells. (Supplementary Figure S5). In agreement
with its mitochondrial localization, the subcellular localiza-
tion of the GFP signal in these cells was mostly cytoplasmic
and somewhat similar to that of the C. elegans mitochon-
drial adenine nucleotide transporter ANT-1.1 (36).
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Figure 1. DAPI staining of E. coli ygjD cells in permissive and non-
permissive conditions. E. coli strain JO93 was observed in permissive
(top panels) and non-permissive conditions (bottom panels), under
phase contrast (left panels) and after DAPI staining (right panels).
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osgl-1 inactivation enhances longevity, resistance to
oxidative stress and perturbs mitochondrial
reticulum morphology

To further analyze the physiological role of osgl-1 in
C. elegans, we used the feeding RNAi technique (37) to
disrupt the function of the protein. The osgl-1 gene was
inactivated in the eri-1 genetic background, which is
hypersensitive to RNAi (38) starting with L1 stage ani-
mals and over four consecutive generations, prior to any
phenotype observations. We showed by RT-PCR that
osgl-1 mRNA was severely depleted in these conditions
indicating that the osgl-1 RNAi treatment was specific
and efficient (Figure 6). Nevertheless, the osgl-1(RNAi)
animals showed similar brood size and development
to control animals over the successive generations
(Supplementary Table S2).

Since mitochondria activity plays a key role in regulating
C. elegans aging (39), we tested whether osgl-1 is involved
in the regulation of longevity. In parallel, we tested the
phenotype of animals inactivated for the mtssb-1 gene;
MTSSB-1 is the single stranded mitochondrial DNA-
binding protein which is essential for mitochondrial
DNA replication (40). We observed that the RNAi inacti-
vation of osgl-1 lead to an increase of 10% (P< 0.005) in
the eri-1 mean longevity (Supplementary Figure S6). The
involvement of osgl-1 in C. elegans mitochondria physiol-
ogy was further analyzed by exposing the osgl-1(RNAi)
strain to the oxidative stressor paraquat. Often, reduced
mitochondrial activity is correlated to a lower reactive
oxygen species (ROS) production. Consistently, the osgl-
1(RNAi) mutant was more resistant to oxidative stress
induced by paraquat (Supplementary Figure S7A).

Recently, a novel role for p53 has been reported in
mtDNA maintenance (41). In worms, p53/cep-1 is
required to mediate the germ cell line apoptosis and is
involved in the oxidative stress response (42,43). We there-
fore tested the implication of cep-1 in osgl-1 paraquat
resistance. We observed that cep-1 inactivation reduced
paraquat resistance of osgl-1(RNAi) animals (Supplemen-
tary Figure S7B). Therefore CEP-1 lowers the level of
oxidative stress upon osgl-1 inactivation.

To further analyze the involvement of osgl-1 in the
integrity of the mitochondrial network, we expressed in

C. elegans osgl-1(RNAi), a GFP protein targeted to the
mitochondria in body wall muscle (BWM) cells. In control
animals, BWM cells mitochondria appeared tubular
and well organized along myofibrilla, whereas, in osgl-1
(RNAi) mutants, the mitochondrial network was
disorganized (Figure 7). This result indicates that osgl-1
inactivation affects the mitochondrial reticulum shape
and strongly resembles the effect of Qri7 loss on the
morphology of yeast mitochondria.

Ethidium Bromide sensitivity of osgl-1 (RNAi) mutants

To analyze osgl-1 involvement in mitochondrial genome
maintenance, we tested the sensitivity of osgl-1(RNAi)
mutants to EB. EB is known to preferentially inhibit
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Figure 5. OSGL-1::GFP localizes to mitochondria. Transgenic N2 C.elegans expressing the OSGL-1 protein fused to GFP under the control of the
pie-1-regulatory sequences were obtained by biolistic transformation. These animals were grown on NGM plate supplemented with Mitotracker Red.
The OSGL-1 fusion protein colocalizes with mitochondria (red) in the embryos.
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Figure 6. RNAi treatment efficiently reduced the osgl-1 mRNA level.
Simultaneous measurement of ama-1 and osgl-1 mRNA levels by
Reverse transcriptase polymerase chain reaction (RT–PCR) analysis
of total RNA isolated from eri-1 animals grown on either the empty
RNAi vector (lane 1) or osgl-1 dsRNA-expressing bacteria (lane 2)
during larval development and adulthood. Specific osgl-1 mRNA is
depleted in RNAi-treated animal (lane 2) as compared with RNA
from the same gene in eri-1 control animals (lane 1). The ama-1
mRNA, a control gene encoding the catalytic core of the RNA poly-
merase II, was present at wild-type level in both conditions.
This figure shows a negative of an EB-stained agarose gel. M: ladder
DNA size marker.
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mitochondrial DNA replication and transcription, which
causes mitochondrial DNA depletion. It has been
reported that S. cerevisiae cells lacking mitochondrial
single-stranded DNA-binding protein ABF2 are hypersen-
sitive to EB (44). The nematode C. elegans survives on
media supplemented with EB but displays increased gen-
eration time and/or a block at the L3 stage of development
(40,45). The eri-1;osgl-1(RNAi) mutants were compared
with eri-1 animals in their capacity to grow and develop to
the adult stage in the presence of increasing concentrations
of EB. In parallel, we tested the sensitivity of the eri-1;
mtssb-1(RNAi) mutant (Figure 8). We observed that ani-
mals with osgl-1 RNAi inactivation are more sensitive to
EB. The eri-1 control animals have an EC50 for EB of
circa 40 mg/ml, whereas the eri-1;osgl-1(RNAi) mutant
animals have an EC50 of circa 32 mg/ml. This is a consis-
tent slight difference which is further illustrated, as shown
in Figure 8, at the concentration of 40 mg/ml, 50% of the
eri-1 control animals reached the adult stage whereas only
20% of the double mutant eri-1;osgl-1(RNAi) still devel-
oped to adulthood. The increased sensitivity to EB was
also observed in the eri-1;mtssb-1(RNAi) mutant which is
in agreement with what was observed in the corresponding
S. cerevisiae abf2 mutant (44). Although the effect of EB
was less drastic on the osgl-1(RNAi) mutant than on the
mtssb-1(RNAi) mutant, the increased sensitivity of osgl-1
(RNAi) mutant to EB suggest that OSGL-1 participates

