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We investigate the low-lying compression modes of a unitary Fermi gas with imbalanced spin
populations. For low polarization, the strong coupling between the two spin components leads to
a hydrodynamic behavior of the cloud. For large population imbalance we observe a decoupling of
the oscillations of the two spin components, giving access to the effective mass of the Fermi polaron,
a quasi-particle composed of an impurity dressed by particle-hole pair excitations in a surrounding
Fermi sea. We find m*/m = 1.17(10), in agreement with the most recent theoretical predictions.

PACS numbers: 03.75.Ss; 05.30.Fk; 32.80.Pj; 34.50.-s

The study of the low lying excitation modes of a com-
plex system can be a powerful tool for investigation of its
physical properties. For instance, the Earth’s structure
has been probed using the propagation of seismic waves
in the mantle, and the ripples in space-time propagated
by gravitational waves can be used as probes of extreme
cosmic phenomena. In ultra-cold atomic gases, the mea-
surement of low energy modes of bosonic or fermionic
systems has been used to probe superfluidity effects [[l],
to measure the angular momentum of vortex lattices [g]
and to characterize the equation of state of fermionic su-

perfluids [, .

In this paper, we study the excitation spectrum of an
ultra-cold Fermi gas with imbalanced spin populations.
This topic was initiated in the 60’s by the seminal works
of Clogston and Chandrasekhar [E, E} and found only re-
cently an experimental confirmation thanks to the latest
developments in ultra-cold Fermi gases [ﬁ, E] These dra-
matic experiments have observed that when a fermionic
superfluid is polarized through imbalance of spin popu-
lations, the trapped atomic cloud forms a shell structure.
The energy gap associated with pairing maintains a su-
perfluid core where the two spin densities are equal, while
the outer shell is composed by a normal gas with imbal-
anced spin densities (see Fig.fl). Here, we extend this
work to the dynamical properties of these systems and
we focus on the regime of strong interactions, where the
scattering length a is infinite. We show in particular that
the study of the axial breathing mode provides valuable
insight on the dynamical properties of a quasi-particle,
the Fermi polaron, that was introduced recently to de-
scribe the normal component occupying the outer shell
of the cloud [E, E, EI, @, E, B] The Fermi polaron is
composed of an impurity (labelled 2) immersed in a non-
interacting Fermi sea (labelled 1), and is analogous to the
polaron of condensed matter physics, i.e. an electron im-
mersed in a bath of non-interacting (bosonic) phonons.
According to the Landau theory of the Fermi liquid, the

low energy spectrum of the polaron is similar to that of a
free particle and can, in the local density approximation
(LDA), be recast as

2

Ey(r,p) = ABpi(r) + V() + s .0 (1)
where V is the trapping potential, Er1(r) = Er1(0) —
V(r) is the local Fermi energy of the majority species, A
is a dimensionless quantity characterizing the attraction
of the impurity by the majority atoms and m* is the
effective mass of the Fermi polaron. For a = oo, A =
—0.61 has been determined both experimentally ] and
theoretically [H, [Ld, [L], 12, [13], while slight disagreements
still exist on the value of the effective mass. Fixed node
Monte-Carlo suggests m*/m = 1.09(2) [L5], systematic
diagrammatic expansion yields m*/m = 1.20 [[L1] and
analysis of density profiles (such as Fig.[l) gives m*/m =
1.06 [[Lq).

From Eq. (ﬂ), the quasi-particle evolves in an effective
potential V*(r) = (1 — A)V(r). Assuming V(r) to be
harmonic with frequency w, the polaron is trapped in an
effective potential of frequency w* [E]

w* 1-A

: (2)

w  \lm*/
In this paper we determine the effective mass through the
measurement of the oscillation frequency w* in the axial
direction (labelled z) of a cylindrically symmetric trap.
Our experimental setup is an upgraded version of the
one presented in [IE] 7 x 10° SLi atoms in the hy-
perfine state |F' = 3/2,mp = +3/2) are loaded into
a mixed magnetic/optical trap at 100 puK. The opti-
cal trap uses a single beam of waist wg = 35 pum and
maximum power P = 60 W operating at a wavelength
A = 1073 nm. The atoms are transferred into the hyper-
fine ground state |1/2,1/2), and a spin mixture is created
by a radio-frequency sweep across the hyperfine transi-
tion |1/2,1/2) — |1/2,—1/2). By varying the rate of



