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Global finite-time observers for non linear systems

Tomas Ménard∗, Emmanuel Moulay†and Wilfrid Perruquetti‡

Abstract

A global finite-time observer is designed for nonlinear
systems which are uniformly observable and globally
Lipschitz. This result is based on a high-gain approach.

1. Introduction

The problem of observation has been studied by
a number of researchers these last years. The linear
case has been solved by Kalman and Luenberger, but
the nonlinear case is still an active domain of research.
Several ways of investigation have been borrowed. Lin-
earization of nonlinear system with algebraic methods
have been investigated in [1] and [2]. The high-gain
observer approach which is closely related to triangular
structure has been developped by Gauthier et al. (see [3]
and [4]) and is derived from the uniform observability
of nonlinear systems. Other methods have been devel-
opped

• Kazantzis and Kravaris observer which uses the
Lyapunov auxiliary theorem and a direct coordi-
nate transformation in [5],

• backstepping design in [6],

• adaptive observer in [7],

and many other ones. Almost all of these approaches
give us asymptotic convergence. In some applicative
fields, finite time convergence is needed for example
like in secure communication, synchronisation or robot
walks (see for instance [8, 9, 10]).
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The problem of finite time observers has been less con-
sidered because it requires nonsmooth techniques. Nev-
ertheless new conditions of stability and stabilization
have been developped in the continuous finite-time do-
main, involving the settling time function, associated
with the Lyapunov theory and homogeneous systems by
Bhat and Bernstein in [11, 12], and by Moulay and Per-
ruquetti in [13, 14].
There exists several methods achieving finite-time con-
vergence, e.g. sliding mode observers (see [15, 16]),
moving horizon observer (see [17]), but some of these
are not continuous like sliding mode observers.
We consider here continuous finite-time observer. Such
one has been designed for linear systems in [18] ex-
tended to linear time-varying system in [19]. A global
finite time observer for a linearizable system via input
output injection is constructed in [9] and extended to
uniformly observable systems in [20] in a semi-global
way. Let us note that such output injection structure : a
linear part plus a homogeneous part can be derived from
the results obtained by Andrieu-Praly-Astolfi ([21, 22]
using the concept of homogeneity in the bi-limit : finite
time convergence being obtained if the homogeneity de-
gree in the 0-limit is negative. However, the construc-
tion and proof are recursive one.
This paper aim at designing a global observer for sys-
tems which are uniformly observable. For this class
of systems, there exists a change of coordinates which
transforms the system into an observability normal
form.
This paper is organized as follows. The class of consid-
ered systems, the definitions and the properties of finite
time stable systems are given in section 2. Section 3
presents a global finite-time observer followed by the
proof of convergence and an illustrative example.

2. Preliminaries

Notations



• We denote by t 7→ x(t,xt0) a solution of the system:{
ẋ = f (x), x ∈ Rn

x(t0) = xt0
(1)

where f is a continuous vector field,

• dxcα = sign(x).|x|α , with α > 0 and x ∈ R,

• ‖.‖i,k denotes the i-norm on Rk,

• if x∈Rn, xi denotes the truncated vector in Ri with
the ith first components of x (1≤ i≤ n),

• B‖.‖(ε) is the ball centered at the origin and of
radius ε , w.r.t. (with respect to) the norm ‖.‖,

• L f h(x) = ∂

∂x h(x). f (x) denotes the Lie derivative of
h along the vector field f , and Ln

f h = L f (Ln−1
f h) is

the n-th Lie derivative of h along the vector field f .

Context
Let us consider a multi-input single-output nonlin-

ear system on Rnẋ = F(x)+
m

∑
i=1

Gi(x)ui,

y = h(x),
(2)

where F and Gi are analytic functions. If system (2)
is uniformly observable (see [3]). Then a coordinate
change can be found to transform system (2) into the
form 

ẋ1 = x2 +∑
m
j=1 g1, j(x1)u j

ẋ2 = x3 +∑
m
j=1 g2, j(x1,x2)u j

...
ẋn−1 = xn +∑

m
j=1 gn−1, j(x)u j

ẋn = ϕ(x)+∑
m
j=1 gn, j(x)u j

y = x1 = Cx

(3)

where C = (1 0 . . .0).

