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FANO MANIFOLDS OF DEGREE TEN

AND EPW SEXTICS

ATANAS ILIEV AND LAURENT MANIVEL

Abstract. O’Grady showed that certain special sextics in P5 called
EPW sextics admit smooth double covers with a holomorphic symplec-
tic structure. We propose another perspective on these symplectic mani-
folds, by showing that they can be constructed from the Hilbert schemes
of conics on Fano fourfolds of degree ten. As applications, we construct
families of Lagrangian surfaces in these symplectic fourfolds, and related
integrable systems whose fibers are intermediate Jacobians.

1. Introduction

EPW sextics (named after their discoverers, Eisenbud, Popescu and Wal-
ter) are some special hypersurfaces of degree six in P5, first introduced in
[EPW] as examples of Lagrangian degeneracy loci. These hypersurfaces are
singular in codimension two, but O’Grady realized in [OG1, OG2, OG3]
that they admit smooth double covers which are irreducible holomorphic
symplectic fourfolds. In fact, the first examples of such double covers were
discovered by Mukai in [Mu2], who constructed them as moduli spaces of
stable rank two vector bundles on a polarized K3 surface of genus six. From
this point of view, the symplectic structure is induced from the K3 surface.
It carries over to double covers of EPW sextics by a deformation argument.

The main goal of this paper is to provide another point of view on this
symplectic structure. Our starting point will be smooth Fano fourfolds Z of
index two, obtained by cutting the six dimensional Grassmannian G(2, 5),
considered in its Plücker embedding, by a hyperplane and a quadric. Our
main observation is that the Hodge number h3,1(Z) equals one (Lemma
4.1). By the results of e.g. [KM], a generator of H3,1(Z) induces a closed
holomorphic two-form on the smooth part of any Hilbert scheme of curves
on Z. We focus on the case of conics. The most technical part of the paper
consists in proving that for Z general, the Hilbert scheme Fg(Z) of conics
in Z is smooth (Theorem 3.2). It is thus endowed with a canonical (up to
scalar) global holomorphic two-form.

Since Fg(Z) has dimension five, it can certainly not be a symplectic va-
riety. However, it admits a natural map to a sextic hypersurface Y ∨

Z in P5.
We consider the Stein factorization

Fg(Z) → Ỹ ∨
Z → Y ∨

Z .

It turns out that Ỹ ∨
Z is a smooth fourfold, over which Fg(Z) is essentially a

smooth fibration in projective lines. Thus the two-form on Fg(Z) descends

to Ỹ ∨
Z . We show that this makes of Ỹ ∨

Z a holomorphic symplectic fourfold

(Theorem 4.13). Moreover the map Ỹ ∨
Z → Y ∨

Z is a double cover, such that
1
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the associated involution of Ỹ ∨
Z is anti-symplectic. This implies that Y ∨

Z is

an EPW sextic (Proposition 4.17), and that Ỹ ∨
Z does indeed coincide with

the double cover constructed by O’Grady (Proposition 4.18).

Apart from making O’Grady’s construction more transparent, at least
from our point of view, our approach has several interesting consequences.

First, it shows that double covers of EPW sextics are very close to another
classical example of symplectic fourfolds, namely the Fano varieties of lines
on cubic fourfolds. Indeed, a smooth cubic fourfold Z also has h3,1(Z) = 1,
and the symplectic form on its Fano scheme of lines F (Z) can be seen as
induced from a generator of H3,1(Z), exactly as above. Note that a similar
line of ideas has been used to explain the existence of a non degenerate two-
form on the symplectic fourfolds in G(6, 10) recently discovered in [DV].

Second, it sheds some light on the intriguing interplay between the vari-
eties of type Z = G(2, 5)∩Q∩L of different dimensions N , where L denotes
a linear space of dimension N + 4. If N = 2, one gets the genus six K3
surfaces which were, thanks to Mukai’s observations, at the beginning of
that story, but whose associated sextics form only a codimension one family
in the moduli space of all EPW sextics (see [OG4]). If N = 5, it is very
easy to see that there is an EPW sextic attached to Z; we explain this in
Proposition 2.1, as a way to introduce these special sextics. The case N = 3
was the main theme of investigations of [Lo] and [DIM]; in these studies
the surface of conics on Z played a crucial role; it is very closely related
to the singular locus of the EPW sextic attached to Z. Finally, for N = 4
we have seen how to construct an EPW sextic from the family of conics on
Z. In particular, we conclude that for any N = 3, 4 or 5, a general EPW
sextic is attached to a general Z, in fact a certain family of such sextics. For
sure there is more to understand about this, see section 4.5 for a tentative
discussion.

Third, from the fourfold Z we obtain a rather concrete description of the
symplectic form on Ỹ ∨

Z (while in [OG3] its existence was only guaranteed
by a deformation argument). This allows us to exhibit certain Lagrangian

surfaces in Ỹ ∨
Z , that we construct either from threefolds that are hyperplane

sections of Z (Proposition 5.2), or fivefolds that contain Z as a hyperplane
section (Proposition 5.6). More, we are able to construct, over the mod-
uli stacks parametrizing these families of threefolds (respectively, fivefolds),
two integrable systems whose Liouville tori are the corresponding interme-
diate Jacobians (Theorems 5.3 and 5.7). Again, this is strikingly similar
to the constructions of [IM2], of two integrable systems over the moduli
stacks parametrizing cubic threefolds (respectively, fivefolds) contained in
(respectively, containing) a given cubic fourfold.

Acknowledgements. We thank Stéphane Druel, Dimitri Markushevich and
Kieran O’Grady for useful discussions.

Notation.
V5 is a five-dimensional complex vector space. The Grassmannian G =

G(2, 5) = G(2, V5) parametrizes two-dimensional vector spaces in V5.
Z = G ∩Q∩H is the intersection of G, considered in its Plücker embed-

ding, with a quadric Q and a hyperplane H = PV9, where V9 ⊂ ∧2V5.
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I2(Z) denotes the linear system of quadrics containing Z. The hyperplane
of quadrics containing G, called Pfaffian quadrics, is I2(G) ≃ V5. The
hyperplane of Pfaffian quadrics in the projectivization I = P(I2(G)) ≃ P5

is denoted HP . In the dual projective space I∨, it defines a point hP called
the Plücker point.
YZ ⊂ I denotes the closure of the locus of singular non Pfaffian quadrics.

The projectively dual hypersurface is Y ∨
Z ⊂ I∨. The variety Ŷ ∨

Z parametrizes
pairs (h, V4) ∈ I∨ × PV ∨

5 such that a quadric in h cuts P(∧2V4)∩H along a
singular quadric.
Fg(G) is the Hilbert scheme of conics in G, F (G) is the nested Hilbert

scheme of pairs (c, V4) ∈ Fg(G) × PV ∨
5 such that c ⊂ G(2, V4).

Fg(Z) is the Hilbert scheme of conics in Z, F (Z) its preimage in F (G).
For c a generic conic in Z, there is a unique V4 such that (c, V4) ∈ F (Z),

and we denote Gc = G(2, V4), Pc = G(2, V4) ∩H and Sc = Pc ∩ Q. In the
pencil of quadrics containing Sc, the unique quadric containing the plane
〈c〉 spanned by c is denoted Qc,V4.

This defines maps F (Z) → Ŷ ∨
Z and Fg(Z) → Y ∨

Z . The varieties Ȳ ∨
Z

and Ỹ ∨
Z are defined by the Stein factorizations F (Z) → Ȳ ∨

Z → Ŷ ∨
Z and

Fg(Z) → Ỹ ∨
Z → Y ∨

Z .

2. EPW sextics in duality

2.1. Quadratic sections of G(2, 5). Let V5 be a five dimensional complex
vector space. Denote by G = G(2, V5) ⊂ P(∧2V5) the Grassmannian of
planes in V5, considered in the Plücker embedding. Let X = G ∩ Q be a
general quadric section: this is a Fano fivefold of index three and degree ten.
In the sequel, when we will talk about a Fano manifold of degree ten, this
will always mean a variety of this type, or possibly a linear section.

Let I = |IX(2)| denote the linear system of quadrics containing X. Then
I ≃ P5 is generated by Q and the hyperplane HP = |IG(2)| of Pfaffian
quadrics. Note that once we have chosen an isomorphism ∧5V5 ≃ C, there
is a natural isomorphism

V5 ≃ IG(2), v 7→ Pv(x) = v ∧ x ∧ x.

To be more precise, HP ≃ ∧4V ∨
5 ≃ V5 ⊗ det(V ∨

5 ).
The Pfaffian quadrics Pv are all of rank six. Therefore, the divisor DX of

degree ten parametrizing singular quadrics in I decomposes as

DX = 4HP + YX ,

for some sextic hypersurface YX ⊂ I.
On the other hand, consider a hyperplane V4 of V5. Then the Plücker

quadrics cut P(∧2V4) ⊂ P(∧2V5) along the same quadric, namely the Grass-
mannian G(2, V4). Therefore the quadrics in |IX(2)| cut out a pencil of
quadrics in P(∧2V4). If V4 is general, the generic quadric in this pencil
is smooth, and there is a finite number of hyperplanes in |IX(2)| restrict-
ing to singular quadrics in P(∧2V4). This condition defines a hypersurface
Y ∨

X ⊂ I∨. The following statement is essentially contained in [OG3] (see in
particular Propositions 7.1 and 3.1).
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Proposition 2.1. The two hypersurfaces YX ⊂ I and Y ∨
X ⊂ I∨ are projec-

tively dual EPW sextics.

First we need to recall briefly the definition of an EPW sextic (for more
details see [EPW, OG3]; the version we give here follows [OG4], section
3.2). One starts with a six-dimensional vector space U6. Then ∧3U6 is
twenty-dimensional and admits a natural non degenerate skew-symmetric
form (once we have fixed a generator of ∧3U6 ≃ C). Let then A ⊂ ∧3U6

be a ten-dimensional Lagrangian subspace. The associated EPW sextic
Y ∨

A ⊂ P(U∨
6 ) is defined as

Y ∨
A = {H ⊂ U6, ∧3H ∩A 6= 0}.

If A is general enough, then Y ∨
A is singular exactly along

SA = {H ⊂ U6, dim(∧3H ∩A) ≥ 2},

which is a smooth surface.

Proof. The quadricQ inG(2, V5) is defined by a tensor in S2(∧2V5)
∨ modded

out by the space of Pfaffian quadrics. We choose a representative Q0 in
S2(∧2V5)

∨. In particular, the choice of Q0 induces a decomposition I =
HP ⊕ CQ0, hence a decomposition

∧3I ≃ ∧3HP ⊕ ∧2HP ⊗Q0.

Observe that if we let D = detV ∨
5 , then HP ≃ V5 ⊗ D, hence ∧2HP ≃

∧2V5 ⊗D2 and ∧3HP ≃ ∧3V5 ⊗D3 ≃ ∧2V ∨
5 ⊗D2. We can therefore attach

to Q0 the subspace A(Q0) of ∧3I defined as

A(Q0) :=
{

(Q0(x, •) ⊗ d2, x⊗ d2 ⊗Q0), x ∈ ∧2V5

}

,

where d is some generator of D. Then A(Q0) is a Lagrangian subspace
of ∧3I, canonically attached to the point defined by Q0 in I − HP ≃ C5.
Consider the EPW sextic Y ∨

A(Q0)
⊂ I∨.

Lemma 2.2. Y ∨
A(Q0)

≃ Y ∨
X .

Proof. We prove that YA(Q0) ⊃ Y ∨
X . Since they are both sextic hypersurfaces,

this will imply the claim.
A point of Y ∨

X is defined by a hyperplane H ⊂ I parametrizing quadrics
that are all singular when restricted to P(∧2V4), for some hyperplane V4 ⊂
V5. If H is not the Pfaffian hyperplane HP , we can define it as the space of
quadrics of the form Qv := Pv − λ(v)Q0, for some linear form λ on V5. By
the hypothesis, there exists some non zero p ∈ ∧2V4 such that Qv(p, q) = 0
for any q ∈ ∧2V4. Generically, this p will not be contained in the cone over
G(2, V4). Otherwise said, p has rank four, p ∧ p 6= 0, and V4 is defined
uniquely by p.

