
HAL Id: hal-00404333
https://hal.science/hal-00404333v1

Submitted on 16 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New H.264/AVC Error Resilience Model Based on
Regions of Interest

Fadi Boulos, Wei Chen, Benoît Parrein, Patrick Le Callet

To cite this version:
Fadi Boulos, Wei Chen, Benoît Parrein, Patrick Le Callet. A New H.264/AVC Error Resilience Model
Based on Regions of Interest. Packet Video, May 2009, Seattle, Washington, United States. pp.1-9,
�10.1109/PACKET.2009.5152159�. �hal-00404333�

https://hal.science/hal-00404333v1
https://hal.archives-ouvertes.fr


A NEW H.264/AVC ERROR RESILIENCE MODEL BASED ON REGIONS OF INTEREST

Fadi Boulos, Wei Chen, Benoît Parrein and Patrick Le Callet

Nantes Atlantique Universités
IRCCyN, Polytech’Nantes

Rue Christian Pauc, 44306 Nantes, France
firstname.lastname@univ-nantes.fr

ABSTRACT

Video transmission over the Internet can sometimes be sub-

ject to packet loss which reduces the end-user’s Quality of

Experience (QoE). Solutions aiming at improving the robust-

ness of a video bitstream can be used to subdue this problem.

In this paper, we propose a new Region of Interest-based error

resilience model to protect the most important part of the pic-

ture from distortions. We conduct eye tracking tests in order

to collect the Region of Interest (RoI) data. Then, we apply

in the encoder an intra-prediction restriction algorithm to the

macroblocks belonging to the RoI. Results show that while

no significant overhead is noted, the perceived quality of the

video’s RoI, measured by means of a perceptual video quality

metric, increases in the presence of packet loss compared to

the traditional encoding approach.

Index Terms— Eye tracking, region of interest, packet

loss, error resilience, perceptual quality.

1. INTRODUCTION

With Internet becoming the cheapest and preferred medium

of communication, video traffic over IP is in constant and

sharp increase. On one hand, this is made possible by the in-

creasing broadband speeds and the variety of multimedia ser-

vices offered by Internet Service Providers, e.g., triple-play

offers. On the other hand, recent video coding standards such

as H.264/AVC [1] allow compression rates for up to twice

those of their predecessors, thus making it possible to stream

Standard Definition (SD) or High Definition (HD) video con-

tents over the Internet.

However, packet loss still characterizes the best-effort In-

ternet. To overcome this problem, several solutions have been

proposed at both the channel and source levels. Mechanisms

like Forward Error Correction (FEC) or Automatic Repeat

reQuest (ARQ) can be used to compensate for the packets

lost during transmission. At the source level, some error re-

silience features used during the encoding process can help

in attenuating the impact of packet losses. In the H.264/AVC

standard, Flexible Macroblock Ordering (FMO), Data Parti-

tioning (DP) and Redundant Slice (RS) are examples of error

resilience features.

Due to the very nature of video compression techniques, a

packet lost from the encoded bitstream has generally a spatio-

temporal propagating effect. This is largely due to spatio-

temporal dependency between parts of the bitstream. In an

earlier study [2], we showed that the following two param-

eters have a great impact on the perceived quality: (1) the

spatial position of the loss in the picture, i.e., if it belongs or

not to the Region of Interest (RoI) of the picture; and (2) the

temporal position of the loss in the sequence. In this work, we

propose to link these two parameters to prevent the error from

propagating to the RoIs of the video sequence. To this end,

we force the macroblocks that belong to an RoI to be coded

in intra-prediction mode, thus removing their temporal depen-

dency on macroblocks in other pictures. We also propose an

extension to this algorithm to remove the spatial dependency.