Finite-time stability
In this paper, we are interested in observer, but es-

pecially in finite-time observer. So we recall here the
main definitions and properties for finite-time stability.

In system (1), f is a continuous but not Lipschitzian
function, so it may happen that any solution of the sys-
tem converges to zero in finite time.

Example 1. For x ∈ R, the solutions of ẋ =
−sign(x) |x|

1
3 , are given by:

x(t,x0) = sign(x0)
(
|x0|

1
3 − t

3

)3
, if0 < t < 3 |x0|

1
3

x(t,x0) = 0, if t ≥ 3 |x0|
1
3 ,

and thus reaches zero in finite time.

It is aimed here to exploit this property of such dy-
namical nonlinear systems to design a finite time ob-
server (FTO). Due to the non Lipschitz condition on the
right hand side of (1) backward uniqueness may be lost,
and thus we only consider forward uniqueness which is
recalled here.

Definition 1. The system (1) is said to have unique so-
lutions in forward time on a neighbourhood U ⊂ Rn

if for any x0 ∈ U and two right maximally defined
solutions of (1), x(t,x0) : [0,Tx[ → Rn and y(t,x0) :
[0,Ty[→ Rn, there exists 0 < Tx0 ≤ min

{
Tx,Ty

}
such

that x(t,x0) = y(t,x0) for all t ∈
[
0,Tx0

[
.

It can be assumed that for each x0 ∈U , Tx0 is cho-
sen to be the largest in R+ ∪{+∞}. Various sufficient
conditions for forward uniqueness can be found in [23].
Let us consider the system (1) where f is continuous on
Rn and where f has unique solutions in forward time.
We recall the definition of finite-time stability.

Definition 2. The origin of the system (1) is said finite
time stable if:

1. there exists a function T : V \ {0} → R+ defined
on a neighbourhood V of the origin, such that for
all x0 ∈ V \{0}, x(t,x0) is defined (and unique) on
[0,T (x0)), x(t,x0) ∈ V \{0} for all t ∈ [0,T (x0))
and lim

t→T (x0)
x(t,x0) = 0.

T is called the settling-time function of the system
(1).

2. for all ε > 0, there exists δ (ε) > 0 such that

for every x0 ∈
(
B‖.‖2,n(δ (ε)) \{0}

)
∩V , x(t,x0) ∈

B‖.‖2,n(ε) for all t ∈ [0,T (x0)).

The following result gives a sufficient condition for
system (1) to be finite time stable (see [24, 25] for or-
dinary differential equations, and [26] for Differential
inclusions):

Theorem 1. [24, 25] Let the origin be an equilibrium
point for the system (1), and let f be continuous on
an open neighborhood V of the origin. If there ex-
ists a Lyapunov function1 V : V → R+ and a function
r : R+→ R+ such that

d
dt

V (x(t))≤−r(V (x)), (4)

along the solutions of (1) and ε > 0 such that∫
ε

0

dz
r(z)

< +∞, (5)

1V is a continuously differentiable function defined on V such that
V is positive definite and dV

dt is negative definite.



then the origin is finite time stable.

In particular, assuming forward uniqueness of the
solution and the continuity of the settling time function,
Bhat and Bernstein (see [12, Definition 2.2]) showed
that finite time stability of the origin is equivalent to the
existence of a Lyapunov function satisfying (4) where
r(x) = cxa, with a ∈]0,1[,c > 0. In order to circumvent
the classical Lyapunov function art of design, one can
use homogeneity conditions recalled hereafter.