Observe that the kernel of λ must be V4. Indeed, if λ(v) = 0, we get that
Pv(p, p) = v ∧ p ∧ p = 0. But this implies that v belongs to V4.

The subspace ∧3H of ∧3I is generated by the tensors Pu ∧ Pv ∧ (Pw −
λ(w)Q0), for u, v ∈ V4 and w ∈ V5. We can see it as the graph Γ of the map
∧3HP → ∧2HP ⊗Q0 induced by the map HP → CQ0 sending Pv to λ(v)Q0.
The Lemma is a consequence of the following assertion.
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Claim. The point (Q0(p, •), p ⊗Q0) belongs to Γ ∩A(Q0).

This is clearly a point of A(Q0), so we just need to check that it belongs
to Γ. Observe that Γ contains the points (p∧w, λ(w)p⊗Q0), for all w ∈ V5,
so we just need to prove that there exists some non zero w such that

Rw(•) := p ∧ w ∧ • − λ(w)Q0(p, •) = 0.

Here Rw is to be considered as a linear form on ∧2V5, and we know that
it vanishes on ∧2V4. But the orthogonal to ∧2V4 in ∧2V5 is isomorphic to
V ∨

4 (once we have chosen a generator of V5/V4), which means that we can
identify Rw with a linear form r(w) on V4, depending linearly on w. But
then the linear map r : V5 → V ∨

4 must have a non trivial kernel, and we are
done. �

Lemma 2.3. Y ∨
X is dual to YX .

Proof. Consider a general point of YX , defined by a non Pfaffian singular
quadric Q, with singular point p. Suppose that the infinitesimally near
quadric Q+ δQ remains singular at the point p+ δp. We may suppose that
δQ = Pδv and we get the order one condition that

(Q+ Pδv)(p + δp, •) = Q(δp, •) + Pδv(p, •) = 0.

Generically, p ∈ ∧2V5 has rank four, hence belongs to ∧2V4 for a unique
hyperplane V4 of V5. We claim that the quadrics Q+ δQ are all singular at
p, after restriction to ∧2V4. That is, we claim that

(Q+ δQ)(p, q) = 0 ∀q ∈ ∧2V4.

Indeed, ∧4V4 is one dimensional and generated by p∧p, hence p∧q = α(q)p∧p
for some linear form α on ∧2V4. Then, by the identity above, and the fact
that Q(p, •) = 0 since Q is singular at p, we get

(Q+ δQ)(p, q) = δQ(p, q)
= Pδv(p, q)
= δv ∧ p ∧ q
= α(q)δv ∧ p ∧ p
= α(q)Pδv(p, p)
= −α(q)Q(δp, p)
= 0.

This means that the generic tangent hyperplane to YX defines a point of
Y ∨

X , hence that Y ∨
X is projectively dual to YX .

This concludes the proof of the Lemma, and of the Proposition as well. �

2.2. Variants. Consider now a smooth degree ten variety X of dimension
5−k, defined as the intersection ofG(2, V5) with a quadric and a codimension
k linear subspace PV10−k of P(∧2V5). As before we denote by I ≃ P5 the
linear system of quadrics in PV10−k containing X, and by HP the Pfaffian
hyperplane. Generically the Pfaffian quadrics have rank 6, hence corank
4 − k. Hence the hypersurface DX of degree 10 − k, parametrizing singular
quadrics in I, decomposes as

DX = (4 − k)HP + YX ,

where YX is again a sextic hypersurface.
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As before, we can also define a hypersurface Y ∨
X ⊂ I∨, parametrizing the

hyperplanes in I made of quadrics whose restrictions to some P(∧2V4∩V10−k)
are all singular, V4 being a hyperplane in V5. The same proof as for the k = 0
case yields the following result.

Proposition 2.4. The two hypersurfaces YX ⊂ I and Y ∨
X ⊂ I∨ are projec-

tively dual sextics.

Proof. The only thing we have to prove is that Y ∨
X has degree six. For this

we describe, following [Lo], this hypersurface as the image of a degeneracy
locus, defined as follows. Consider over P = PV ∨

5 the rank two vector bundle
F = OP ⊕OP(1), and the rank 6− k vector bundle M whose fiber over V4 is
∧2V4 ∩V10−k. For a generic V10−k this is indeed a vector bundle, at least for
0 ≤ k ≤ 2. Let OF (−1) be the tautological line bundle over P(F ). There is
a morphism of vector bundles

η : OF (−1) → S2M∨,

defined by mapping a pair (z, v) ∈ C ⊕ V5 to the restriction of the quadric
zQ + Pv to MV4 . Since this restriction does only depend on the class of v
modulo V4, this mapping factors through η.

The first degeneracy locus Ŷ ∨
X of η, defined by the condition that the

resulting quadric be singular, is a divisor linearly equivalent to

[Ŷ ∨
X ] = 2c1(M

∨) − (6 − k)c1(OF (−1)).

One easily computes that c1(M
∨) = 3h, where h denotes the hyperplane

class of P(V5).
Observe that there is a natural map from P(F ) to I∨. Indeed, a point of

P(F ) over some V4 is of the form [λ, φ], for λ ∈ C and φ a linear form on V5

vanishing on V4. It defines the hyperplane in I consisting of quadrics of the
form zQ+ Pv for λz + φ(v) = 0.

In fact this map P(F ) → I∨ is just the blow-up of the point hP in I∨

defined by the Plücker hyperplane. This yields a basis of the Picard group
of P(F ) consisting of the exceptional divisor E, and the pull-back H of the
hyperplane class of I∨. A standard computation yields c1(OF (−1)) = −E
and h = H − E. Hence

[Ŷ ∨
X ] = 6h+ (6 − k)E = 6H − kE.

But the hypersurface Y ∨
X is just the image of Ŷ ∨

X in I∨. Therefore, this
formula reads as follows: Y ∨

X is a degree six hypersurface having multiplicity
k at hP . �

3. Conics on Fano fourfolds of degree ten

3.1. Conics on G(2, 5). Consider the Hilbert scheme Fg(G) parametrizing
conics in G = G(2, V5). In order to study this scheme, we first recall that
conics in G can be partitioned into three different classes, according to the
type of their supporting plane:

(1) τ -conics are conics spanning a plane which is not contained inG(2, V5);
any smooth τ -conic can be parametrized by (s, t) 7→ (sv1 + tv2) ∧
(sv3 + tv4) for some linearly independent vectors v1, v2, v3, v4 in V5;
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(2) σ-conics are conics parametrizing lines passing through a common
point; any smooth σ-conic can be parametrized by (s, t) 7→ v1 ∧
(s2v2+stv3+t2v4) for some linearly independent vectors v1, v2, v3, v4
in V5;

(3) ρ-conics are conics parametrizing lines contained in a common plane;
any smooth ρ-conic can be parametrized by (s, t) 7→ (sv1 + tv2) ∧
(sv2 + tv3) for some linearly independent vectors v1, v2, v3 in V5.

Each of these three classes of conics is partitioned into three orbits of
PGL(V5), consisting of smooth conics, singular but reduced conics, and
double lines. In particular Fg(G) has exactly nine PGL(V5)-orbits. Exactly
two are closed: the orbits F 1

ρ and F 1
σ parametrizing double-lines of type

ρ and of type σ. They are isomorphic, respectively, with the partial flag
varieties F (2, 3, V5) and F (1, 3, 4, V5); their dimensions are 8 and 9. The
incidence diagram is the following one:

F 3
τ

�� ��
@@

@@
@@

@@

����
��

��
�

F 3
ρ

��

F 2
τ

�� ��
??

??
??

??

����
��

��
��

F 3
σ

��

F 2
ρ

��

F 1
τ

��
??

??
??

??

����
��

��
��

F 2
σ

��

F 1
ρ F 1

σ

Theorem 3.1. The Hilbert scheme Fg(G) of conics in G = G(2, V5) is

irreducible and smooth, of dimension 13.

Proof. The dimension count is straightforward. The singular locus being
closed, it is enough to check the smoothness at one point of each of the two
closed orbits F 1

ρ and F 1
σ . Such a point represents a double-line ℓ. Recall (e.g.

from [Se]) that the Zariski tangent space to Fg(G) at the point represented
by ℓ is given by

T[ℓ]Fg(G) = HomOG
(Iℓ,Oℓ).

What we need to check is that this vector space has dimension 13. Since
Fg(G) is certainly connected, its smoothness will imply its irreducibility.

Double-line of type σ. We choose for the support of ℓ the σ-plane generated
by v1 ∧ v2, v1 ∧ v3, v1 ∧ v4, for some basis v1, . . . , v5 of V5, and we choose in
this plane the double line ℓ of equations

p2
14 = 0, p15 = p23 = p24 = p25 = p34 = p35 = p45 = 0,

where the pij’s denote the Plücker coordinates on G(2, V5) associated to our
choice of basis.

We first compute HomOG
(Iℓ,Oℓ) in the affine neighborhood of v1 ∧ v2

parametrizing planes which are transverse to 〈v3, v4, v5〉. Such a plane has
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a unique basis of the form

u1 = v1 + x3v3 + x4v4 + x5v5,

u2 = v2 + y3v3 + y4v4 + y5v5.

In these coordinates we have Iℓ = 〈y2
4 , y5, x3, x4, x5〉. An element φ of

HomOG
(Iℓ,Oℓ) associates to each of these generators a section of Oℓ, which

can be represented as p(y3) + y4p
′(y3) for some polynomials p and p′.

We can make the same analysis in the affine neighborhood of v1 ∧ v3
parametrizing planes which are transverse to 〈v2, v4, v5〉. Such a plane has
a unique basis of the form

w1 = v1 + z2v2 + z4v4 + z5v5,

w3 = v3 + t2v2 + t4v4 + t5v5.

In these coordinates we have Iℓ = 〈t24, t5, z2, z4, z5〉. An element ψ of
HomOG

(Iℓ,Oℓ) associates to each of these generators a section of Oℓ, which
can be represented as q(t3) + t4q

′(t3) for some polynomials q and q′.
Now, we want such a ψ do be defined globally along ℓ, which means that

it must extend to a regular morphism over the previous neighborhood. Over
t2 6= 0, the formulas for the change of coordinates are the following:

x3 = −
z2
t2
, x4 = z4 −

z2
t2
t4, x5 = z5 −

z2
t2
t5,

y3 =
1

t2
, y4 = t4

t2
, y5 =

t5
t2
.

Suppose that ψ maps t24 to q(t2) + t4q
′(t2). Then it maps y2

4 = t24/t
2
2 to

t−2
2 q(t2) + t4t

−2
2 q′(t2) = y2

3q(y
−1
3 ) + y4y3q

′(y−1
3 ).

Therefore y2
3q(y

−1
3 ) and y3q

′(y−1
3 ) must be regular, which means that q is at

most quadratic and q′ is affine. Treating the other conditions similarly we
check that ψ must be of the following form:

t24 7→ ψ1 + ψ2t2 + ψ3t
2
2 + (ψ4 + ψ5t2)t4,

t5 7→ ψ6 + ψ7t2 + ψ8t4,

z2 7→ ψ9 + ψ10t2 + ψ11t4,

z4 7→ ψ12 + ψ10t4,

z5 7→ ψ13 + ψ10t4.

So there are exactly 13 free parameters ψ1, . . . , ψ13 for ψ, as required.