The outline of the paper is as follows: in Section 2, we

give an overview of some state-of-the-art RoI-based error re-

silience models. Then we describe the eye tracking tests we

performed in order to determine the saliency maps of SD

and HD video sequences in Section 3. We also present the

methodology of transforming these maps into RoIs. In Sec-

tion 4, we propose several variants of our method to take ad-

vantage of the RoIs by forcing RoI macroblocks to be coded

in intra-prediction mode. We validate our method by simulat-

ing packet losses in the RoI and assessing the perceived video

quality by means of a perceptual video quality metric, namely

VQM [3]. The block diagram of the whole processing chain,

from encoding to performance evaluation is depicted in Fig-

ure 1.

2. RELATED WORK

While RoI-based video coding is probably the most used ap-

plication for deriving RoIs, e.g., in [4, 5], using the RoI in

error resilience models has also been investigated. In all of

the following research works, RoI-based models have been

coupled with an H.264/AVC error resilience feature, namely

978-1-4244-4652-0/09/$25.00 ©2009 IEEE
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Fig. 1. Block diagram of our work.

FMO. FMO allows the ordering of macroblocks in slices ac-

cording to a predefined map rather than using the raster scan

order, e.g., to improve the robustness of the video against

transmission errors or to apply an Unequal Error Protection

(UEP). When coupled with RoI-based coding, FMO is gener-

ally used to assemble the RoI macroblocks into a single slice.

In [6], multiple RoI models are proposed to enhance the

quality of video surveillance pictures. The RoIs are defined

by the user in an interactive way: the mouse pointer is put over

the RoI and the coordinates of the pixel position pointed to

are transmitted to the encoder. Then, every model will build

its own RoI (e.g., square-shaped, diamond-shaped) coupled

with an FMO type. For more information about FMO types,

the reader is referred to [7]. Results show that a convenient

selection of the RoI shape, the quantization parameter and the

FMO type can reduce bandwidth usage while maintaining the

same video quality.

In [8], an error resilience model where RoIs are derived

on a per picture basis is proposed. Each picture RoI is de-

termined by simulating slice losses and corresponding er-

ror concealment at the encoder to build a distortion map.

Macroblocks with the highest distortion values are coded

into Redundant Slices (RS), which is another H.264/AVC re-

silience feature and background macroblocks are signalled

using FMO type 2. Simulation results demonstrate the effi-

ciency of this method compared to the traditional FEC ap-

proach in the presence of packet loss.

The work reported in [9] aims at improving the robustness

of the video by applying UEP wherein the RoI benefits from

an increased protection rate along with a checkerboard FMO

slicing. The authors conclude that their approach outperforms

UEP and Equal Error Protection (EEP) for lower Signal-to-

Noise-Ratio (SNR) values.

A robustness model for RoI-based scalable video coding is

proposed in [10]. The model divides the video into two lay-

ers: the RoI layer and the background layer. Dependencies

between the two layers are removed to stop the error from

propagating from the background layer, which is less pro-

tected than the RoI layer, to the latter in case of packet loss.

This process decreases coding efficiency in error-free envi-

ronments but enhances the video robustness in the presence

of packet loss.

3. EYE TRACKING TESTS

The goal of performing eye tracking tests is to record the eye

movement of the viewers while they are watching video se-

quences. These data can then be used to achieve a RoI-based

error resilient video coding. In this section, we first describe

the test setup and the set of videos used then we explain how

the RoIs are generated for each video sequence. We also

present the results of the tests and discuss them.

3.1. Setup

We use a dual-Purkinje eye tracker (Figure 2) from Cam-

bridge Research Systems. The eye tracker is mounted on a

rigid EyeLock headrest that incorporates an infrared camera,

an infrared mirror and two infrared illumination sources. The

camera records a close-up image of the eye. To obtain an ac-

curate measure of the subject’s pupil diameter, a calibration

procedure is needed. The calibration requires the subject to

stare at a number of screen targets from a known distance.

Once the calibration procedure is completed and a stimulus

has been displayed, the system is able to track a subject’s eye

movement. Video is processed in real-time to extract the spa-

tial location of the eye’s position. Both Purkinje reflections

(from the two infrared sources) are used to calculate the lo-

cation. The sampling frequency is 50 Hz and the tracking

accuracy is in the range 0.25− 0.5 degree.

