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ON THE DERIVED CATEGORY OF THE CAYLEY PLANE

L. MANIVEL

Abstract. We describe a maximal exceptional collection on the Cayley plane, the minimal
homogeneous projective variety of E6. This collection consists in a sequence of 27 irreducible
homogeneous bundles.

1. The Cayley plane

Let O denote the normed algebra of (real) octonions (see e.g. [Ba]), and let O be its com-
plexification. The space

J3(O) =

{





c1 x3 x̄2

x̄3 c2 x1

x2 x̄1 c3



 , ci ∈ C, xi ∈ O

}

∼= C27

of O-Hermitian matrices of order 3, is the exceptional simple complex Jordan algebra.
The subgroup SL3(O) of GL(J3(O)) consisting of automorphisms preserving the determinant

is the adjoint group of type E6. The action of E6 on the projectivization PJ3(O) has exactly three
orbits: the complement of the determinantal hypersurface, the regular part of this hypersurface,
and its singular part which is the closed E6-orbit. These three orbits can be viewed as the
(projectivized) sets of matrices of rank three, two, and one respectively.

The closed orbit, i.e. the (projectivization of) the set of rank one matrices, is called the
Cayley plane and denoted OP

2. It can be defined by the quadratic equation

X2 = trace (X)X, X ∈ J3(O),

or as the closure of the affine cell

OP
2
0 =

{





1 x y
x̄ xx̄ yx̄
ȳ xȳ yȳ



 , x, y ∈ O

}

∼= C16.

Since the Cayley plane is a closed orbit of E6, it can also be identified with the quotient of
E6 by a parabolic subgroup, namely the maximal parabolic subgroup P1 defined by the simple
root α1 in the notation below. The semi-simple part of this maximal parabolic is isomorphic to
Spin10.

◦ ◦ ◦ ◦ ◦

◦

•
α1 α2 α3 α5 α6

α4

If we denote by Vω the irreducible E6-module with highest weight ω, we have J3(O) ≃ Vω1
.

This is a minuscule module, meaning that its weights with respect to any maximal torus of E6,
are all conjugate under the action of the Weyl group W (E6). For more details, see [LM, IM].

Note that the Dynkin diagram of type E6 has an obvious symmetry of order two, which
accounts for the duality between irreducible modules. For example, the dual module of Vω1

is
Vω6

.
1
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2. Homogeneous bundles on the Cayley plane

2.1. Irreducible homogeneous bundles. The category of homogeneous bundles on a rational
homogeneous variety G/P is equivalent to the category ModP of P -modules. Recall that P has a
non trivial decomposition P = LP u, where P u denotes the unipotent radical and L a Levi factor.
Since P u is non trivial, P is not reductive, and P -modules are not completely reducible in general.
Irreducible P -modules have a trivial action of P u, so that they are completely determined by
their L-module structure. Since L is reductive, its irreducible modules are well understood: they
are uniquely determined by their highest weight ω, which can be any L-dominant weight of G.
We denote by Eω the corresponding irreducible homogeneous vector bundles on G/P . By the
Borel-Weil theorem, H0(G/P, Eω) = V ∨

ω if ω is dominant, and otherwise H0(G/P, Eω) = 0.

For the Cayley plane OP
2 = E6/P1, a Levi factor L of P1, modded out by its one dimensional

center, is a copy of Spin10. An L-dominant weight ω is a linear combination ω = a1ω1 + a2ω2 +
a3ω3 +a4ω4 +a5ω5 +a6ω6 of the fundamental weights of e6, with a2, . . . , a6 ≥ 0. We can encode
ω by the Dynkin diagram of E6, where the node corresponding to the fundamental weight ωi is
labeled ai.

Example 1. The weight ω = −ω1 defines a character of L. So E−ω1
is just a line bundle, the

negative generator of the Picard group. The dual bundle Eω1
defines the embedding of OP

2 in
PVω1

= PJ3(O) and will be denoted OOP2(1).

OOP2(1) ≃

◦ ◦ ◦ ◦ ◦

◦

•
1

Example 2. The weight that defines the tangent bundle of OP
2 is the highest root of e6, which

is also the dominant weight defining the adjoint representation. Note that the corresponding
representation of Spin10 is one of the half-spin representations, which has dimension sixteen, as
the Cayley plane.