Double-line of type ρ. We choose for the support of ℓ the ρ-plane generated
by v1 ∧ v2, v1 ∧ v3, v2 ∧ v3, for some basis v1, . . . , v5 of V5, and we choose in
this plane the double line ℓ of equations

p2
23 = 0, p14 = p24 = p15 = p25 = p34 = p35 = p45 = 0.

We compute in the same affine neighborhoods of v1∧v2 and v1∧v3. In the
latter, we have Iℓ = 〈z2

2 , z4, z5, t4, t5〉. An element ψ of HomOG
(Iℓ,Oℓ) asso-

ciates to each of these generators a section of Oℓ, which can be represented
as q(t2) + z2q

′(t2) for some polynomials q and q′.
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A similar analysis as before shows that to be defined globally, such a
morphism ψ must be of the following type:

z2
2 7→ ψ1 + ψ2t2 + ψ3t

2
2 + (ψ4 + ψ5t2)z2,

t4 7→ ψ6 + ψ7t2 + ψ8t4,

t5 7→ ψ9 + ψ10t2 + ψ11t4,

z4 7→ ψ12 + ψ7t4,

z5 7→ ψ13 + ψ10t4.

Again there are exactly 13 free parameters ψ1, . . . , ψ13 for ψ, as required.
This concludes the proof. �

Remark. One can check that Fg(G) is a spherical variety, which means
that a Borel subgroup of PGL(V5) acts transitively on some open subset.
Moreover the Picard number of Fg(G) is three. Indeed, we can consider
the nested Hilbert scheme F (G) parametrizing pairs (c, V4), for c a conic
in G and V4 ⊂ V5 a hyperplane such that c is contained in the quadric
G(2, V4). One can check that the forgetful map F (G) → Fg(G) is the blow-
up of the codimension two smooth variety Fρ(G) parametrizing ρ-conics.
In particular F (G) contains two disjoint divisors Eρ(G) and Eσ(G), the
preimages of the subvarieties Fρ(G) and Fσ(G) of Fg(G) parametrizing ρ
and σ conics, respectively. These two divisors can themselves be contracted
to the variety S(G) parametrizing pairs (P, V4), where P is a projective
plane inside P(∧2V4). Of course S(G) is a Grassmann bundle over PV ∨

5 .
The condition that P be contained inside G(2, V4) defines two subvarieties
Sρ(G) and Sσ(G) (according to the type of P ), both of codimension six.
Blowing-up S(G) over their union gives F (G). This is summarized by the
following diagram:

F (G)

##
HH

HH
HH

HH
H

{{ww
ww

ww
ww

w

S(G)

��

Fg(G)

PV ∨
5

3.2. Conics on the general Fano fourfold of degree ten. Now let
Z = G(2, 5) ∩H ∩ Q be a general Fano fourfold of degree ten. We denote
by Fg(Z) the Hilbert scheme of conics in Z. In this section our main goal is
to prove the following statement.

Theorem 3.2. For a general Z, the Hilbert scheme Fg(Z) of conics on Z
is a smooth fivefold.

The proof of this result will occupy the rest of the section. We will need
several auxiliary results, with different techniques to handle the three types
of conics and their possible singularities.

Reduced conics.
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We begin with smooth conics. According to its type, the restriction to a
smooth conic c on G, of the dual tautological bundle T∨, and of the quotient
bundle Q, split as follows (we denote by Oc(1) the ample generator of the
Picard group of c, so that OZ(1)|c = Oc(2)):

type T∨
c Qc

τ Oc(1) ⊕Oc(1) Oc(1) ⊕Oc(1) ⊕Oc

σ Oc(2) ⊕Oc Oc(1) ⊕Oc(1) ⊕Oc

ρ Oc(1) ⊕Oc(1) Oc(2) ⊕Oc ⊕Oc

This follows at once from the fact that T∨
c and Qc are globally generated

and of degree two, and the definitions of the three types of conics. This
gives the splitting of the tangent bundle TG = T∨ ⊗Q restricted to c. We
can deduce the splitting type of the normal bundle:

type Nc/G

τ Oc(2) ⊕Oc(2) ⊕Oc(2) ⊕Oc(1) ⊕Oc(1)
σ Oc(4) ⊕Oc(2) ⊕Oc(1) ⊕Oc(1) ⊕Oc

ρ Oc(4) ⊕Oc(1) ⊕Oc(1) ⊕Oc(1) ⊕Oc(1)

Then we consider the normal exact sequence for the triple c ⊂ Z ⊂ G,

0 → Nc/Z → Nc/G
θ
→ NZ/G|c = Oc(2) ⊕Oc(4) → 0.

Our aim is to deduce the possible splitting types of Nc/Z , and conclude that

H1(Nc/Z) = 0. This will ensure the smoothness of Fg(Z) at [c].

Lemma 3.3. Let c ⊂ Z be a smooth τ -conic. Then

Nc/Z ≃ Oc ⊕Oc(1) ⊕Oc(1).

In particular Fg(Z) is smooth at [c].

Proof. There exists a unique hyperplane V4 ⊂ V5 such that c ⊂ Gc :=
G(2, V4). Moreover c is a linear section of Gc, so that Nc/Gc

= Oc(2) ⊕
Oc(2) ⊕ Oc(2), while NGc/G = T∨

|Gc
(since Gc is the zero locus of a section

of T∨ on G) and NGc/G|c = Oc(1) ⊕ Oc(1). The normal exact sequence of
the triple c ⊂ Gc ⊂ G is split.

Now, c being contained in Z = G ∩ Q ∩H, it must be contained in the
quartic surface Sc = Gc ∩Q ∩H. We get the exact sequence

0 → Nc/Sc
→ Nc/Z → NSc/Z|c = NGc/G|c = Oc(1) ⊕Oc(1) → 0.

But ωSc = OSc(−1), hence ωSc|c ≃ ωc. Therefore Nc/Sc
≃ Oc and the exact

sequence above must be split. This implies the lemma. �

Now suppose that c is a ρ-conic. Consider in the normal exact sequence for
the triple c ⊂ Z ⊂ G, the component θ44 : Oc(4) → Oc(4) of the morphism
θ. We say that c is special if θ44 = 0.

Lemma 3.4. Let c be a non special smooth ρ-conic in Z. Then

Nc/Z ≃ Oc ⊕Oc(1) ⊕Oc(1).

In particular F (Z) is smooth at [c].
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Proof. Since θ44 6= 0, it is an isomorphism and we get an exact sequence

0 → Nc/Z → Oc(1)
⊕4 → Oc(2) → 0.

In particular N∨
c/Z(1) is generated by global sections. This implies that

Nc/Z = Oc(n1)⊕Oc(n2)⊕Oc(n3) with n1, n2, n3 ≤ 1 and n1 + n2 + n3 = 2.
The only possibility is that, up to permutation, n1 = n2 = 1 and n3 = 0. �

Lemma 3.5. A general Z contains no special ρ-conic.

Proof. One readily checks, with the previous notations, that θ44 = 0 if and
only if the quadric Q contains the plane spanned by the ρ-conic c. So, that
plane must be contained in Z, which is not possible for a general Z, because
of the next easy lemma. �

Lemma 3.6. If Z is general, it does not contain any plane.

Proof. There are two families of planes on G(2, V5): ρ-planes of the form
P(∧2V3), for V3 ⊂ V5, and σ-planes of the form P(V1∧V4), for V1 ⊂ V4 ⊂ V5.
The family of ρ-planes is parametrized by G(3, V5), hence six-dimensional.
The family of σ-planes is parametrized by the partial flag variety F (1, 4, V5),
hence seven-dimensional.

Containing a projective plane imposes three conditions on hyperplanes,
and six conditions on quadrics, hence nine conditions on Z. Since nine is
bigger that seven, we are done. �

We can analyze the case of σ-conics in a similar way: we can define a
σ-conic c in Z to be special if θ44 = 0. As for ρ-conic, this implies that the
plane spanned by c is contained in Z, which is not possible for a general Z.

For a non-special σ-conic c, we get an exact sequence

0 → Nc/Z → Oc ⊕Oc(1)
⊕2 ⊕Oc(2)

τ
→ Oc(2) → 0.

Again we have two cases, according to the vanishing of the component τ22 :
Oc(2) → Oc(2). We say that c is of the first kind if τ22 6= 0, and of the
second kind otherwise. In the latter case, Nc/Z = Oc(2) ⊕N , where N fits
into an exact sequence

0 → N → Oc ⊕Oc(1)
⊕2 → Oc(2) → 0.

This rank two bundle N has degree zero and N∨(1) is generated by global
sections, which leaves only two possibilities: N = Oc ⊕Oc or N = Oc(−1)⊕
Oc(1). We have proved:

Lemma 3.7. Let c be a non special smooth σ-conic in Z.

If c is of the first kind,

Nc/Z ≃ Oc ⊕Oc(1) ⊕Oc(1).

If c is of the second kind,

Nc/Z ≃ Oc(2) ⊕Oc ⊕Oc

or Nc/Z ≃ Oc(2) ⊕Oc(1) ⊕Oc(−1).

In any case F (Z) is smooth at [c].
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This analysis can be extended, with the same conclusions regarding the
smoothness of F (Z), to reduced singular conics. This was done in [IM1] in a
similar case. We prefer to present a detailed treatment of the case of double
lines, which requires a different type of arguments.

Double lines.

Lemma 3.8. A general Z contains a two-dimensional family of double lines.

This family contains a one dimensional sub-family of double-lines of type σ,
and a finite number of double-lines of type ρ.

Proof. This is just a dimension count. There is an eight-dimensional family
of lines of G, parametrized by the partial flag variety F (1, 3, V5). For each
line ℓ, the set of double lines supported by ℓ is parametrized by a projective
plane, with a line parametrizing double lines of type σ, and a unique point
corresponding to a double line of type ρ.

More explicitly, if the line ℓ is generated by e1 ∧ e2 and e1 ∧ e3, a double
line supported by ℓ spans a plane

P = 〈e1 ∧ e2, e1 ∧ e3, ze2 ∧ e3 + e1 ∧ f〉,

where f is defined up to 〈e1, e2, e3〉. We can thus parametrize P by the
point [z, f̄ ] ∈ P2, where f̄ denotes the projection of f to V5/〈e1, e2, e3〉. The
corresponding double line has type σ for z = 0, and type ρ for f̄ = 0.

In particular we get a ten dimensional family of double lines on the Grass-
mannian G. Since containing any of these imposes eight conditions on Z,
we are done. �

Now suppose that ℓ be a double line in Z. Denote by Iℓ,Z ⊂ OZ its ideal
sheaf in Z, and by Iℓ,G ⊂ OG its ideal sheaf in G. The restriction map
Iℓ,G → Iℓ,Z induces an exact sequence

0 → T[ℓ]Fg(Z) = Hom(Iℓ,Z ,Oℓ) →

→ T[ℓ]Fg(G) = Hom(Iℓ,G,Oℓ)
φ
→ Hom(IZ,G,Oℓ),

where IZ,G denotes the ideal sheaf of Z in G. Since ℓ is a smooth point of
Fg(G), the Hilbert scheme Fg(Z) is smooth at [ℓ] if and only if φ has rank
eight.

Lemma 3.9. Let ℓ be a double line of type τ in G. In the variety parametriz-

ing the Fano fourfolds Z containing ℓ, the subvariety parametrizing those Z
for which ℓ is a singular point of Fg(Z), has codimension at least three.

Proof. The proof is rather computational, see the Appendix. �

Double lines of type σ or ρ can be treated similarly. In fact they are easier
to handle, since it is enough to show that for such double-lines, defining a
singular point of Fg(Z) impose at least two, resp. one, conditions on Z.

This concludes the proof of Theorem 4.3. �

Remarks.