The video testbed contained 30 SD and 38 HD source

sequences, 23 of which were common to both resolutions.

These 23 720 × 576 SD sequences were obtained from

1920 × 1080 HD by cropping the central region of the pic-

ture (220 pixels from right and left borders) and resampling

the obtained video using a Lanczos filter. Several loss patterns

were applied to 20 SD and 12 HD source sequences, thus in-

creasing the total number of videos to 100. The sequences

had either an 8-second or a 10-second duration. To ensure

that the RoI extraction is faithful to the content independently

of other parameters, all of the sequences were encoded such

as to obtain a good video quality. Bitrates were in the range

of 4 − 6 Mbs and 12 − 16 Mbs for SD and HD sequences,

respectively. The video sequences were encoded in High Pro-

file with an IBBPBBP... GOP structure of length 24. The JM

14.0 [11] encoder and decoder were used.

We formed two sub-tests of 50 videos each to avoid hav-

ing a content viewed twice (in both resolutions) by the same

subject during a sub-test, which could skew the RoI deriving

process. We also randomized the presentation order within

the sub-test.

Eye tracking data of 37 non-expert subjects with normal

vision (or corrected-to-normal vision) were collected for ev-

ery video sequence. The test was conducted according to the

International Telecommunication Union (ITU) Recommenda-



Fig. 2. The eye tracker.

tion BT.500-11 [12]. Before starting the test, the subject’s

head was positioned so that their chin rested on the chin-

rest and their forehead rested against the head-strap. Subjects

were seated at a distance of 3H and 6H for HD and SD se-

quences, respectively. All sequences were viewed on an LCD

display. The average sub-test completion time was 25 min-

utes.

3.2. RoI generation

A saliency map describes the spatial locations of the eye gaze

over time. To compute a saliency map, the eye tracking data

are first analyzed in order to separate the raw data into fixation

and saccade periods. Fixation is defined as being the status of

a region centered around a pixel position which was stared

at for a predefined duration. Saccade corresponds to the eye

movement from one fixation to another. The saliency map

can be computed for each observer and each picture using

two methods. The first method is based on the number of

fixations (NF) for each spatial location; hence, the saliency

map SM
(k)
NF for viewer k is given by:

SM
(k)
NF (x, y) =

NFP∑

j=1

δ(x− xj , y − yj)

where NFP is the number of fixation periods and δ is the

Kronecker function. Each fixation has the same weight.

The second method is based on the fixation duration (FD)

for each spatial location. The saliency map SM
(k)
FD for viewer

k is given by:

SM
(k)
FD(x, y) =

NFP∑

j=1

δ(x− xj , y − yj).d(xj , yj)

where d(xj , yj) is the fixation duration at pixel (xj , yj).

To determine the most visually important regions, all

saliency maps are merged yielding an average saliency map

SM . The average saliency map is given by:

SM(x, y) =
1

K

K∑

k=1

SM (k)(x, y)

whereK is the total number of viewers.

Finally, the average saliency map is smoothed with a 2D
Gaussian filter which gives the density saliency map:

DM(x, y) = SM(x, y) ∗ gσ(x, y)

where the standard deviation σ depends on the accuracy of

the eye tracking device.

To generate RoI maps from saliency maps, some param-

eters need to be set. The parameters are: fixation duration

threshold, fixation velocity threshold, σ and the RoI threshold.

The fixation duration threshold (in milliseconds) is the mini-

mal time a region must be viewed for it to be considered as a

fixation region. The fixation velocity threshold (in degrees per

second) is the eye movement velocity threshold below which

the velocity must remain for fixation duration threshold ms.

RoI threshold is the minimal number of viewers who must

view a region to be considered as a fixation region. The val-

ues of fixation duration threshold, fixation velocity threshold

and σ were 200 ms, 25 °/s and 1.5, respectively, for both res-

olutions while the RoI threshold values were 4 and 2 for SD

and HD sequences, respectively. Examples of saliency and

RoI maps obtained with these parameter values are illustrated

in Figures 3 and 4.