TOP2 ≃

◦ ◦ ◦ ◦ ◦

◦

•

1

The Borel-Weil theorem yields that H0(OP
2, TOP2) = e6, as expected.

Since the two half-spin representations of Spin10 are dual one of the other, one could expect
that the weight defining the cotangent bundle of OP

2 be ω2. This is not exactly true: the
defining weight is ω2 − ω1, where substracting ω1 amounts, at the level of bundles, to twisting
by OOP2(−1). To check this, one needs to remember that if an irreducible L-module has highest

weight ω, then its lowest weight is wL
0 (ω), where wL

0 denotes the longest element of the Weyl
group W (L) of L ≃ Spin10 × C

∗, and then the highest weight of the dual module is −wL
0 (ω).

But this weight must be computed inside the weight lattice of e6, on which W (L) acts naturally
since it is embedded in W (E6). And the result of this computation will be what it would be in
the weight lattice of Spin10, only up to extra multiples of ω1.

Ω1
OP2 ≃

◦ ◦ ◦ ◦ ◦

◦

•
−1 1
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Example 3. The minimal non trivial representation of Spin10 is the vector representation. This
implies that up to line bundles, the irreducible homogeneous bundle defined by ω6 has minimal
rank, equal to ten. We denote it by S.

S ≃

◦ ◦ ◦ ◦ ◦

◦

•
1

The vector representation of Spin10 is self-dual. For the reasons explained above, this does
not quite imply that S be self-dual, but this must be the case up to a twist by a line bundle.
One can easily check that S∨ = S(−1).

The geometric interpretation of S is the following. By the Borel-Weil theorem, we have
H0(OP

2,S) = V ∨

ω6
= Vω1

= J3(O). An irreducible homogeneous bundle with non trivial sections
is generated by global sections, so dualizing the evaluation map we get an injection

S∨ →֒ J3(O)∨ ⊗OOP2.

This map identifies each fiber of S∨ with the linear span of an O-line, a maximal quadric in
the dual Cayley plane OP

2 ⊂ PJ3(O)∨, see [LM]. (Note that the Cayley plane and its dual
are isomorphic, but only non-canonically: this reflects the fact that the order two symmetry of
the Dynkin diagram can only be realized as an outer automorphism of E6.) In particular the
presence of this maximal quadric explains that there is a natural quadratic form

Sym2S → OOP2(1).

Definition. Let S2 be the kernel of the map Sym2S → OOP2(1). Since the symmetric square
of the vector representation of Spin10 is, up to the trivial factor defined by the quadratic form,
irreducible, S2 is an irreducible vector bundle, with highest weight 2ω6.

The quadratic map Sym2S → OOP2(1) induces a cubic map Sym3S → S(1). Let S3 be the
kernel of this cubic map. This is the irreducible bundle with highest weight 3ω6.

2.2. Bott’s theorem. The fundamental tool for computing the cohomology of vector bundles
on homogeneous spaces is Bott’s theorem, which extends the Borel-Weil theorem for global
sections to higher cohomology groups.

Consider on G/P an irreducible vector bundle Eω. We have seen that it has non trivial global
sections exactly when ω is dominant. In general, let ρ denote the sum of the fundamental
weights, and consider the weight ω + ρ. This weight is singular if there exists a root α such that
〈ω + ρ, α∨〉 = 0 (equivalently, ω + ρ is fixed by the simple reflection α). Otherwise, there exists
a unique w in the Weyl group such that w(ω + ρ) be strictly dominant, and then w(ω + ρ) − ρ
is dominant.

Theorem 1 (Bott’s theorem). If ω + ρ is singular, then Eω is acyclic. Otherwise, there is a

unique w ∈ W (E6) such that w(ω + ρ) is strictly dominant. Then

Hℓ(w)(G/B, Eω) = V ∨

w(ω+ρ)−ρ,

and the other cohomology groups of Eω vanish.