1. The variety F ρ
g (Z) of ρ-conics in a general Z = G ∩ Q ∩ H can be

analyzed as follows. Since Z contains no plane, a ρ-conic in Z must be
the trace of Q over a ρ-plane of G contained in H. Recall that G ∩ H
can be interpreted as an isotropic Grassmannian IG(2, V5), with respect to
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a maximal rank two-form ω on V5. All ρ-planes in IG(2, V5) are of the
form P(V3) for V3 ⊂ V5 containing the kernel W1 of ω. Taking the quotient
by this kernel, this identifies the variety of ρ-planes in IG(2, V5), with a
Lagrangian Grassmannian LG(2, V4), which is nothing else than a smooth
three-dimensional quadric Q3. Hence

F ρ
g (Z) ≃ Q3.

2. Similarly, a σ-conic in Z must be the trace of Q over a σ-plane of
G contained in H. Such a σ-plane is defined by a flag V1 ⊂ V4, and it is
contained in H if and only if V4 ⊂ V ⊥

1 , where the orthogonality is taken
with respect to the two-form ω. There are two cases. If V1 does not coincide
with W1, the kernel of ω, then it determines V4 uniquely. If V1 = W1, then
V4 can be any hyperplane containing it. One easily concludes that

F σ
g (Z) ≃ Bl0P

4,

the blow-up of P4 at one point.

4. A two-form on the Hilbert scheme of conics

Let Z = G(2, V5) ∩ Q ∩ H be a general smooth Fano fourfold of degree
ten and index two.

4.1. The Hodge numbers of Z.

Lemma 4.1. The Hodge diamond of Z is the following:

1
0 0

0 1 0
0 0 0 0

0 1 22 1 0
0 0 0 0

0 1 0
0 0

1

Proof. We write Z = X ∩Q and X = G(2, V5)∩H, with H = PV9. In order
to compute h3,1(Z) = h1(Z, TZ(−2)), we use the normal sequence

0 → TZ → TX|Z → OZ(2) → 0.

The claim that h3,1(Z) = 1 follows from the fact that TX(−2)|Z has no
cohomology in degree zero and one, which itself follows from the fact that
TX(−2) and TX(−4) have no cohomology in degree zero and one, and one
and two, respectively. But X is a linear section of G, and by Bott’s theorem
TG(−k) is acyclic for 1 ≤ k ≤ 4. This implies that TG(−k)|X is acyclic
for 1 ≤ k ≤ 3, and then that TX(−k) is acyclic for k = 2, 3. Finally,
TG(−5) ≃ Ω5

G has non-zero cohomology in degree five only, so TG(−4)|X ,
and TX(−4) a fortiori, have no cohomology in degree less than four.
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Now we compute h2,2(Z) = h2(Z,Ω2
Z) = χ(Z,Ω2

Z). Observe that the
conormal exact sequence of the inclusion Z ⊂ G induces a filtration of Ω2

G|Z

with successive quotients Ω2
Z , Ω1

Z(−1) ⊕ Ω1
Z(−2) and OZ(−3), so

χ(Ω2
Z) = χ(Ω2

G|Z) − χ(Ω1
Z(−1)) − χ(Ω1

Z(−2)) − χ(OZ(−3)).

Using the Koszul exact sequence we get that

χ(Ω2
G|Z) = χ(Ω2

G) − χ(Ω2
G(−1)) − χ(Ω2

G(−2)) + χ(Ω2
G(−3)).

Bott’s theorem yields χ(Ω2
G) = 2, χ(Ω2

G(−1)) = χ(Ω2
G(−2)) = 0, and

χ(Ω2
G(−3)) = −5, hence χ(Ω2

G|Z) = −3. Computing the other terms simi-

larly we get χ(Ω2
Z) = 22. �

4.2. The induced form on Fg(Z). Since h1,3(Z) = 1, there is a canonical
(up to constant) holomorphic two-form induced on Fg(Z). At a point defined
by a smooth conic c ⊂ Z, this two-form can be defined on T[c]Fg(Z) =

H0(Nc/Z) as follows (see [KM]). Choose a generator σ of H1(Z,Ω3
Z) =

H1(Z, TZ(−2)). Then consider the composition

φσ : ∧2H0(Nc/Z) → H0(∧2Nc/Z) = H0(N∨
c/Z(2))

σ
→ H1(TZ ⊗N∨

c/Z(−2)) → H1(ωc) = C.

For the last arrow we used the natural quotient map TZ|c → Nc/Z . Note
that rather than using this map, we can proceed as follows. If X = G ∩
H, recall form the proof of Lemma 4.1 that a generator of H1(Z,Ω3

Z) =
H1(Z, TZ(−2)) is given by the extension class of the normal exact sequence

0 → TZ → TX|Z → OX(2) → 0.

On the conic c, after dualizing, twisting by OX(1)|c = Oc(2) and passing to
the normal bundles of c in Z and X, this induces an extension

(1) 0 → ωc → N∨
c/X(2) → N∨

c/Z(2) → 0.

We can use directly this extension to produce the map

H0(N∨
c/Z(2)) → H1(ωc) = C

which defines the two-form at [c], at least up to constant.

Recall that the τ -conic is contained in a unique sub-GrassmannianG(2, V4)
of G(2, V5), and that we denoted by Sc the quartic surface G(2, V4)∩H ∩Q.

Proposition 4.2. Let c be a smooth τ -conic in Z. Then the line

H0(Nc/Sc
) ⊂ H0(Nc/Z) = T[c]Fg(Z)

is contained in the kernel of φσ.

Proof. This means that the composition of maps above vanishes when re-
stricted to H0(Nc/Sc

)∧H0(Nc/Z) ⊂ ∧2H0(Nc/Z). Consider the commutative
diagram

∧2H0(Nc/Z) → H0(∧2Nc/Z) = H0(N∨
c/Z(2))

↑ ↑ ↑
H0(Nc/Sc

) ∧H0(Nc/Z) → H0(Nc/Sc
∧Nc/Z) = H0(N∨

Sc/Z|c(2)).
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Since N∨
Sc/Z|c(2) is the restriction to c of the vector bundle N∨

Sc/Z(1) on Sc,

and we can compute the remaining arrows on Sc before restricting to c. In
other words, we can factor through the maps

H0(N∨
Sc/Z(1))

∪σ
→ H1(TZ⊗N∨

Sc/Z
(−1)) → H1(OSc(−1)) → H1(Oc(−2)) = C.

And the result is clearly zero, since H1(OSc(−1)) = 0. Indeed, this follows
from the Kodaira vanishing theorem when the quartic surface Sc is smooth.
By continuity, the same conclusion continues to hold when Sc is singular. �

Proposition 4.3. Let c be a generic conic in Z. Then φσ has rank four at

the corresponding point [c] of Fg(Z).

Proof. We denote by Pc the three-dimensional quadric G(2, V4) ∩ H. We
have Sc = Pc ∩Q, and an induced diagram

0 → ωc → N∨
c/X(2) → N∨

c/Z(2) → 0

|| ↓ ↓
0 → ωc → N∨

c/Pc
(2) → N∨

c/Sc
(2) → 0.

Recall that Nc/Sc
≃ Oc, so that the previous exact sequence induces a

coboundary map

κc : H0(Oc(2)) → H1(ωc) = C,

which we can consider as a quadratic form on H0(Oc(1)).

Lemma 4.4. The skew-symmetric form φσ has rank four at [c] if the qua-

dratic form κc is non degenerate.

Proof. First recall NSc/Z = T∨
Sc

. By the previous proposition, φσ factors as

∧2H0(Nc/Z) → H0(∧2Nc/Z) → H0(∧2NSc/Z|c) = H0(Oc(2))
κc→ H1(ωc) = C.

This should be interpreted as follows. We may suppose that c is a smooth
τ -conic, in which case we know that Nc/Z = Oc ⊕Oc(1)⊕Oc(1) by Lemma

3.3. Hence H0(Nc/Z) = C⊕A⊕A if A = H0(Oc(1)). In this decomposition,
the fact that φσ factors as we have seen means that its matrix is of the form





0 0 0
0 0 κc

0 −κc 0





It is thus clear that φσ has rank four if (and only if) κc has rank two. �

What remains to be proved is that, generically κc is non degenerate. For
this we can focus on the following situation: we have a quartic surface S in
P4 which is a general intersection of two quadrics Q,Q′ and c is the general
conic in S. We must prove that the exact sequence

0 → ωc → N∨
c/Q(2) → N∨

c/S(2) = Oc(2) → 0

induces a non degenerate quadratic form κc on H0(Oc(1)).
This can be seen as follows. We may suppose that Q′ contains the plane

〈c〉 spanned by c, whose linear equations are, say, x3 = x4 = 0. This means
that Q′ has an equation of the form x3m3 +x4m4 = 0, for some linear forms
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m3,m4. Restricted to 〈c〉, these linear forms define two global sections q3, q4
of Oc(2), and the linear form κc is just the projection map

κc : H0(Oc(2)) → H0(Oc(2))/〈q3, q4〉 ≃ C.

In other words, κc is polar to the pencil 〈q3, q4〉. It is thus non degenerate
as soon as this pencil has no base point, which is the general situation. �

4.3. The dual sextic. Recall that we denoted by I the linear system of
quadrics containing Z. We have defined in section 2.2 the hypersurface Y ∨

Z

in I∨ as follows. Let Ŷ ∨
Z ⊂ I∨ × P(V ∨

5 ) be the variety parametrizing pairs
(h, V4) such that quadrics in h ⊂ I∨ cut P(∧2V4)∩H along singular quadrics.

Then Y ∨
Z is just the image of Ŷ ∨

Z by the first projection.

Note that generically, for (h, V4) in Ŷ ∨
Z , quadrics of the hyperplane h will

restrict to a corank one quadric in P(∧2V4) ∩ H. Let SZ denote the locus
where the corank of the restricted quadric is bigger than one.

Proposition 4.5. For Z general, the variety Ŷ ∨
Z is an irreducible fourfold

whose singular locus is exactly SZ . Moreover SZ is a smooth surface, and

Ŷ ∨
Z has multiplicity two at any point of SZ.

Proof. As in [Lo], and as we have seen in the proof of Proposition 2.4, the

variety Ŷ ∨
Z is a degeneracy locus for a section of a bundle of quadrics. The

conclusion will thus follow from a transversality argument: if the section
is general enough, such a degeneracy locus Ŷ ∨

Z is singular exactly along the
next degeneracy locus (see [ACGH], Chapter 2), which is precisely SZ . Since
the next one has, generically, codimension three in SZ , it is in fact empty,
and SZ must be smooth. Unfortunately, in our section we do not deal with
a general section, and we will need to check the transversality condition
explicitly.

We recall the setting: over P = PV ∨
5 , first consider the rank two vector

bundle F = OP ⊕ OP(1), then the rank five vector bundle M whose fiber
over V4 is ∧2V4 ∩V9. Let OF (−1) be the tautological line bundle over P(F ).
Then we denoted by

η : OF (−1) → S2M∨

the morphism of vector bundles defined by mapping a pair (z, v) ∈ C ⊕ V5

to the restriction of the quadric zQ+ Pv to ∧2V4 ∩ V9.
We will only need to consider quadrics of corank one or two, since:

Lemma 4.6. For a general Z, the image of η does not contain any quadric

of corank three or more.

Proof. A straightforward dimension count. �

Corank one.
Consider a point of Ŷ ∨

Z defined by a corank one quadric. We will prove

it is a smooth point of Ŷ ∨
Z . If this quadric is not the Plücker one, we may

suppose, up to a change of notation, that Q itself cuts ∧2V4 ∩ V9 along a
corank one quadric, singular at ω0. We choose local coordinates on P(F )
at the corresponding point as follows. First, we choose a supplement V1 of
V4, so that any hyperplane in V5 transverse to V1 can be represented as the
graph V4(φ) of a morphism φ ∈ Hom(V4, V1). Then, we represent the trace
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of a hyperplane in I on ∧2V4(φ)∩V9 by the restriction of the quadric Q+Pv,
for some v ∈ V1. Our local coordinates will be the pair (φ, v).