Fig. 3. Saliency map (left) and the resulting macroblock-

based RoI (right) of Harp sequence.

3.3. Results and discussion

Depending on its saliency map, a video sequence can have or

not an RoI. In Figure 3, it is clear that the harpist in the video

attracts the visual attention of the viewers. By contrast, the

sparse saliency regions in Figure 4 do not result in any RoI

for this particular video sequence.

We draw two main conclusions from the eye tracking test

data:



Fig. 4. Saliency map of Marathon sequence. This saliency

map does not yield any RoI.

• The RoI of a video content is identical for both SD and

HD resolutions.

• In the presence of a packet loss, the spatial position of the

RoI can change depending on several parameters stated

below.

While the first conclusion is somewhat expected, the second

is worth discussing. The same packet loss pattern was applied

to all the sequences to be impaired. The loss pattern consisted

of losing five slices from the 6th I-picture of the sequence, two

of them being the first two slices of the picture and the three

others its last three. Thus, the Packet Loss Rate (PLR) in the

I-picture was in the ranges 5% − 20% and 2% − 5% for SD

and HD sequences, respectively.

The losses having occurred in the top and bottom regions

of the picture, they were not generally in its RoI. In a video

sequence having a clear RoI (e.g., the ball in a football game,

the face in a head-and-shoulder scene), a loss in an unimpor-

tant region of the picture might not be perceived by the user,

whose attention is focused on the action in the RoI. How-

ever, when there is no clear RoI, any small loss may attract

the user’s attention. The nature of the scene content also in-

fluences the perception of a loss outside the RoI. While this

topic deserves to be investigated more deeply, it is not covered

by the scope of this paper.

4. RESILIENCE MODEL

We implement an RoI-based error resilience model in the

H.264/AVC encoder. The model reduces the dependencies

between important and unimportant regions of the picture. To

test its efficiency, we perform a controlled packet loss simu-

lation on the encoded bitstream. We then decode the distorted

bitstream and evaluate the quality of the decoded video using

a perceptual quality metric.

4.1. Forced intra-prediction

In order to prevent error propagation from reaching the RoI in

B and P-pictures, we propose to force the macroblocks in an

RoI in these pictures to be predicted in intra-prediction mode.

This makes the RoI independent from past or future pictures.

To this end, we implement in the JM encoder an algorithm

that operates as follows: for each macroblock of a B or P-

picture, it checks if the macroblock belongs to the picture’s

RoI by comparing its coordinates to the coordinates given to

the encoder in the form of an RoI text file. When a mac-

roblock is flagged as being an RoI macroblock, its prediction

type is forced to be intra. The selection of a macroblock’s pre-

diction type in H.264/AVC being based on the minimization

of a distortion measure between the original and the predicted

pixels, we choose to force the encoding algorithm to change

the prediction type of an RoI macroblock (from inter to intra)

by increasing the distortion measure computed for this choice.

The process is illustrated in Figure 5(a) and the pseudocode

of the algorithm is given below.

Algorithm 1 Forced RoI intra-prediction.

while reading(eye tracking data)

for all B and P-pictures

for all MBs in a picture

if MB ∈ RoI then

while (predType == anyInterpredType) do

increase cost function

end while

else proceed normally

end if

end for

end for

end while

By forcing some macroblocks in B and P-pictures to be

coded in intra mode, the quality of the video may decrease.

The explanation is the following: the encoding is done at a

constant bitrate, thus the number of bits to be consumed is the

same for all coding schemes. The intra-coded macroblocks

consume more bits than they would have if they were coded

in inter-prediction mode. This results in higher quantization

parameters for some macroblocks in the video.

Forcing the RoI macroblocks to be coded in intra does halt

completely the temporal error propagation but not the spatial

propagation. In fact, the macroblocks to the top and left of an

RoI macroblock in a B or P-picture might not belong to the

RoI. Thus, these macroblocks can be coded in inter-prediction

mode. If the reference macroblocks of these inter-predicted

macroblocks are lost and/or concealed, the error can propa-

gate to these macroblocks. The intra-prediction being spatial,

using these macroblocks to perform the intra-prediction prop-

agates the error to the RoI.

