

OPEN ARCHITECTURE FOR SIGNAL PROCESSING LAB DISTANCE LEARNING

Mihai-Dan Steriu

University of Bucharest, Romania dansteriu@yahoo.com

Franck Luthon

University of Pau, Bayonne, France Franck.Luthon@univ-pau.fr

Bode_02 server.vi

Bode_04 server.vi

KEYWORDS: Distant Learning, Laboratory Work, Technical Education, Client-Server Architecture, Plug-in, Programmable Instrumentation, LabVIEW

1) Context: Remote Lab Work

- SP & electronics lab: engineering students
- Distant practical learning (via Internet TCP/IP)
- Real-world experiments and instrumentation:
 - not only simulations and virtual instrumentation
 - physical devices & instruments (analog/digital)
 - PC remote control/monitoring of distant systems
- Advantages:
 - reduced cost for education
 - pedagogical resource sharing
 - fast prototyping, easy maintenance, extensible
 - automated measurements, speed-up, error free

3) Control Center

Start STOP

IESIRE Centru de Control

Start STOP

Server de web G

Start STOP

- On server side:
 - start web server
 - start remote panel
 - start watchdog
 - CGI scripts
- Management:
 - pluggable experiment list
 - remote administration
 - users login, passwd
 - user access, connections
 - client queries
 - config. experiments
 - visu logs, history, statistics

5) Prototype Implementation

- Server:
 - PC Windows, GPIB bus (IEEE488), LabVIEW
 - measurement devices: waveform generator, oscilloscope, programmable power supply, DAQ board, multimeter, switch-board (for power on/off)
- Client: graphical interface = control panel
- Server side

2) Client-Server Architecture

Web Pages

LabVIEW Programs

Send Exp. Parameters Receive Experim Results

plugin client

- Global architecture
 - sofware & hardware
 - open, extensible (plug-ins)
- HTTP Server:
 - G Web Server, CGI scripts
 - Internet Developper Toolkit
- Client through internet:
 - student at home(cdrom,runtime)
 - upload params & configs
 - run expe., real-time visu of curves
 - download of results & measures, interpretation

4) Plug-ins

- 5 types of plug-ins:
 - experiment: one plug-in per experiment
 - simulation (math & physics models)
 - web pages, demos, other (reports, visu, quizz...)
- Server plugin:

Server Application

Receive Client Queries

Send Web Pages

Communication plug-in Receive Exp. Param. File Send Experim Result File

plugin server

CGI Programs

- template available for tutor plugin_key paramin markey paramin m
- Working mode selection: Local vs. Client &
 - Expe. vs. Simul.

6) Student Application

- frequently used for system characterization in electronic labs
 precise measure of **time delay** with oscilloscope (BWL,
- precise measure of time delay with oscilloscope (BWL, averaging, gain limit, autoscale, noise...)
- Gain GdB=20log(Vs/Ve) & Phase $\Delta \phi = 2\pi f \Delta t$: function of f(Hz)

■ More: data acquisition + SP, image processing, automation, supervision of programmable devices and interfaces, electrical characteristics of circuits & systems

Main Results: multi-user (30 simultaneous connections tested), multi-experiment, multi-session, 7/7 days 24/24 hours, entire learning process including practical work Discussion: pedagogical limits of all virtual, all digital; collaborative work (distant team-work); evaluation process, learning objectives; online/offline; pros & cons of Simu vs. Real?