somehow in the mitochondrial genome maintenance as
in S. cerevisiae.

DISCUSSION

We have presented here evidences that qri7/osgl-1 is essen-
tial for mitochondrial genome maintenance in both
C. elegans and S. cerevisiae. This role is probably con-
served in all eukaryotes with mitochondria, since Qri7
are very well conserved proteins. The basic biological
function of Qri7 is probably also conserved in Bacteria,
since Qri7 from S. cerevisiae fully complements an E. coli
mutant lacking the essential protein YgjD (the bacterial
Qri7 homolog). Furthermore, we observed that an E. coli
ygjD mutant strain displays frequent nucleoid loss. In
a recent report, E. coli proteins YeaZ and YjeE were pro-
posed as essential partners for YgjD function (14).
The YgjD/Qri7 complementation results we observed in
E. coli thus indicate that the yeast Qri7 protein should
be able to interact correctly with YeaZ and YjeE in this
bacterium, despite the fact that YeaZ and YjeE have no
detectable homologs in S. cerevisiae and C. elegans
(BLASTp E-values �0.31).

The archaeal protein Kae1 (homologous to Qri7 and
YgjD) binds DNA and exhibits an atypical AP endonu-
clease activity in vitro (9,34), whereas the nuclear eukary-
otic protein Kae1 is member of the KEOPS/EKC complex
which is associated to chromatin and involved in telomere
maintenance (8,10).

These data, together with the results presented here,
indicate that Kae1/OSGEP/Qri7/YgjD form a new
family of proteins probably essential for genome stability
in all organisms from the three domains of life. The precise
in vivo biochemical role of these proteins remains to be
determined. The in vitro data obtained with the archaeal
protein suggest that they could both recognize DNA
damage and play an architectural role in chromatin
organization. It should be stressed that very few universal
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Figure 7. osgl-1(RNAi) mutants show alteration of the mitochondria
reticulum in BWM cells. The osgl-1 and mtssb-1 genes were inactivated
by RNAi in the wild-type strain expressing pmyo3::mito::GFP. In con-
trol RNAi animals, BWM cells have tubular mitochondria that run
parallel to the cell axis (A), whereas the mitochondria reticulum of
both osgl-1(RNAi) (B) and mtssb-1(RNAi) mutants (C) is disorga-
nized. The tubular section is thinner, and tubules are not well aligned
along the BWM cell myofilament with connecting strands between
tubules (black arrows). The density of tubules forming the reticulum
is higher in both mutants (B, C) than in the control animal (A). n:
nucleus, lmt: longitudinal mitochondrial tubule, tmt: transversal mito-
chondrial tubule.

Figure 8. osgl-1(RNAi) mutants are hypersensitive to the EB induced
mitochondrial DNA depletion. The ability of the eri-1, eri-1;osgl-1
(RNAi) and eri-1; mtssb-1(RNAi) L1 larvae to grow and develop to
adulthood on increasing concentration of EB was analyzed. The eri-1
L1 animals were grown on bacteria expressing dsRNA of osgl-1 or
mtssb-1 genes or containing the empty RNAi vector only (asterisk).
The percentage of L1 animals developing is indicated. The experiment
was performed at 208C. Each point corresponds to the analysis of
n> 40 animals.
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proteins are known to be involved in DNA metabolism
(46). One of them is the universal recombinase (called
RecA in Bacteria, Rad51 and paralogs in Eukarya, and
RadA, RadB in Archaea) that plays a critical role in
homologous DNA recombination and DNA repair. We
predict that the importance of essential proteins of the
Kae1/OSGEP/Qri7/YgjD family would rival those of
RecA and its homologs in the maintenance of genome
integrity in all living cells. To avoid further confusion in
the nomenclature, we propose to rename UGMP
(Universal Genome Maintenance Proteins) all proteins
of the Kae1/Qri7/OSGEP/YgjD family.

Interestingly, the gene encoding the human Qri7 ortho-
log (OSGL) is localized in a region of the chromosome
2q32, which is involved in several human diseases (47).
Considering the high number of pathologies associated
to mitochondrial defects and the importance of Qri7/
OSGEPL in mitochondrial physiology, it is reasonable
to speculate that deficiency in the normal function of
this protein could lead to important pathologies in
human. Indeed, the C. elegans osgep-1 mutants are
viable, although sensitive to EB, suggesting that multicel-
lular individuals with mutated Qri7 versions (or even lack-
ing Qri7) could be viable carriers of potentially harmful
defects.

SUPPLEMENTARY DATA
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