Remark. To check whether the weight ω+ρ is singular or not, we can proceed as follows. If ω+ρ
is not dominant, one of its coefficients on the basis of fundamental weights, say on ωi, must be
negative. Then we apply the simple reflection sαi

, in order to cross the hyperplane orthogonal to
α∨

i . Not that since E6 is simply laced, this simply amounts to changing the (negative) coefficient
of ωi into its opposite, and adding it to the coefficients of the fundamental weights connected to
ωi in the Dynkin diagram. Iterating this procedure, we will eventually get a weight with some
zero coefficient, which will imply that ω + ρ is singular, or get a strictly dominant weight which
will be the representative w(ω + ρ) of the W (E6)-orbit of ω + ρ in the interior of the dominant
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chamber. In the latter case, the number of applications of these simple reflections is nothing
but the length ℓ(w) of w, which is the degree of the only non-zero cohomology group of Eω.

3. Exceptional sequences

3.1. Exceptional bundles. Recall that an object F of the derived category of coherent sheaves
on a variety X is exceptional if RHom(F ,F) = C. If F is represented by a vector bundle F on
X, this means that

H i(X,End(F )) = δi,0C.

Proposition 1. The homogeneous bundles S,S2,S3 on OP
2 are exceptional.

Proof. If U denotes the vector representation of Spin10, we know that ∧2U is an irreducible
(and even fundamental) representation, and that Sym2U splits into a trivial factor generated
by the invariant quadratic form, and an irreducible summand. At the level of bundles, since
S∨ = S(−1), this implies that

End(S) = Eω5
(−1) ⊕OOP2 ⊕ S2(−1).

The bundle Eω5
(−1) has highest weight ω = ω5 − ω1. Since ω + ρ = ω2 + ω3 + ω4 + 2ω5 + ω6

is orthogonal to α∨

1 , ω + ρ is singular. By Bott’s theorem we conclude that Eω5
(−1) is acyclic.

For exactly the same reason S2(−1) is also acyclic. We conclude that

H i(OP
2, End(S)) = H i(OP

2,OOP2) = δi,0C.

So S is exceptional.
We proceed similarly with the other two bundles. First observe that S∨

2 = S2(−2) and
S∨

3 = S3(−3). Using e.g. LiE [LiE] to compute tensor products of representations of Spin10, we
get the decompositions:

End(S2) = E4ω6
(−2) ⊕ Eω5+2ω6

(−2) ⊕ E2ω5
(−2) ⊕ E2ω6

(−1) ⊕ Eω5
(−1) ⊕OOP2,

End(S3) = E6ω6
(−3) ⊕ Eω5+4ω6

(−3) ⊕ E2ω5+2ω6
(−3) ⊕ E3ω5

(−3) ⊕ E4ω6
(−2) ⊕

⊕ Eω5+2ω6
(−2) ⊕ Eω3+2ω5

(−3) ⊕ E2ω6
(−1) ⊕ Eω5

(−1) ⊕OOP2.

Our claim amounts to the acyclicity of all the non trivial vector bundles in these decompositions,
hence, by Bott’s theorem, to the singularity of all the corresponding weights, once we have added
ρ. We use the remark after Bott’s theorem above. Consider for example E6ω6

(−3), whose highest
weight is 6ω6 − 3ω1. After adding ρ, we get successively, applying sα1

and sα2
:

◦ ◦ ◦ ◦ ◦

◦

•
−2 1 1 1 7

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
2 −1 1 1 7

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
1 1 0 1 7

1

Since there is a zero label on the rightmost diagram, we conclude that E6ω6
(−3) is acyclic.

Proceeding in the same way with the other bundles, we conclude the proof. �

Remark. Observe that the irreducible vector bundle ∧2S is not exceptional. Indeed, if U is
again the vector representation of Spin10, ∧2U ⊗ ∧2U contains ∧4U , which is an irreducible
(but not fundamental) representation, contained in the tensor product of the two half-spin
representations. This implies that End(∧2S) contains Eω2+ω3

(−2), which is not acyclic. Indeed,
sα1

(ω2 + ω3 − 2ω1 + ρ) = ω2 + ρ is strictly dominant, hence

H1(OP
2, Eω2+ω3

(−2)) = e6.
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3.2. A maximal exceptional sequence. Recall that an exceptional sequence of sheaves on a
projective variety X is a sequence F1, . . . ,Fm of exceptional sheaves such that

Extq(Fi,Fj) = 0 ∀q ≥ 0, ∀i > j.