We want to represent the latter quadric Q + Pv on ∧2V4(φ) ∩ V9 by an
isomorphic quadric Qφ,v on ∧2V4 ∩ V9. To do this, we first observe that φ
induces an isomorphism from ∧2V4 to ∧2V4(φ) sending ω to φ(ω) := ω+φ⌋ω
(where the contraction map φ⌋ maps v ∧ v′ to φ(v) ∧ v′ + v ∧ φ(v′)). Let h
be an equation of H, and Ω in ∧2V4 be such that h(Ω) = 1. If ω belongs to
∧2V4 ∩ V9, and ω′ = ω + tΩ, then φ(ω′) belongs to V9 when t = −h(φ⌋ω),
up to terms of higher order in (φ, v). Up to such terms, we thus let

Qφ,v(ω) = (Q+ Pv)(φ(ω′))
= Q(ω) + 2Q(ω, φ⌋ω − h(φ⌋ω)Ω) + v ∧ ω ∧ ω.

Since Q is supposed to have corank one and kernel 〈ω0〉, the function
det(Qφ,v) is equal, up to a constant and higher order terms, to Qφ,v(ω0),

which is therefore a local equation of Ŷ ∨
Z . For this equation to vanish iden-

tically at first order, we would need that

v ∧ ω0 ∧ ω0 = 0 ∀v ∈ V1,(2)

Q(ω0, φ⌋ω0 − h(φ⌋ω0)Ω) = 0 ∀φ ∈ Hom(V4, V1).(3)

Since V1 is transverse to V4, the first equation implies that ω0 ∧ ω0 = 0,
hence ω0 has rank two and defines a point of G(2, V4) ∩H. We will denote
the corresponding plane by V2 ⊂ V4. Observe that, when φ varies, φ⌋ω0

describes V1 ∧ V2 ⊂ ∧2V5. Since, by the singularity condition, Q(ω0, ω) = 0
for any ω ∈ ∧2V4 ∩ V9, the second condition means that the linear form
Q(ω0, ω) is proportional to h on V2 ∧ V1 ⊕∧2V4. We claim that this implies
that [ω0] is a singular point of Z, thus leading to a contradiction. Indeed, the
affine tangent space to G at ω0 is V2∧V5, which is contained in V2∧V1⊕∧2V4.
So the traces on this tangent space, of H and of the tangent space to Q,
would coincide, and the intersection of G, H and Q would not be transverse
at ω0.

Suppose now that the Plücker quadric itself, G(2, V4) ∩ H, is singular
at ω0. Choose a generator v1 of V1. Local coordinates on P(F ) are given
by (t, φ), where φ ∈ Hom(V4, V1) as above and the quadric to consider on
∧2V4(φ) ∩ V9 is Pv1 + tQ. As in the previous case we identify ∧2V4(φ) ∩ V9

with ∧2V4∩V9, and the previous quadric on ∧2V4(φ)∩V9 with the isomorphic
one on ∧2V4 ∩ V9 given by

Qt,φ(ω) = v1 ∧ ω ∧ ω + tQ(ω) − 2h(φ⌋ω0)v1 ∧ Ω ∧ ω,

up to order one. As above, we want to exclude the possibility that

Qt,φ(ω0) = tQ(ω0) − 2h(φ⌋ω0)v1 ∧ Ω ∧ ω0 = 0

for all t and φ. Since Ω ∧ ω0 6= 0 (otherwise G(2, V4) would be singular at
[ω0] !), this would mean that Q(ω0) = 0 and h(V2∧V1) = 0 where, as above,
V2 is the plane defined by ω0. The former condition means that ω0 defines
a point of Z. The latter one implies that H is tangent to G at [ω0]. As in
the previous case we would therefore conclude that Z is singular at [ω0], a
contradiction.

Corank two.
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Since G(2, V4) is smooth, a hyperplane section cannot have corank two.
We may therefore suppose that Q itself cuts ∧2V4 ∩ V9 along a corank two
quadric, singular along the line 〈ω0, ω1〉. Considering the intersection of
this line with the quadric G(2, V4) ∩ H, we may suppose that ω0 and ω1

have rank two. We choose local coordinates (v, φ) on P(F ) as above and we
consider the same quadric Qv,φ. The required transversality condition can
be expressed by the condition that the map

(v, φ) 7→

(

Qv,φ(ω0, ω0) Qv,φ(ω0, ω1)
Qv,φ(ω0, ω1) Qv,φ(ω1, ω1)

)

have rank three. If ω0 ∧ ω1 6= 0, the off diagonal term Qv,φ(ω0, ω1) will
contribute by one to the rank, through its terms involving v. So what we
need to avoid is that Q(ω0, φ⌋ω0 − h(φ⌋ω0)Ω) and Q(ω1, φ⌋ω1 − h(φ⌋ω1)Ω)
impose linearly dependent conditions. Since we have supposed that ω0 and
ω1 represent transverse planes in V4, this must be the case, except if one
of these linear forms is zero. This can be excluded, for a general Z, by a
simple dimension count: for a given H, we have four parameters for V4,
then three for each of [ω0] and [ω1], which belong to the three-dimensional
quadric G(2, V4) ∩H. But we get eleven linear conditions on Q.

Of course we also need to consider the degenerate cases for which the line
〈ω0, ω1〉 is tangent to G(2, V4) ∩H, or even contained in G(2, V4) ∩H (this
would mean that ω0 ∧ ω1 = 0). A similar dimension count leads in both
cases to the same conclusion. �

Proposition 4.7. The projection map Ŷ ∨
Z → Y ∨

Z is the blow-up of the point

of Y ∨
Z defined by the Plücker hyperplane.

Proof. This follows from the proof of Proposition 2.4. Indeed, we have seen
in this proof that Ŷ ∨

Z → Y ∨
Z is the restriction of the blow-up of the point

hP in I∨ defined by the Plücker hyperplane. Moreover, we are in the case
k = 1 of the Proposition, and the proof shows that Y ∨

Z has multiplicity one
at this point. Otherwise said, this is a smooth point of Y ∨

Z . This is enough

to ensure that the projection map Ŷ ∨
Z → Y ∨

Z is just the blowing-up of hP .

Note that the preimage of hP in Ŷ ∨
Z is easily determined. It is simply the

hyperplane in PV ∨
5 , defined as the set of those hyperplanes that contain the

kernel of the (degenerate) two-form defining H. �

4.4. The symplectic structure. Consider the nested Hilbert scheme F (Z)
parametrizing pairs (c, V4) such that c be a conic in Z and V4 a hyperplane
in V5 such that the quadric G(2, V4) contains c. Recall that V4 is uniquely
determined by c except if c is a ρ-conic, in which case there is a projective
line of possible V4’s. Otherwise said, the forgetful map

π : F (Z) → Fg(Z)

is an isomorphism outside F ρ
g (Z), and contracts a divisor onto F ρ

g (Z).

Lemma 4.8. For Z general, F (Z) is smooth.

Proof. The nested Hilbert scheme F (Z) is a subscheme of Fg(Z)×PV ∨
5 . Its

Zariski tangent space at a point (c, V4) can be described by the following
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exact sequence, where we let Gc = G(2, V4):

0 → T(c,V4)F (Z) → H0(Nc/Z) ⊕H0(NGc/G) → H0(NGc/G|c).

Since we already know that Fg(Z) is smooth at c, the smoothness of F (Z)
at (c, V4) is equivalent to the surjectivity of the rightmost arrow.

First observe that NGc/G = T∨
|Gc

, so that H0(NGc/G) is simply V ∨
4 , and

the restriction map H0(NGc/G) → H0(NGc/G|c) is already surjective if c is
not a ρ-conic.

So suppose that c be a ρ-conic, spanning a plane G(2, V3) with V4 ⊃ V3.
In this case the restriction map H0(NGc/G) → H0(NGc/G|c) has for image
a hyperplane Hc, and we need to check that the image of the other map
H0(Nc/Z) → H0(NGc/G|c) is not contained in Hc.

This condition amounts to the fat that a matrix of size 8×4 be of maximal
rank. If this matrix is sufficiently general, this fails to happen in codimension
8 − 4 + 1 = 5 > 4. Our claim follows. �

Remark. One can show that the map π : F (Z) → Fg(Z) is simply the blow-
up of the codimension two subvariety Fρ(Z) parametrizing ρ-conics in Z.
This subvariety is smooth for Z general enough.

Our next goal is to construct a morphism

α : F (Z) −→ Ŷ ∨
Z .

For a point (c, V4) in F (Z), we have two quadratic hypersurfaces inside
P(∧2V4)∩H ≃ P4: the intersection PV4 of the Plücker quadric G(2, V4) with
H, and the trace QV4 of the quadric Q defining Z. The pencil 〈PV4 , QV4〉
is uniquely defined by Z (and V4). Any quadric in this pencil contains the
conic c, but the generic one does not contain the plane 〈c〉 spanned by c,
since that plane cannot be contained in Z by Lemma 3.6. This implies that
there is a unique quadric Qc,V4 ∈ 〈PV4 , QV4〉 containing 〈c〉. Moreover this
quadric must be singular, since a smooth three dimensional quadric does not
contain any plane. Therefore Qc,V4 defines a point in Ŷ ∨

Z : this is α(c, V4).

Proposition 4.9. Let y be a point of Ŷ ∨
Z .

(1) If y ∈ SZ, the set-theoretical fiber α−1(y) is a projective line.

(2) If y /∈ SZ, the fiber α−1(y) is a disjoint union of two projective lines.

Proof. Suppose that y = α(c, V4) does not belong to SZ . This means that
the quadric Qc,V4 has rank four; otherwise said, it is a cone over a smooth
quadratic surface. The projective planes L in Qc,V4 are then cones over the
lines in this surface, and are parametrized by two projective lines. Any such
plane L, cut out with any other quadric in the pencil 〈PV4 , QV4〉, gives a
conic c(L) such that Qc(L),V4

= Qc,V4, hence α(c(L), V4) = α(c, V4) = y.

This implies that α−1(y) is the disjoint union of these two projective lines.
If y = α(c, V4) does belong to SZ , the quadric Qc,V4 has rank three; it

is a double cone over a smooth conic. The projective planes L in Qc,V4 are
then parametrized by that single conic. We can make with these planes
the same construction as above, but we end up with a single projective line
parametrizing α−1(y). �
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Remark. Observe what happens over conics not of type τ . First recall that
F σ(Z) ≃ F σ

g (Z) ≃ Bl0P
4, the blow-up of P4 at one point. This blow-up is a

P1-fibration of P3, and the restriction of α to F σ(Z) coincides with this fi-
bration. Second, recall that F σ

g (Z) ≃ Q3, coincides with the isotropic Grass-
mannian IG(3, V5). Its preimage F σ(Z) in F (Z) is the variety IF (3, 4, V5)
of flags V3 ⊂ V4 with V3 isotropic (recall that this implies that V3 contains
W1, the kernel of the two-form ω on V5 defining H). The restriction of the
map α to F σ(Z) simply forgets V3. In particular its image is the space of
hyperplanes in V5 containing W1, hence a copy of P3.

Proposition 4.10. Any fiber of α is a smooth curve in F (Z).

Proof. Let (c, V4) be a point of F (Z). We want to prove that the corre-
sponding fiber Fc of α is smooth at that point. Set-theoretically, we have
seen that the plane 〈c〉 is contained in a unique (singular) quadric Qc,V4 of
the pencil of quadrics obtained by restricting I to P(∧2V4) ∩H. This plane
〈c〉 varies in a family of planes in Qc,V4 parametrized by a projective line,
and we get a map P1 → Fc, which we shall prove to be a local isomorphism.