this sweep, we control the sample’s degree of polariza-
tion P = (N1 — N3)/(N1 4+ Nz), where Ny (resp. Na) is
the atom number of the majority (resp. minority) spin
species. The mixture is then evaporatively cooled in 6 s
by reducing the laser power to 70 mW. This is done at
a magnetic field B = 834 G, which corresponds to the
position of the broad Feshbach resonance in 6Li where
the scattering length is infinite and where further ex-
periments are performed. Typical radial frequencies are
Wy = wy ~ 27 x 400 Hz. The axial confinement of the
dipole trap is enhanced by the addition of a magnetic cur-
vature, leading to an axial frequency w, ~ 27 x 30 Hz.
Our samples contain ~ 8 x 10* atoms in the majority spin
state at a temperature T' S 0.09 Tr. The temperature
is evaluated by fitting the wings of the majority density
profile outside the minority radius. In this region, the
gas is non-interacting, allowing unambiguous thermom-
etry of the inner, strongly-interacting part of the cloud
[@] Here, TF is defined as the Fermi temperature of an
ideal gas whose density profile overlaps the majority one
in the fully polarized rim. Our thermometry’s precision
is limited by the finite signal to noise ratio of the data,
hence the quoted upper bound.

The two spin states are imaged sequentially using in
situ absorption imaging. To prevent heating from the
scattered photons and the strong interactions between
the two species, the duration of the two imaging pulses
as well as their separation must be short (10 us each
in our case). By reversing the order in which we image
the two spin components, we checked that the imaging
of the first species did not significantly influence the sec-
ond. Typical integrated density profiles of the atom cloud
n(z) = [ dazdy n(x,y, z), where n(xz,y, z) is the 3D atom
density, are presented in Fig.. These profiles display
the characteristic features already observed by the MIT
group [E] a flat-top structure in the superfluid region
confirming the existence of a fully paired core satisfying
the LDA [@], an intermediate phase where the two spin
species are present with unequal densities, and an outer
rim containing only majority atoms. Following [@], we
compare our density profiles to the prediction for the
equation of state of the different phases and find fairly
good agreement. In particular, we observe that the su-
perfluid core disappears for polarizations P > 0.76(3).
This limit agrees well with the measurement of the MIT
group [§] and differs from the Rice group value [f.

We excite the axial breathing mode by switching off
the axial magnetic trapping field for 1 ms. The effect
of this excitation is twofold: in addition to nearly sup-
pressing the axial confinement, the bias field is increased
up to 1050 G, where krpa ~ —1, so that the gas is no
longer strongly interacting. This scheme provides a spa-
tially selective excitation of the cloud. Indeed, while the
reduction of the trapping frequency perturbs the whole
cloud, the modification of the scattering length only acts
in the region where the two spin components overlap. In

FIG. 1: (color online) Integrated density profiles of an im-
balanced Fermi gas. Blue: majority atoms 71(z); Red: mi-
nority atoms fi2(z); Green: difference g = 71 — f2. In
this latter case, the flat-top feature signals a cancellation of
the density difference at the center of the trap, characteristic
of the existence of a fully paired superfluid core. The su-
perfluid (resp. minority) radius Rs (resp. R2) are marked
by vertical dashed lines. The full color lines correspond
to the prediction of Monte-Carlo theories @], the only fit
parameters being the number of atoms in each spin state,
N1 = 8.0 X 1047 Ny = 2.4 x 10* for this image. The axial
(radial) trap frequency is 18.6 Hz (420 Hz).

the regime of strong polarization, these two regions are
well separated, leading to a differential excitation of the
two spin components.

Let us first focus on the oscillations of the majority
spin species presented in Fig.ﬂ. Typical dynamics of the
outer radius R;(t) of the majority component are exem-
plified by Fig.Ea. For each polarization, this time evo-
lution is fitted using an exponentially damped sinusoid,
with Ry (t) = Rgo)(l—i—Al cos(wit-+p)e~ 1), and the vari-
ations of w; and y; as a function of P are displayed in
Fig.Eb and Fig.ﬂc. One remarkable feature of this graph
is the frequency plateau for polarizations P S 0.7, cor-
responding approximately to the domain where a super-
fluid core is present in the cloud. Although in this range
of parameters, the dynamics of the system is fairly com-
plex due to the strong coupling between the superfluid
and normal components, a simple argument based on a
sum rule approach generalizing the result of [@] allows
us to understand this property.

We describe the system by the Hamiltonian H =
>ip?/2m 4+ U(ry,72,...), where r; (resp. p;) is the po-
sition (resp. momentum of particle i), m is the mass of
the atoms and U includes both trapping potential and in-
teratomic interaction. The compression of the trapping
frequency in the z direction is associated with the oper-
ator F = 3", z2. Let us introduce the moments of the
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FIG. 2: (a) Oscillations of the axial radius of the majority
component, for a population imbalance P = 0.85(2), beyond
the Clogston limit. The full line corresponds to a fit by an ex-
ponentially damped sinusoid. (b) Frequency of the breathing
mode wi normalized to the axial trapping frequency w.. The
superfluid (resp. collisionless) limits w1 = 1/12/5w. (resp.
2w;) are indicated by the red lines. The axial (radial) trap
frequency is 28.9(1) Hz (420 Hz). (c) Damping rate ; as the
function of polarization (in log scale). Note that our data are
limited to P < 0.95 due to the small minority atom number
(N2 < 2 x 10%) at such high polarizations.