It is strongly exceptional if moreover

Extq(Fi,Fj) = 0 ∀q > 0, ∀i ≤ j.

Since OP
2 has index 12, it follows from the Kodaira vanishing theorem that the sequence

OOP2,OOP2(1), . . . ,OOP2(10),OOP2(11)

is strongly exceptional. On the other hand, it is easy to see that the classes in K-theory of the
members of an exceptional sequence are linearly independent (see [Bo]). For rational homoge-
neous spaces, the K-theory is a free Z-module admitting for basis the classes of the structure
sheaves of the Schubert varieties. The length of a maximal exceptional sequence is expected to
coincide with the rank of the K-theory, that is, the number of Schubert classes, which is also
the topological Euler characteristic of the variety. For the Cayley plane this number is equal to
27, so we expect to be able to enlarge the preceeding exceptional sequence of line bundles. For
this we will use the exceptional bundles S,S2 and S3, and will apply Bott’s theorem again and
again.

Lemma 1. The bundle S(−i) is acyclic for 1 ≤ i ≤ 12.

Proof. We play the same game as above, starting with the weight ω6− iω1 +ρ. At each step, the
weight we get either has a zero coefficient, in which case the game stops and we conclude that we
started with a singular weight, or there is a negative coefficient and we apply the corresponding
simple reflexion. This goes as follows:

◦ ◦ ◦ ◦ ◦

◦

•
−i + 1

1

1

1

2

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
i − 1

2 − i

1

1

2

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

i − 2

3 − i

1

2

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

1

i − 3

4 − i

2

4 − i
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

1

1

4 − i

2

i − 4
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

1

5 − i

i − 4

6 − i

i − 4
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

6 − i

i − 5

1

6 − i

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

6 − i

i − 5

7 − i

i − 6

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
7 − i

i − 6

1

7 − i

i − 6

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
i − 7

1

1

7 − i

i − 6

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
i − 7

1

8 − i

i − 7

1

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
i − 7

9 − i

i − 8

1

1

9 − i
7→

◦ ◦ ◦ ◦ ◦

◦

•
i − 7

9 − i

1

1

1

i − 9
7→

◦ ◦ ◦ ◦ ◦

◦

•
2

i − 9

10 − i

1

1

i − 9
7→

◦ ◦ ◦ ◦ ◦

◦

•
2

1

i − 10

11 − i

1

1
7→
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◦ ◦ ◦ ◦ ◦

◦

•
2

1

1

i − 11

12 − i

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
2

1

1

1

i − 12

1

This concludes the proof. �

Note that for i = 13 we finally get the strictly dominant weight ω1 + ρ. Since we needed to
apply 16 simple reflexions, we conclude by Bott’s theorem that

H16(OP
2,S(−13)) = V ∨

ω1
.

But by Serre duality, H16(OP
2,S(−13)) is dual to H0(OP

2,S∨(1)) = H0(OP
2,S) which, by

Borel-Weil, is V ∨

ω6
≃ Vω1

. This is a way to check that the computation above, and those of the
same type that will follow, are indeed correct.

The same statement holds for our two other exceptional bundles:

Lemma 2. S2(−i) and S3(−i) are acyclic for 1 ≤ i ≤ 12.

Now consider their endomorphism bundles:

Lemma 3. End(S)(−i) is acyclic for 1 ≤ i ≤ 11.