Observe that the tangent space to Fc ⊂ F (Z) is H0(Nc/S) ⊂ H0(Nc/Z),

where S is the quartic surface cut out by Z on P(∧2V4) ∩H. This surface
is the intersection S = Q0 ∩ Qc,V4 of two quadrics. We can choose linear
coordinates x0, . . . , x4 such that 〈c〉 be defined by x2 = x3 = 0, and write

Q0 = x3ℓ3 + x4ℓ4 + q(x0, x1, x2),

Qc,V4 = x3m3 + x4m4,

for some linear forms ℓ3, ℓ4,m3,m4. Note that q(x0, x1, x2) (which is non
zero since Z contains no plane) is an equation of c in 〈c〉.

Now we can see very explicitly that the map T〈c〉P
1 → H0(Nc/S) is non

zero, which will prove our claim. Indeed, an infinitesimal deformation of
〈c〉 in Qc,V4 is simply obtained by ǫ 7→ 〈c〉(ǫ), the plane defined by the two
equations x3 + ǫm4 = x4 − ǫm3 = 0. It is mapped to a global element θ of
H0(Nc/S) = HomOS

(Ic,Oc) defined by

x3 7→ m4,

x4 7→ −m3

q 7→ m3ℓ4 −m4ℓ3.

Indeed, Ic is generated by x3, x4 and q at any point (strictly speaking, to
make sense of this we need to divide them by some linear, respectively qua-
dratic form not vanishing at the point considered), and although ℓ3, ℓ4,m3,m4

are not uniquely defined, m4, m3 and m3ℓ4−m4ℓ3 are uniquely defined when
restricted to c.

There just remains to check that θ cannot be zero. This would mean that
m3 and m4 vanish identically on c, hence that they are linear combinations
of x3 and x4. But then Qc,V4 would have rank at most two, and by Lemma
4.6, this is not possible for a general Z. �

Consider the Stein factorization of α:

F (Z)
β

−→ Ȳ ∨
Z

γ
−→ Ŷ ∨

Z .
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By the previous proposition, γ has degree two, and ramifies precisely over
SZ . By the previous Proposition the reduced fibers of β are smooth projec-
tive lines, and in fact β is a P1-bundle, since an application of [AW, Theorem
4.1] yields:

Proposition 4.11. The variety Ȳ ∨
Z is smooth.

Note that conics in Z which are not τ conics are sent to the Plücker
hyperplane in Y ∨

Z . In particular the map F (Z) → Y ∨
Z factorizes through

Fg(Z). Taking the Stein factorization of the induced map Fg(Z) → Y ∨
Z , we

get a commutative diagram

F (Z) → Ȳ ∨
Z → Ŷ ∨

Z
↓ ↓ ↓

Fg(Z) → Ỹ ∨
Z → Y ∨

Z

A consequence of the previous lemma is that:

Lemma 4.12. The projection map Ȳ ∨
Z → Ỹ ∨

Z is the blow-up of the two

points of Ỹ ∨
Z in the preimage of the Plücker hyperplane. In particular Ỹ ∨

Z is

smooth.

Now we can prove the main result of this section:

Theorem 4.13. The variety Ỹ ∨
Z is a smooth symplectic fourfold.

Proof. We can use our two-form φσ on Fg(Z) and lift it to F (Z). Since the
fibers of β are projective lines, the induced two-form on F (Z) descends to
a globally defined two-form Φσ on Ȳ ∨

Z , which remains a closed form. The
generic rank of Φσ is four since the generic rank of φσ is four by Proposition
4.3. Since the projection to Ȳ ∨

Z is birational, we also get a closed two-form

Φ̃σ on Ỹ ∨
Z , generically non-degenerate.

But the canonical class of Ỹ ∨
Z is trivial, implying that Φ̃σ is in fact every-

where non-degenerate. Indeed, the sextic Y ∨
Z is smooth in codimension one,

hence normal. Its canonical class is trivial. The map Ỹ ∨
Z → Y ∨

Z is finite of

degree two, ramified on the surface SZ only, so the canonical class of Ỹ ∨
Z is

simply the pull-back of that of Y ∨
Z . Hence the claim and the theorem. �

4.5. EPW sextics attached to Fano manifolds of different dimen-

sions. Let us elaborate on what we have proved at this point. Consider
a general variety X = G ∩ Q ∩ PV10−k, of dimension N = 5 − k, and the
associated sextic hypersurface YX . We have recalled in Proposition 2.1 that
for k = 0, YX is an EPW sextic. We have proved it is also the case for k = 1.
This is also true for k = 3, in which case X is a generic polarized K3 sur-
face of degree ten [Mu1]. Mukai showed ([Mu2], Ex. 5.17) that the natural

double cover ỸX of the sextic YX can be identified with the moduli space of
stable rank two vector bundles E on X with Chern classes c1(E) = OX(1)

and c2(E) = 5. This explains the existence of a symplectic structure on ỸX ,
directly inherited from that of X.

Remark. O’Grady proved that in the (irreducible) family of EPW sextics,
those coming from polarized K3 surfaces of degree ten form a codimension
one family ([OG4], Proposition 3.3). Note that the dual Ỹ ∨

X has a point of
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multiplicity three, a special property already observed in [OG3], Proposition
6.1, and that we have met in the proof of Proposition 2.4.

What about the missing case k = 2? And can we understand the relations
between the families of EPW sextics obtained from different values of k?

To answer the latter question, we can use the construction of Gushel
threefolds as degenerations of non Gushel Fano threefolds of degree ten [Gu].
To be more specific, consider the projective cone over G, that we denote by
CG ⊂ P(C ⊕ ∧2V5). Let p0 denote the vertex of this cone. Now we cut CG
by a general quadric Q, and a general linear space PV10−k, of codimension
k + 1. We get a variety Z of dimension 5 − k. There are two cases:

• p0 /∈ PV10−k: then Z is isomorphic with the intersection X of G with
the projection of PV10−k to P(∧2V5), and a quadric Q′;

• p0 ∈ PV10−k, that is, PV10−k is a cone over some PV9−k ⊂ P(∧2V5):
then Z is a double cover of G∩PV9−k, branched over its intersection
X with a quadric Q′.

Obviously the second case is a degeneration of the first one. We call the
corresponding Z Gushel varieties.

Lemma 4.14. If Z is Gushel, the sextics YZ and YX are equal.

Proof. Take coordinates (t, ω) on C ⊕ ∧2V5 and write the equation of the
quadric Q as Q(t, ω) = t2 + 2ℓ(ω)t+ q(ω). Note that we can choose for the
quadric Q′ defining X, the discriminant Q′(ω) = q(ω) − ℓ(ω)2.

Suppose thatQ+Pv defines a singular quadric in P(C⊕∧2V5). This means
that we can find a point (t0, ω0) such that Q((t0, ω0), (t, ω)) +Pv(ω0, ω) = 0
for any (t, ω). That is, we must have t0 + ℓ(ω0) = 0 and

t0ℓ(ω) + q(ω0, ω) + Pv(ω0, ω) = 0

for any ω. But this implies that ω0 defines a singular point of Q′. Hence
YZ ⊂ YX , and since they are both sextics hypersurfaces, they are equal. �

Now consider the Gushel manifold Z as a degeneration of a family of
non Gushel manifolds. Suppose that Z be defined by a quadric Q(t, ω) as
above, and a linear space PV10−k through p0, defined by the k+ 1 equations
h0(ω) = · · · = hk(ω) = 0. Then we define Z(ǫ) by the same quadric, and
the linear space PV10−k(ǫ) with equations

h0(ω) = ǫt, h1(ω) = · · · = hk(ω) = 0.

For ǫ 6= 0, PV10−k(ǫ) does not contain p0. Hence Z(ǫ) is isomorphic with
the intersection Z∗(ǫ) of G with the linear space PV ∗

10−k(ǫ) of equations

h1(ω) = · · · = hk(ω) = 0, and the quadric Q(ǫ−1h0(ω), ω) = 0.

Lemma 4.15. The sextic YZ is a degeneration of the sextics YZ∗(ǫ).

Proof. This is rather clear. The sextic YZ∗(ǫ) is defined by the condition that

the quadric zQ(ǫ−1h0(ω), ω) + Pv(ω) be singular on PV ∗
10−k(ǫ), or equiva-

lently, that the quadric zQ(t, ω)+Pv(ω) be singular on PV10−k(ǫ). Letting ǫ
tend to zero, we get the sextic YZ as a degeneration of the sextics YZ∗(ǫ). �

We can conclude inductively that for any k ≥ 0, and any Fano manifold
X of degree ten and dimension 5− k, the associated sextic YX is a possibly
degenerate EPW sextic.
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Remark. For k odd, the general quadric in YX , having corank one, is a cone
over a smooth quadric of even dimension. Such a quadric has two rulings
by maximal linear subspaces, and this induces the double cover ỸX → YX ,
branched over the locus parametrizing quadrics of corank at least two. By
the preceding construction, this remark can be extended to the case where
k is even. The double covering ỸX is endowed, by a deformation argument,
with a symplectic structure, for X general of any dimension.

Proposition 4.16. For X a general Fano threefold of degree ten, the asso-

ciated sextic YX is a general EPW sextic.

Proof. This follows from a dimension count. Remember that EPW sextics
have 20 moduli. On the other hand, if Y is an EPW sextic, andX is a general
Fano threefold such that YX ≃ Y , then we know from [Lo] that the singular
locus of Y is a smooth surface isomorphic with the Fano surface of conics in
X (more precisely, with the quotient of the minimal model of that surface, by
a base point free involution). Moreover, Logachev’s reconstruction theorem
(see the Appendix of [DIM]) implies that there is only a two dimensional
family of Fano threefolds X with the same Fano surface, and a fortiori with
the same associated sextic Y . Since Fano threefolds of degree ten have 22
moduli, this implies that Y lives in a 20-dimensional family, hence must be
a generic EPW sextic. �

Corollary 4.17. For any N = 3, 4, 5, and X a general Fano manifold of

degree ten and dimension N , the associated sextic YX is a general EPW

sextic.

Proof. This is a direct consequence of the previous degeneration argument
to Gushel type manifolds. �

The next obvious question to ask is: which are the Fano manifolds X of
degree ten and dimension N , whose associated sextic YX is a given general
EPW sextic Y ? Denote by mN the dimension of the moduli space1 of Fano
manifolds of degree ten and dimension N . An easy computation shows that

m2 = 19, m3 = 22, m4 = 24, m5 = 25.

The relative dimension rN of the map to the moduli space of EPW sextics
is therefore given by

r2 = −1, r3 = 2, r4 = 4, r5 = 5.

For N = 3, we have seen that the family EPW−1
N (Y ) of Fano threefolds X

whose associated EPW sextic is isomorphic with Y , is essentially the surface
S(Y ) = Sing(Y ∨). It is tempting to imagine that a similar phenomenon
should hold for N = 4 or 5.

Question. If Y is a generic EPW sextic, is it true that

EPW−1
4 (Y ) ≃ Y ∨ − S(Y ) and EPW−1

5 (Y ) ≃ P5 − Y ∨?

Indeed, for N = 4, once we have a representation of Y as YZ , or equiva-
lently, of Y ∨ as Y ∨

Z , the Plücker point, which belongs to Y ∨−S(Y ), is given

1We suppose implicitly that this moduli space does exist. We hope to come back to
this question in a future paper.
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a special role. We believe that specifying that point in Y ∨−S(Y ) should be
equivalent to specifying Z. The same phenomenon should hold for N = 5,
except that in that case the Plücker point does not belong to Y ∨.

4.6. O’Grady’s double overs. We can now prove that for Z a general
Fano fourfold of degree ten, our double cover Ỹ ∨

Z of the general EPW sextic
Y ∨

Z coincides with the double cover constructed by O’Grady (see [OG3], §4).

We denote the latter by Ỹ ∨
Z,O.

Proposition 4.18. The symplectic manifolds Ỹ ∨
Z and Ỹ ∨

Z,O are isomorphic.