We propose to extend the algorithm in order to cope with

this situation. We establish a “security neighborhood” around

each RoI macroblock to attenuate the impact of using as a

reference, a macroblock using itself a lost and/or concealed

reference. This security neighborhood consists of coding the



top left, top center, top right and left macroblocks surrounding

an RoI macroblock in intra-prediction mode. If one of those

four macroblocks is in the RoI, it is not considered as it will

definitely be intra-coded. This is best illustrated in Figure 5(b)

where we can see that some of the dependencies in Figure 5(a)

have disappeared.
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Fig. 5. RoI intra-coding. Gray and marked macroblocks are

RoI and lost macroblocks, respectively. Arrows indicate inter-

predictions. (a) Raw algorithm. (b) Algorithm with security

neighborhood (“1” macroblocks).

4.2. Loss simulation

We use a modified version of the loss simulator in [13] to

generate the transmission-distorted bitstreams. This simula-

tor provides the possibility of finely choosing the exact slice

to lose in the bitstream. At the encoding side, we take some

practical considerations into account, namely we set the max-

imum slice size to 1450 bytes which is less than the Maximum

Transmission Unit (MTU) for Ethernet (1500 bytes). The un-

used bytes (i.e., 50) are left for the RTP/UDP/IP headers (40
bytes) and the possible additional bytes that could be used

beyond the predefined threshold. In this case, every Network

Abstraction Layer Unit (NALU), which contains one slice of

coded data can fit in exactly one IP packet. This makes our

simulation more realistic because we can map the Packet Loss

Rate (PLR) at the NAL level to the PLR at the application

layer (e.g., RTP).

In our simulation, we never lose an entire picture; rather,

we loseM slices of a picture whereM < N ,N being the to-

tal number of slices in the picture. When parts of a picture are

lost due to packet loss, the error concealment algorithm im-

plemented in the JM decoder is executed. This non-normative

algorithm performs a weighted sample averaging to replace

each lost macroblock in an I-picture and a temporal error con-

cealment (based on the motion vectors) for lost macroblocks

in a B or P-picture. The algorithm is described in detail in

[14].

Because the macroblocks of an RoI are not confined in one

slice, the RoI generally spans over three or more slices. To

lose part or all of the RoI, we simulate the loss of three and

five slices in the RoI of the 5th I-picture to evaluate the er-

ror propagation impact on quality. We use two loss patterns

for quality evaluation: three contiguous slices and five non-

contiguous slices, all containing RoI macroblocks. The goal

of the loss simulation is to test the efficiency of our approach

w.r.t. error propagation. Thus, we only target I-slices and

look at how the algorithm copes with the spatio-temporal er-

ror propagation in subsequent B and P-pictures.

4.3. Quality assessment

To assess the quality of a video sequence one could either

perform subjective quality tests or use an objective quality

metric. During a subjective test, a group of viewers is asked

to rate the quality of a series of video sequences. The quality

score is chosen from a categorical (e.g., bad, excellent) or nu-

merical (e.g., 1−5, 1−100) scale. An objective video quality

metric evaluates the quality of a processed video sequence by

performing some computations on the processed video and

often on the original video too. While subjective tests are the

most reliable way of assessing the quality of video sequences,

they are time-consuming and require a large number of par-

ticipants. Hence, a number of objective metrics providing a

reliable quality assessment have been proposed to replace the

subjective tests. The most widely used objective quality met-

ric is the Peak Signal-to-Noise Ratio (PSNR). However, the

performance of the PSNR metric is controversial [15]. There-

fore, we propose to use in this work a perceptual video quality

metric: VQM.