Proof. We have seen that End(S) = S2(−1)⊕OOP2 ⊕Eω5
(−1). We already know that S2(−i−1)

and OOP2(−i) are acyclic for 1 ≤ i ≤ 11. There remains to treat the case of Eω5
(−i − 1), which

we do as above. After adding ρ to ω5 − (i + 1)ω1, we get successively:

◦ ◦ ◦ ◦ ◦

◦

•
−i

1

1

2

1

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
i

1 − i

1

2

1

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

i − 1

2 − i

2

1

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

1

i − 2

4 − i

1

3 − i
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

1

1

4 − i

1

i − 3
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

1

5 − i

i − 4

5 − i

i − 3
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

1

5 − i

1

i − 5

i − 3
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

6 − i

i − 5

6 − i

i − 5

2
7→

◦ ◦ ◦ ◦ ◦

◦

•
7 − i

i − 6

1

6 − i

i − 5

2
7→

◦ ◦ ◦ ◦ ◦

◦

•
7 − i

i − 6

7 − i

i − 6

1

2
7→

◦ ◦ ◦ ◦ ◦

◦

•
i − 7

1

7 − i

i − 6

1

2
7→

◦ ◦ ◦ ◦ ◦

◦

•
i − 7

8 − i

i − 7

1

1

9 − i
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

i − 8

1

1

1

9 − i
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

i − 8

10 − i

1

1

i − 9
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

2

i − 10

11 − i

1

1
7→
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◦ ◦ ◦ ◦ ◦

◦

•
1

2

1

i − 11

12 − i

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

2

1

1

i − 12

1

This concludes the proof. �

Lemma 4. End(S2)(−i) is acyclic for 1 ≤ i ≤ 2.

Proof. We have seen how to decompose End(S2) into irreducible bundles. We need to apply
Bott’s theorem to each component. Consider for example the component E2ω5

(−2). After
twisting by OOP2(−i) and adding ρ to the corresponding weight, we get:

◦ ◦ ◦ ◦ ◦

◦

•
−i − 1

1

1

3

1

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
i + 1

−i

1

3

1

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

i

1 − i

3

1

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

1

i − 1

4 − i

1

2 − i
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

1

1

4 − i

1

i − 2

For i = 1, 2 we get singular weights, as claimed. But note that for i = 3, the last weight above
is ρ, so that that H3(OP

2, E2ω5
(−5)) = C. In particular End(S2)(−3) is not acyclic. Examining

the other components we can easily complete the proof that End(S2)(−1) and End(S2)(−2) are
both acyclic. �

In a completely similar way, we check that:

Lemma 5. End(S3)(−1) is acyclic.

Lemma 6. S2 ⊗ S(−i − 1) is acyclic for 1 ≤ i ≤ 12.

Proof. Use the decomposition, that we obtain e.g. using LiE,

S2 ⊗ S = S3 ⊕ S(1) ⊕ Eω5+ω6
.

The first two factors have already been considered. The third one is treated in the same way. �

Lemma 7. S3 ⊗ S(−i − 1) is acyclic for 1 ≤ i ≤ 6.

Proof. Here the relevant decomposition is

S3 ⊗ S = E4ω6
⊕ S2(1) ⊕ Eω5+2ω6

.

The most limiting term is the first one, since it gives rise to the sequence:

◦ ◦ ◦ ◦ ◦

◦

•
−i

1

1

1

5

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
i

1 − i

1

1

5

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

i − 1

2 − i

1

5

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

1

i − 2

3 − i

5

3 − i
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

1

1

3 − i

5

i − 3
7→

◦ ◦ ◦ ◦ ◦

◦

•
1

1

4 − i

i − 3

8 − i

i − 3
7→
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◦ ◦ ◦ ◦ ◦

◦

•
1

5 − i

i − 4

1

8 − i

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
6 − i

i − 5

1

1

8 − i

1
7→

◦ ◦ ◦ ◦ ◦

◦

•
i − 6

1

1

1

8 − i

1

For i = 1, . . . , 6 we get singular weights, as claimed, but for i = 7 the last weight above is
ρ. We can therefore conclude that H8(OP

2, Eω5+2ω6
(−8)) = C. Therefore S3 ⊗ S(−8) is not

acyclic. We conclude the proof by checking the last component. �

Lemma 8. S3 ⊗ S2(−i − 2) is acyclic for 1 ≤ i ≤ 2.

Proof. We have the decomposition:

S3 ⊗ S2 = E5ω6
⊕ Eω5+3ω6

⊕ E2ω5+ω6
⊕ Eω5+ω6

(1) ⊕ S3(1) ⊕ S(2).

The last three terms have already been considered. Among the first three, the most limiting
one is the third one, which contributes non trivially for i = 3. But for i = 1, 2 all the factors are
acyclic. �

We can now prove our main result.