In particular Ỹ ∨
Z is an irreducible symplectic manifold.

Proof. Recall that we denoted by SZ the singular locus of Y ∨
Z . For a general

Z this is a smooth surface. Since Ỹ ∨
Z,O is simply-connected, the étale double

cover Ỹ ∨
Z,O − S̃Z,O → Y ∨

Z − SZ (where S̃Z,O denotes the preimage of SZ)

is the universal covering, and in particular π1(Y
∨
Z − SZ) = Z2 (see [OG4],

§3.2). Then since Ỹ ∨
Z − S̃Z → Y ∨

Z − SZ is also a non trivial étale double

cover, it lifts to an isomorphism between Ỹ ∨
Z,O − S̃Z,O and Ỹ ∨

Z − S̃Z . So Ỹ ∨
Z,O

and Ỹ ∨
Z are birational, and in particular h2,0(Ỹ ∨

Z ) = h2,0(Ỹ ∨
Z,O) = 1.

Moreover, being birational, Ỹ ∨
Z,O and Ỹ ∨

Z are also deformation equivalent

[Hu, Theorem 4.6]. Therefore Ỹ ∨
Z is, as Ỹ ∨

Z,O, a numerical (K3)[2], according
to O’Grady’s terminology. And we can conclude the proof by applying
Theorem 1.1 in [OG3], once we know that:

Lemma 4.19. The defining involution ι of the double covering Ỹ ∨
Z → Y ∨

Z
is anti-symplectic.

Proof. Let c be a general conic in Z, and V4 the corresponding hyperplane
in V5. Let y be the image of [c] in Ỹ ∨

Z . Recall that the quartic surface
Sc = G(2, V4) ∩ Q ∩ H has normal bundle NSc/Z ≃ T∨

Sc
. Moreover the

normal sequence to the triple (c ⊂ Sc ⊂ Z), gives rise to the exact sequence

0 → H0(Nc/Sc
) → H0(Nc/Z) → H0(NSc/Z|c) → 0,

which must be interpreted as the tangent sequence of the map Fg(Z) → Ỹ ∨
Z .

In particular, this yields a natural identification

TyỸ
∨
Z ≃ H0(NSc/Z|c) ≃ H0(T∨

c ) ≃ V ∨
4 ,

and the symplectic form Φ̃σ can be defined at y as the composition

∧2TyỸ
∨
Z ≃ ∧2H0(T∨

c ) → H0(∧2T∨
c ) = H0(Oc(2))

κc→ C.

Here, recall that the quadratic form κc is induced by the twisted conormal
sequence

0 → ωc → N∨
c/Qc,V4

(2) → Oc(2) = OZ(1)|c → 0,

where Qc,V4 = G(2, V4) ∩H.

Take another conic c′ in Z such that the image of [c′] in Ỹ ∨
Z be the point

y′ = ι(y). Recall that this means that the planes 〈c〉 and 〈c′〉 spanned by
the two conics are contained in the same (singular) quadric Qc,V4 = Qc′,V4

of the pencil of quadrics we have in P(∧2V4) ∩H, but do not belong to the
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same ruling. In particular the two planes 〈c〉 and 〈c′〉 meet along a line, and
the three-plane 〈c, c′〉 cuts Z along the degenerate elliptic curve

e = c ∪ c′ = G(2, V4) ∩Q ∩ 〈c, c′〉.

Now, if we take an element of ∧2V ∨
4 and apply Φ̃σ,y + Φ̃σ,y′ , we first get

an element of H0(Oc(2)) ⊕ H0(Oc′(2)) which defines a global section of
H0(OZ(1)|e). Then we apply the coboundary maps defined by the twisted

conormal sequences of c and c′. But the analogous conormal sequence for e,

0 → ωe → N∨
e/Qe

(2) → OZ(1)|e → 0,

splits since e is a complete intersection curve in Qe = Qc,V4 = Qc′,V4
. This

implies that the associated coboundary operator is zero, which means that
Φ̃σ,y + Φ̃σ,y′ is zero. Otherwise stated,

Φ̃σ + ι∗Φ̃σ = 0,

or else, ι is anti-symplectic. �

5. Two integrable systems

5.1. Fano threefolds contained in Z. Let W = G ∩ Q ∩ H ′ ∩ H ′′ be a
general Fano threefold of degree ten contained in the general Fano fourfold
Z = G∩Q∩H as a hyperplane section. The linear systems I2(Z) and I2(W )
of quadrics containing them are naturally identified. As before, we associate
to W the hypersurface Ŷ ∨

W ⊂ I∨ and its singular locus, the surface SW .

Lemma 5.1. The surface SW is contained in Y ∨
Z .

Proof. By definition, a point h in SW is a hyperplane in I such that for
some hyperplane V4 of V5, quadrics in h restrict to a corank two quadric
in P(∧2V4) ∩H

′ ∩H ′′. This is a hyperplane in P(∧2V4) ∩H, and it follows
that quadrics in h cut P(∧2V4) ∩H along a quadric with some corank two
hyperplane section. But this is possible only if that quadric is itself singular.
This precisely means that h defines a point of Y ∨

Z . �

As explained in [Lo], and as we already mentioned, the surface SW is
closely related to conics inW . Indeed, the Hilbert scheme Fg(W ) parametriz-
ing conics in W is a smooth surface, containing a unique ρ-conic, and a line
of σ-conics. This line is an exceptional curve which may be contracted. The
resulting surface Fm(W ) is then endowed with a fixed-point free involution
whose quotient is precisely SW = Fι(W ). It follows that Fm(W ) can be

seen as the pull-back S̃W of SW inside Ỹ ∨
Z , and that we have a commutative

diagram

Fg(W ) → Fm(W ) = S̃W → Fι(W ) = SW

↓ ↓ ↓

Fg(Z) → Ỹ ∨
Z → Y ∨

Z ,

where the vertical maps are injections.

Proposition 5.2. The surface S̃W is a Lagrangian subvariety of Ỹ ∨
Z .
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Proof. We just need to prove that Fg(W ) is isotropic with respect to the
two-form φσ on Fg(Z). Otherwise said, for a general conic c in W , we
must check that φσ vanishes on the subspace T[c]Fg(W ) = H0(Nc/W ) of

T[c]Fg(Z) = H0(Nc/Z). Since W is a hyperplane section of Z, the conormal
sequence of the triple (c,W,Z) is just

0 → Nc/W → Nc/Z → Oc(2) → 0.

In particular Nc/W has degree zero (in fact Nc/W is trivial for a general
conic, but we will not need that – see [DIM] for more details). We have a
commutative diagram

∧2H0(Nc/W ) →֒ ∧2H0(Nc/Z)
↓ ↓

H0(∧2Nc/W ) → H0(∧2Nc/Z)
|| ||

H0(Oc) →֒ H0(N∨
c/Z(2)) → H1(ωc) = C,

and we need to prove that the composition ∧2H0(Nc/W ) → H1(ωc) is zero.

But recall that the map H0(N∨
c/Z(2)) → H1(ωc) was induced by the twisted

conormal sequence of the triple (c, Z,X = G ∩H). This sequence fits with
the conormal sequence of the triple (c,W, Y = G∩H ′∩H ′′) into the following
commutative diagram:

0 0
↓ ↓
Oc = Oc

↓ ↓
0 → ωc → N∨

c/X(2) → N∨
c/Z(2) → 0

|| ↓ ↓
0 → ωc → N∨

c/Y (2) → N∨
c/W (2) → 0

↓ ↓
0 0

The map H0(N∨
c/Z(2)) → H1(ωc) is the coboundary map of the middle

exact sequence. But this diagram shows that the sequence is split over the
factor Oc = ∧2Nc/W of N∨

c/Z(2). Therefore the coboundary map vanishes

on H0(Oc) ⊂ H0(N∨
c/Z(2)), and our claim follows. �

We are thus in the situation where we can use the results of Donagi and
Markman about deformations of a Lagrangian subvariety S of a symplectic
variety Y [DM]: over the Hilbert scheme B parametrizing smooth defor-
mations of S in Y (which are non-obstructed), there exists an integrable
system, otherwise said a Lagrangian fibration, whose Liouville tori are the
Albanese varieties Alb(S).

In our setting, note that the Abel-Jacobi mapping AJ : Fg(W ) → J(W )

factorizes through Fm(W ) = S̃W and induces an isomorphism (see [Lo,
DIM])

alb(AJ) : Alb(S̃W ) ≃ J(W ).
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Denote by UZ ⊂ PV ∨
9 the open subset parametrizing smooth hyperplane

section W of Z. We deduce the following statement:

Theorem 5.3. For a general Fano fourfold Z = G ∩H ∩ Q of degree ten,

the set UZ parametrizing smooth Fano threefolds W = G ∩H ′ ∩H ′′ ∩Q in

Z, is contained in the base B of an integrable system, in such a way that

over UZ the Liouville tori are the intermediate Jacobians J(W ).

An interesting point here is that UZ has dimension eight, while B is ten
dimensional. In particular, the deformations of S = S̃W in Y = Ỹ ∨

Z are not
all obtained by deforming W in Z. This is certainly related to the fact that
the representation Y = Ỹ ∨

Z does not defined Z uniquely, as we have stressed
in section 4.5. Deforming Z without changing Y , and taking hyperplane
sections, we should get more deformations of S.

To be more specific, we can observe that the representation Y = Ỹ ∨
Z gives

a special role to the two Plücker points (the two preimages of the Plücker

point in Y ∨
Z ), and that the surfaces S̃W always contain these points (since W

always contain conics of type ρ or σ). Therefore, deforming W in Z should

be equivalent to deforming S = S̃W in Y = Ỹ ∨
Z with the Plücker points

fixed.

5.2. Fano fivefolds containing Z. Now we consider the moduli stack B
parametrizing smooth fivefolds X = G ∩Q containing a fixed fourfold Z =
G ∩Q ∩H as a hyperplane section. By [B], the tangent space to B at the
point defined by the fivefold Z can be identified with H1(X,TX(−1)).

Lemma 5.4. The Zariski tangent space H1(X,TX(−1)) to B at [X] is

naturally isomorphic with H2(X,Ω3
X). Its dimension is ten.

Proof. Since ωX = OX(−3), we have H2(X,Ω3
X ) = H2(X,∧2TX(−3)). The

normal exact sequence of the inclusion X ⊂ G induces the exact sequence

0 → ∧2TX → ∧2TG|X → TX(2) → 0.

By Bott’s theorem ∧2TG(−3) is acyclic, and ∧2TG(−5) = Ω4
G has non

zero cohomology only in degree four. Therefore ∧2TG(−3)|X has non zero

cohomology only in degree three. This implies that H1(X,TX(−1)) ≃
H2(X,∧2TX(−3), as claimed. �

Now consider the EPW sextic YX and its singular locus SX , which is a
smooth surface.

Proposition 5.5. The surface SX is contained in Ŷ ∨
Z .

Proof. Recall that SX parametrizes pairs (h, V4) made of hyperplanes h
in I2(X), and hyperplanes V4 ⊂ V5, such that the pencil of quadrics on
P(∧2V4) obtained by restricting I2(X), contains a quadric of rank four whose
preimage in I2(X) is precisely h. Cutting with the hyperplane H defining
Z, we remain with a quadric of rank at most four, which implies that the
point (h, V4) belongs to Ŷ ∨

Z . �

Now we lift this surface to Ỹ ∨
Z . We get the diagram:
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S̃X →֒ Ỹ ∨
Z

↓ ↓

SX →֒ Ŷ ∨
Z .

Proposition 5.6. The surface S̃X is a Lagrangian subvariety of Ỹ ∨
Z .

Proof. A point (h, V4) ∈ SX defines a corank two quadric in a P(∧2V4), and
such a quadric contains two pencils of three-planes. Each of these three-
planes will cut X along quadratic surface.