4.3.1. Video Quality Metric

Video Quality Metric is a standardized objective video quality

metric developed by the Institute for Telecommunication Sci-

ences (ITS), the engineering branch of the National Telecom-

munications and Information Administration at the U.S. De-

partment of Commerce [16]. VQM divides original and pro-

cessed videos into spatio-temporal regions and extracts qual-

ity features such as spatial gradient, chrominance, contrast

and temporal information. Then, the features extracted from

both videos are compared, and the parameters obtained are

combined yielding an impairment perception score. The im-

pairment score is in the range 0− 1 and can be mapped to the

Mean Opinion Score (MOS) given by a panel of human ob-

servers during subjective quality tests. For example, 0.1 and



0.7 are mapped to MOS values of 4.6 and 2.2 on a 5-grade

scale, respectively. Note that VQM can be applied over a se-

lected spatio-temporal region of the video to assess exactly

its quality. In our experiments, we used the VQM Television

model which is optimized for measuring the perceptual ef-

fects of television transmission impairments such as blur and

error blocks.

4.3.2. Results

We compare the quality of the same sequence (Harp) encoded

with the unmodified JM encoder and with three variants of

our algorithm: the first one is the classical approach, denoted

hereafter by RoI coding 1. RoI coding 2 denotes our approach

taking into account the security neighborhood. We also im-

plemented a variant RoI coding 3 of our approach that consid-

ers P-pictures only. The slices are lost from frame 97 which

is the 5th I-picture of the sequence.

In Figure 6, the VQM impairment perception scores are

plotted for each coding scheme. These scores are computed

over the full spatial and temporal resolutions of the video.

For the no loss case, the encoding quality of all schemes is

practically the same. For the two loss patterns, the impairment

generally seems to be more annoying when using the variants

RoI coding 2 and RoI coding 3 of our algorithm.
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Fig. 6. VQM impairment perception scores for all coding

schemes. VQM is applied over the full temporal and spatial

resolutions of the video.

This trend is inverted in Figure 7, where the impairment

perception scores are computed only over the RoI of the pic-

ture. Only the scores of the two loss patterns are plotted in this

figure. The results show that all three variants of the algorithm

outperform the Normal coding approach, although sometimes

slightly. We also note that the impairment perception score for

the 3-slice loss is greater than the 5-slice loss’ for RoI coding
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Fig. 7. VQM impairment perception scores for all coding

schemes. VQM is applied over the full temporal resolution

and the RoI of the video.

2 and RoI coding 3. This probably results from the content-

dependency of the error concealment algorithm because the

two loss patterns hit different slices.

Figure 8 depicts the impairment scores calculated over a

smaller temporal region, namely 100 consecutive frames. The

spatial dimensions of the evaluated region are delimited by

the RoI of the picture as in the previous case. Reducing the

temporal length of the region to be evaluated makes the dis-

tortion impact measure more accurate. The length is chosen

such as to cover the GOP that contains the I-picture where the

slices are hit and following B and P-pictures. We select 100
frames because VQM requires a temporal region of at least

four seconds. The scores in Figure 8 demonstrate the effi-

ciency of the proposed algorithm on the local region where

it performs. For instance, the impairment perception score of

the 3-slice loss case is 0.34 for Normal coding scheme while

it decreases to 0.14 for RoI coding 1.

4.3.3. Discussion

The test results show that the video quality for all loss pat-

terns was generally in the higher values of the quality scale

(lower impairment perception scores). Visually, this was not

always true. Some distorted frames of the Harp sequence

given in Figure 9 illustrate this claim. This is probably due

to the VQM not being perfectly adapted for RoI-based losses,

i.e., no special weights are attributed to the losses in the RoI

during error pooling.

Figures 7 and 8 clearly demonstrate that RoI coding 1 is the

most adapted coding scheme in the presence of bursty losses
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Fig. 8. VQM impairment perception scores for all coding

schemes. VQM is applied over 100 frames and the RoI of the

video.

while RoI coding 3 works best for single losses. The almost

equal impairment scores given by VQM for the no loss case in

Figure 6 show that the algorithm used does not incur a signif-

icant extra encoding cost, namely a quality decrease. Results

for the 3-slice and 5-slice losses in this same figure might in-

dicate that the algorithm fails to cope with the loss patterns.