Theorem 2. The following sequence, of length 27, of vector bundles on the Cayley plane OP
2,

O,S,O(1),S(1),O(2),S(2),O(3),S(3),O(4),

S2(3),S(4),S3(3),O(5),S2(4),S(5),S3(4),O(6),S2(5),

S(6),O(7),S(7),O(8),S(8),O(9),S(9),O(10),O(11)

is a maximal strongly exceptional collection.

Proof. This follows from the previous lemmas. Start with the exceptional collection O, . . . ,O(11).
By Lemma 3, S,S(1), . . . ,S(9) is also an exceptional collection. According to Lemma 1, we
have Hom(O(i),S(j)) = 0 for j < i ≤ j + 12. Moreover, since S∨ = S(−1), Hom(S(j),O(i)) =
Hom(O(j + 1),S(i)) = 0 for i ≤ j ≤ i + 11. This implies that the sequence

O,S,O(1),S(1),O(2),S(2),O(3),S(3),O(4),S(4),O(5),

S(5),O(6),S(6),O(7),S(7),O(8),S(8),O(9),S(9),O(10),O(11)

is an exceptional collection. On the other hand, Lemmas 1, 4, 5 and 8 imply that

S2(3),S3(3),S2(4),S3(4),S2(5)

is also an exceptional collection. There remains to “insert” this collection inside the previous
one. The compatibility conditions are the following. For S2, Lemmas 2, 6 and the fact that S∨

2 =
S2(−2) imply that we must respect the orderings O(k) · · · S2(j) · · · O(i) and S(k) · · · S2(j) · · · S(i)
with j − 10 ≤ k ≤ j + 1 and j + 1 ≤ i ≤ j + 12. Concerning S3, Lemmas 2, 7 and the
fact that S∨

3 = S3(−3) imply that we must respect the orderings O(k) · · · S3(j) · · · O(i) with
j − 9 ≤ k ≤ j + 2 and j + 1 ≤ i ≤ j + 12, and S(k) · · · S3(j) · · · S(i) with j − 4 ≤ k ≤ j + 1 and
j + 1 ≤ i ≤ j + 6. The collection of the theorem is compatible with these requirements. �

Finally the fact that this collection is strongly exceptional is quite straightforward. Indeed, if
i < j and Ei, Ej are the corresponding bundles of the collection, then in most cases End(Ei, Ej)
decomposes as a sum of irreducible vector bundles Eω defined by a highest weight ω which
is dominant. In this case it is an immediate consequence of Bott’s theorem that the higher
cohomology groups vanish. Another possibility is that ω has coefficient −1 on ω1, and then
Eω is acyclic. The remaining cases are only of three types, Ei = S(k) and Ej = S3(k − 1), or
Ei = S2(k) and Ej = S3(k), or Ei = S3(k) and Ej = S2(k+1). In these cases the coefficient of ω
on ω1 can be −2, but then the coefficient on ω3 is zero, and the acyclicity follows immediately. �

Of course we expect this maximal exceptional collection to be full, i.e. to generate the derived
category of the Cayley plane. This would follow from Conjecture 9.1 and its Corollary 9.3 in
[Ku3], but we have not been able to prove it.
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A possible strategy would be to find a covering family of subvarieties, possibly of small
codimension, for which we already have a good understanding of the derived category. This was
the strategy used in [Ku1] for an inductive treatment of Grassmannians of lines. In the Cayley
plane, there are at least two natural candidates. The first one is the family of O-lines, that is, of
eight-dimensional quadrics parametrized by the dual Cayley plane. The other one is the family
of copies of the spinor variety of Spin10 in OP

2. Indeed, the union of lines in the Cayley plane
passing through a given point is known to be a cone over this spinor variety [LM], which we
can recover by taking hyperplane sections not containing the given point. These spinor varieties
have codimension six, and their derived category is described in [Ku2, 6.2]. But in both cases the
codimension is already sufficiently big to make this strategy difficult to implement concretely.
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38402 St Martin d’Hères Cedex, France.

E-mail : Laurent.Manivel@ujf-grenoble.fr