spectral distribution associated with F' and defined by

mg = Z(En - Eo)k |<O|F|n>|27
n#0

where the |n) are the eigenstates of H associated with the
eigenvalue F,,, and |0) is the many-body ground state.
We assume that the operator F' mainly couples |0) to
one excited state |1). In this case, the frequency of the
breathing mode excited by the axial compression of the
trap is given by wy; = (Ey — Eg)/h ~ \/mi/m_1/h. An
explicit calculation of these two moments leads to the
following expression :

wi o~ —2<z2>/8(9<z2> . (3)

For a unitary gas, LDA imposes that the mean radius of
the cloud is given by (2%) = R4 f(P), where Ry is the
radius of an ideal Fermi gas in the same trap and with the
same atom number and f is some universal function of
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FIG. 3: Comparison of our experimental results with the
parametric curve (w1(7)/wz,v1(7)/w1(7)) deduced from pre-
diction @) The data in blue (red) correspond to polarizations
P <08 (P>0.8).

the polarization [@] Using this assumption, the calcu-
lation of the oscillation frequency is straightforward and
yields \/ng = 1.55w,, t¢.e. the hydrodynamic predic-
tion [E, @] for P = 0, regardless of the polarization of
the sample. This argument is in good agreement with
our experimental findings (Fig.ﬂb).

At larger polarizations the frequency sharply increases
towards the collisionless value. The damping rate, very
small in the balanced superfluid, increases by a factor
~ 20 for higher imbalances [@] Interestingly, as seen in
Fig.E, this behavior is consistent with a general argument
about relaxation processes in fluid dynamics [@] Indeed,
one can relate wi and 7; through

2

w2 - w2
w? = wiy, + 2—CL (4)

1+ iwr

where w = w1 +iy1, wap = /12/5w, (resp. wor, = 2w,)
is the hydrodynamic (resp. collisionless) frequency and
7 is an effective relaxation rate.

Measurements of w;/w, in three different traps of as-
pect ratios 8.2, 9.0 and 14.5 give identical results (within
3%) for all polarizations. By contrast, the effect of tem-
perature is more pronounced. At 0.12(1) Tr, wyi(P) re-
mains equal to the hydrodynamic prediction at all at-
tainable polarizations with Pp.x = 0.95, for a cloud of
N1 ~ 2 x 10° majority atoms held in a trap of aspect
ratio 22. This illustrates the role of Pauli blocking at the
lowest temperatures which favors collisionless behavior.

Let us now consider the dynamics of the minority cloud
(we recall that subscript 2 refers to the impurity atoms).
We observe that for polarizations smaller than P ~ 0.75,
the oscillation frequencies and damping rates of the two
spin species are equal, indicating a strong coupling be-
tween them. By contrast, for P > 0.75, a Fourier spec-
trum of Ry (t) reveals two frequencies (Fig.[la). The lower
frequency ws, is equal to the majority oscillation fre-
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FIG. 4: (a) Frequency power spectrum for P = 0.90(2). The
peak between wup and wcr, corresponds to the oscillation in
phase with the majority, the other one to the polaron oscilla-
tion. (b) Frequency of the polaron component as a function
of polarization. All frequencies are normalized to w,.

quency wi. We interpret the higher frequency wep, whose
weight increases with polarization, as the axial breath-
ing of the minority atoms out of phase with the major-
ity cloud. A linear extrapolation of this frequency to
P =1 gives the oscillation frequency of a dilute gas of
weakly interacting polarons inside a Fermi sea at rest,
wap(P — 1) = 2.35(10)w, (Fig.flb). The uncertainty rep-
resents the standard deviation of a linear fit taking into
account the statistical uncertainties of the wq, measure-
ments for each polarization.

By identifying the breathing mode frequency wop as
2w? and using (), we deduce the mass of the quasi-
particle : m*/m = 1.17(10). This is the first dynamic
measurement of the polaron effective mass, in good agree-
ment with the most recent theoretical predictions , E],
and with static observations [E, E] m* is close to m
(albeit different), a surprising feature for a strongly in-
teracting system at unitarity. We also exclude a mass
m* = 2m that one would expect for a deeply bound
bosonic molecule.

In conclusion, we have studied the low frequency
breathing modes of an elongated Fermi gas with imbal-
anced spin populations. In the presence of a superfluid
core, the majority and minority components oscillate in
phase with a frequency that is largely independent of the
spin polarization and in agreement with the hydrody-
namic prediction. At strong polarizations, the minority
atom oscillation reveals a second frequency, that we in-
terpret as the Fermi polaron breathing mode. Further in-
vestigations will extend our work to all values of the scat-
tering length. In particular, they should provide a clear
signature of the polaron-molecule transition [E, @} The
role of interactions between polarons and damping phe-
nomena should also be clarified [Pg].
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