However, the error propagation for Normal coding and RoI

coding 1 schemes, illustrated in Figure 9, shows that our algo-

rithm performs well in the presence of losses. Further, while

the error propagation is progressively attenuated in Normal

coding scheme, it is drastically reduced in RoI coding 1 start-

ing from frame 99 which is 2 frames away from the I-picture

hit.

In Figure 10, two differently encoded versions of frame 103
of Harp sequence are depicted. The green box indicates the

RoI of the picture. While the shape of the face is generally

preserved when using the RoI intra-coding scheme (Figure

10(b)), we can see clearly that this is not the case with Nor-

mal coding (Figure 10(a)). The block effect appearing in the

RoI of the picture for RoI coding 1 scheme is due to the spatial

dependency between the macroblocks adjacent to the RoI and

the RoI macroblocks. When coding a macroblock in intra-

prediction mode, the encoder checks if any of the upper and

left macroblocks are available (i.e., existing or coded in intra

mode). If no macroblock is available, it uses the DC intra-

prediction mode (intra-coding mode 2) which computes the

average of the upper and left samples. The upper and left mac-

roblocks being inter-predicted from a lost and/or concealed

reference, a block distortion appears in the RoI. The high im-

pairment perception scores obtained in Figure 6 could be due

to the fact that VQM penalizes the block effects much more

than other distortions. Note that using a security neighbor-

hood did not show a significant improvement over RoI coding

1.

To overcome the spatial error propagation limitation, and

in an RoI-based video coding perspective, we propose to cre-

ate a new RoI-based prediction type that will be applied to all

RoI macroblocks which do not have an upper or left available

RoI macroblock. In this case, the RoI macroblock would be

intra-coded as if it were the top left macroblock of the picture.

However, doing so will render the bitstream non-standard

compliant. To counter this problem, we suggest to use a spe-

cific signalling for this prediction type. In the worst case, this

scheme would create an overhead of one bit per intra-coded

macroblock to signal this new intra-prediction type. Intra-

coded macroblocks in a sequence comprise all macroblocks

of I-pictures, the occasional intra-coded macroblocks and RoI

macroblocks of B and P-pictures. We believe that this slight

modification in the H.264/AVC can greatly improve the ro-

bustness of the bitstream against packet loss while not incur-

ring a significant overhead. This new coding scheme can be

thought of as a “cheap” FMO (in terms of overhead) because

it creates totally independent regions in the picture.

On the other hand, to improve the security neighborhood

variant which did not significantly increase the resilience

model performance, we propose to force any RoI macroblock

with at least one available RoI macroblock for intra-coding

to use it as a reference to avoid that it uses a non-RoI mac-

roblock.

5. CONCLUSION AND FUTURE WORK

We presented in this paper a new H.264/AVC error resilience

model implemented in the encoder. The model, which is

based on RoI data collected through an eye tracking experi-

ment, aims at removing the dependencies between the RoIs in

B and P-pictures and the reference picture(s). We described

the test procedure and the post-processing that is applied to

the saliency maps in order to obtain the RoI maps. We tested

the efficiency of the proposed model by simulating packet loss

on RoI-encoded video sequences and then evaluating their

perceived quality. Results show that the RoI intra-coding

algorithm outperforms the normal encoding locally and pre-

serves the shape of the RoI.

This work can be further improved by (1) completely re-

moving the spatial dependency between RoI macroblocks

and adjacent non-RoI macroblocks; (2) performing subjec-

tive tests for video quality assessment; and (3) incorporating

an objective saliency computational model (e.g., [17]) in the

encoder which would steer the intra-prediction restriction al-

gorithm. If the model chosen is reliable, it could be used as an

alternative to eye tracking tests which are expensive in terms

of both time and human resources. We are also working to-

wards the development of an RoI-based UEP scheme.



Fig. 9. From left to right: frames 97, 99 and 116 of Harp sequence. Top: Normal coding. Bottom: RoI coding 1. The green

box indicates the RoI.

(a) Normal coding. (b) RoI coding 1.

Fig. 10. Frame 103 of Harp sequence. The shape of the RoI is better preserved in (b) than in (a).
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