A general quadratic surface Σ in G is given by two transverse planes V2

and V ′
2 , as the image of the obvious map P(V2)×P(V ′

2) →֒ G(2, V2⊕V
′
2) ⊂ G.

The corresponding parameter space is and open subset of Sym2G and has
dimension 12. The normal bundle of Σ in G is easily seen to decompose as

NΣ/G = OΣ(1, 1)⊕2 ⊕OΣ(1, 0) ⊕OΣ(0, 1).

If Σ ⊂ X, its normal bundle is the kernel of the induced exact sequence

0 → NΣ/X → NΣ/G → OΣ(2, 2) → 0.

Generically h1(NΣ/X) = 0 and h0(NΣ/X) = 12 − 3 × 3 = 3, so that there
is a smooth three-dimensional family of quadratic surfaces in X. There is
a natural map from this family to Fg(Z), defined by cutting a quadratic
surface Σ with the hyperplane H spanned by Z, to get a conic c = Σ ∩H.
We are then reduced to showing that the image of the restriction map

H0(NΣ/X) → H0(NΣ/X|c) = H0(Nc/Z)

is isotropic with respect to the two-form φσ.
But this is easy: recall that if Y = G ∩ H, so that Z = Y ∩ Q, the

two-form φσ was defined with the help of the normal exact sequence of the
triple (c, Z, Y ). But this is the restriction to c of the normal exact sequence
of the triple (Σ,X,G), which reads, after dualizing and twisting,

0 → OΣ(−1,−1) → N∨
Σ/G(1) → N∨

Σ/X(1) → 0.

Otherwise said, there is a commutative diagram

∧2H0(Nc/Z) → H0(∧2Nc/Z) = H0(N∨
c/Z(1)) → H1(ωc) = C

↑ ↑ ↑
∧2H0(NΣ/X) → H0(∧2NΣ/X) = H0(N∨

Σ/X(1)) → H1(OΣ(−1,−1)).

The first line defines φσ, and the last line, its restriction to H0(NΣ/X). Since

H1(OΣ(−1,−1)) = 0, this restriction vanishes, and we are done. �

Theorem 5.7. For a general Fano fourfold Z = G∩H∩Q of degree ten, the

moduli stack B parametrizing smooth Fano fivefolds X = G∩Q containing Z
is the base of an integrable system whose Liouville tori are the intermediate

Jacobians J(X).

Proof. This can be proved as in [Ma1] for K3-Fano flags, or as in [Ma2] for
cubic fivefolds containing a given cubic fourfold. Let us briefly recall the
argument, which goes back to [DM], with the necessary (minor) modifica-
tions.
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A first observation is that the normal exact sequence of the pair (Z,X)
induces isomorphisms

H1(Ω4
X(Z)) ≃ H1(Ω4

X(Z)|Z) ≃ H1(Ω3
Z) ≃ C.

(For the first two isomorphisms, there are some easy vanishing to verify.
For the last one see Lemma 4.1.) One then checks that tensoring with a
generator ωZ of H1(Ω4

X(Z)) defines an isomorphism

H1(TX(−Z)) ≃ H2(Ω3
X).

The left hand side is to be interpreted as the tangent space to B at the
point defined by Z. The right hand side is the fiber of the Hodge bundle
H3,2(X/B). The dual vector bundle E on B is thus endowed with a natural
symplectic form, and one must check that this form descends to the interme-
diate Jacobian bundle, its quotient by the locally constant bundle of integral
forms. For this, one has to normalize the isomorphism H3,2(X/B) ≃ Ω1

B by
requiring that over Z, it is defined by a generator ωZ of H1(Ω4

X(Z)) restrict-
ing to a fixed generator of H1(Ω3

Z). Then the proof [Ma2], Theorem 2.3,
applies verbatim. �

It is probably possible to deduce Theorem 5.7 directly from Proposition
5.6, as we deduced Theorem 5.3 from Proposition 5.2. Indeed the general
results of Donagi-Markman imply that one can define over B an integrable
system whose fiber over X is the Albanese variety Alb(S̃X).

On the other hand, consider the Hilbert scheme Fqs(X) parametrizing
quadratic surfaces in X. Once a point is chosen in this scheme, the Abel-
Jacobi mapping gives a morphism

AJ : Fqs(X) → J(X).

By the previous arguments Fqs(X) is a P1-bundle over S̃X , and since every
map from P1 to a complex torus is constant, we get an induced morphism
AJ : S̃X → J(X). Hence, for the Albanese variety, a morphism

alb(AJ) : Alb(S̃X) → J(X).

Very probably, this morphism should be an isomorphism. But this seems
technically much more difficult to check than to prove Theorem 5.7 as we
did above.

Appendix : Proof of Lemma 3.9

We can choose a basis of V5 such that ℓ be the double line defined as the
intersection of G(2, V5) with the plane P = 〈v1∧v2, v1∧v3, v2∧v3 +v1∧v4〉.
Around v1 ∧ v3 we have affine coordinates on G(2, V5) such that a plane
transverse to 〈v2, v4, v5〉 has a basis of the form

w1 = v1 + z2v2 + z4v4 + z5v5,

w3 = v3 + t2v2 + t4v4 + t5v5.
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In these coordinates, Iℓ,G is generated by z4, z5, t4 − z2, t5 and t24. We check
that an element ψ ∈ Hom(Iℓ,G,Oℓ) is of the following form:

t24 7→ ψ1 + ψ2t2 + ψ3t
2
2 + ψ4t4 + ψ5t2t4,

t5 7→ ψ6 + ψ7t2 + ψ8t4,

t4 − z2 7→ ψ9 + ψ10t2 + ψ11t4,

z5 7→ ψ12 + ψ7t4,

z4 7→ ψ13 + ψ3t2 + (ψ5 − ψ10)t4.

Now, locally around e1 ∧ e3 the ideal sheaf IZ,G is generated by h/p13 and
q/p2

13, where h and q are the equations of the hyperplane H and of the
quadric Q, expressed in terms of Plücker coordinates. Write

h =
∑

i<j

hijpij , q =
∑

i<j,k<ℓ

qij,klpijpkl.

For Z to contain ℓ we first need that H contains P , that is,

h12 = h13 = h14 + h23 = 0,

and that the equation of Q restricted to the plane P reduces to that of the
double line ℓ, which gives

q12,12 = q12,13 = q13,13 = 0,

q12,14 + q12,23 = q13,14 + q13,23 = 0.

Using these relations, we must express h/p13 and q/p2
13 in terms of our

preferred local generators of Iℓ,G and deduce their images by the morphism
ψ. We find that

h/p13 7→ A+Bt2 +Ct4,

q/p2
13 7→ D + Et2 + Ft22 +Gt4 +Ht2t4

where the quantities A,B,C,D,E, F,G,H are given by the following for-
mulas:

A = h15ψ6 + h14ψ9 + h24ψ1 − h34ψ13 − h35ψ12,

B = h15ψ7 + h14ψ10 + h24(ψ2 − ψ13) − h34ψ3 − h25ψ12,

C = h15ψ3 + h14ψ11 + h24(ψ4 − ψ9) − h34(ψ5 − ψ10)

−h35ψ7 + h25ψ6 − h45ψ12,

D = b15ψ6 + (b24 + g)ψ1 − b34ψ13 − b35ψ12 + eψ9,

E = a15ψ6 + b15ψ7 + a24ψ1 + b24(ψ2 − ψ13) − (a35 + b25)ψ12

−a34ψ13 − b34ψ3 + dψ9 + eψ10 + gψ2,

F = a15ψ7 + a24(ψ2 − ψ13) − a25ψ12 + (g − a34)ψ3 + dψ10,

G = b15ψ8 + (b25 + c15)ψ6 + c24ψ1 + b24(ψ4 − ψ9) − b34(ψ5 − ψ10)

−c34ψ13 − b35ψ7 − c35ψ12 + fψ9 + eψ11 + gψ4,

H = a15ψ8 + c15ψ7 + a24(ψ4 − ψ9) + c24(ψ2 − ψ13) + a25ψ6 − c25ψ12

−a34(ψ5 − ψ10) − c34ψ3 − a35ψ7 + gψ5 + fψ10 + dψ11.
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In these formulas we have set aij = q12,ij, bij = q13,ij, cij = 2q14,ij = 2q23,ij,
d = q12,14 = −q12,23, e = q13,14 = −q13,23, f = −2q23,23 and g = q14,14 +
q23,23.

So the rank of φ is equal to the rank of the 13 × 8 matrix






































b24 + g a24 0 c24 0 h24 0 0
0 b24 + g a24 0 c24 0 h24 0
0 −b34 g − a34 0 −c34 0 −h34 0
0 0 0 b24 + g a24 0 0 h24

0 0 0 −b34 g − a34 0 0 −h34

b15 a15 0 c15 + b15 −a25 h15 0 h25

0 b15 a15 −b35 c15 − a35 0 h15 −h35

0 0 0 b15 a15 0 0 h15

e d 0 f − b24 −a24 h14 0 −h24

0 e d b34 f + a34 0 h14 h34

0 0 0 e d 0 0 h14

−b35 −b25 − a35 −a25 −c35 −c25 −h35 −h25 −h45

−b34 −b24 − a34 −a24 −c34 −c24 −h34 −h24 0







































We need to show that this matrix has full rank outside a locus of codimension
at least three. For this we let d24 = b24 + g, d34 = a34 + f , k = −a34 − b24.
After permuting lines and columns we get the following matrix M :







































d24 a24 0 h24 0 c24 0 0
0 d24 a24 0 h24 0 c24 0
0 0 0 0 0 d24 a24 h24

b15 a15 0 h15 0 c15 + b15 −a25 h25

0 b15 a15 0 h15 −b35 c15 − a35 −h35

0 0 0 0 0 b15 a15 h15

e d 0 h14 0 d24 + k −a24 −h24

0 e d 0 h14 b34 d34 h34

0 0 0 0 0 e d h14

0 0 0 0 0 −b34 d24 + k −h34

−b35 −b25 − a35 −a25 −h35 −h25 −c35 −c25 −h45

−b34 k −a24 −h34 −h24 −c34 −c24 0
0 −b34 d24 + k 0 −h34 0 −c34 0







































Observe the role of the matrix

m =





d24 a24 h24

b15 a15 h15

e d h14





Its rank is at least two in codimension three. If it is equal to three, then
clearly φ has full rank. So we may suppose that the rank of m is equal
to two, which occurs in codimension one. Let A,B,C denote the three-
dimensional spaces corresponding to columns 124, 235 and 678 respectively.
Observing the three first lines of the matrix, we see that they can be written
as p(v1) + v′1, q(v1) + v′′1 , v1, where v1, v

′
1, v

′′
1 belong to C and p : C → A,

q : C → B are isomorphisms. Moreover the same is true for the two next
groups of three lines, for some vectors v2, v3, .. in C. Our hypothesis on
m is that the span of v1, v2, v3 is two-dimensional. So there is a relation
α1v1 + α2v2 + α3v3 = 0, and combining our lines accordingly we get the
vectors α1v

′
1 + α2v

′
2 + α3v

′
3 and α1v

′′
1 + α2v

′′
2 + α3v

′′
3 , which belong to C.
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Since the tenth line of the matrix M is also a vector of C, it is easy to
conclude that in codimension at least three, C is contained is the span of
the lines of M .

Then we can focus on the first five columns and forget the other ones. We
know that the first nine lines of M span a space of the form p(L) + q(L) for
some plane L in C. If p(L) and q(L) meet, this can be only inside A ∩ B,
which is one dimensional. This is easy to exclude in codimension two. Then
p(L) + q(L) has codimension one, and to ensure that the matrix has full
rank, it is enough to check that the the last three lines contribute, that is,
they are not contained in p(L)+ q(L). Since the entries of these lines do not
appear in the remaining of the matrix, except for a24 and d24, this is also
easy. �
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