Homogeneity

Definition 3. A function V : Rn → R is homogeneous
of degree d w.r.t. the weights (r1, . . . ,rn) ∈ Rn

>0 if

V (λ r1x1, . . . ,λ
rnxn) = λ

dV (x1, . . . ,xn),∀λ > 0. (6)

Definition 4. A vector field f is homogeneous of degree
d w.r.t. the weights (r1, . . . ,rn) ∈ Rn

>0 if for all 1 ≤ i ≤
n, the i-th component fi is a homogeneous function of
degree ri +d. The system (1) is homogeneous of degree
d if the vector field f is homogeneous of degree d.

Theorem 2. [27, Theorem 5.8 and Corollary 5.4] Let
g be defined on Rn and be a continuous vector field ho-
mogeneous of degree d < 0 with respect to dilation Λr.
If the origin of (1) is locally asymptotically stable, then
it is globally finite time stable.

Previous observers
Perruquetti et al. first construct a finite time ob-

server for a canonical observable form in [9], i.e. for
a linear system in the state. The proof of finite-time
stability is based on homogeneity property (specifically
on Theorem 2). Then, a semi-global observer was con-
structed by Shen and Xia in [20] based on the Perru-
quetti et al. observer. This result is recall here:

Theorem 3. System (3) admits a semi-global observer
of the form:

˙̂x1 = x̂2 + k1dy− x̂1cα1 +∑
m
j=1 g1, j(x̂1)u j

˙̂x2 = x̂2 + k3dy− x̂1cα2 +∑
m
j=1 g2, j(x̂1, x̂2)u j

...
˙̂xn = ϕ(x̂)+ kndy− x̂1cαn +∑

m
j=1 gn, j(x̂)u j

(7)

where the powers αi are defined by

αi = iα +(i−1), α ∈
]

1− 1
n
,1
[

(8)

and
[k1, . . . ,kn]T = S−1

∞ (θ)CT , (9)

where S∞(θ) is the unique solution of the Riccati equa-
tion:{

θS∞(θ)+AT S∞(θ)+S∞(θ)A−CTC = 0
S∞(θ) = ST

∞(θ)
(10)

where (A)i j = δi, j−1 and C = (1 0 . . .0).

3. Global Observers

In this section, we propose a global finite-time ob-
server for system (3) based on the semi-global finite-
time observer (7). In order to prove our result, we need
the following lemma (issued from [28], remark 1):

Lemma 1. Assume system (1) is globally asymptoti-
cally stable and finite-time attractive on a neighbor-
hood of the origin. Then system (1) is globally finite-
time stable.

The proof of the following technical lemma is not
given here, but an explicit computation (easy but long)
gives the first equality and the second easily follows
from the first.

Lemma 2. The matrix S∞(θ) and S−1
∞ (θ) verify the fol-

lowing properties:

S∞(θ)i, j = S∞(1)i, j
1

θ i+ j−1 (11)

S−1
∞ (θ)i, j = S−1

∞ (1)i, jθ
i+ j−1 (12)

for any θ > 0 and 1≤ i, j ≤ n.

Theorem 4. Let us consider system (3) with a
bounded input u = (u1, . . . ,um) and assume functions
(gi, j)1≤i, j≤n, and ϕ are globally Lipschitz. Then there
exists θ ∗ > 0 and ε > 0 such that for all θ > θ ∗ and
α ∈]1− ε,1[, system (3) admits the following global
finite-time high-gain observer:

˙̂x1 = x̂2 + k1(de1cα1 +ρe1)+∑
m
j=1 g1, j(x̂1)u j

˙̂x2 = x̂3 + k2(de1cα2 +ρe1)+∑
m
j=1 g2, j(x̂1, x̂2)u j

...
˙̂xn = ϕ(x̂)+ kn(de1cαn +ρe1)+∑

m
j=1 gn, j(x̂)u j

(13)
where the powers αi are defined by (8), the gains ki

are defined by (9), and ρ =
(

n2θ
2
3 S1+1
2

)
, where S1 =

max1≤i, j≤n|S∞(1)i, j|.|S−1
∞ (1) j,1|.

Proof. We denote e = x− x̂. By using

D(x, x̂,u)=


0
...
0

ϕ(x)−ϕ(x̂)

+
m

∑
j=1

(g j(x)−g j(x̂))u j(t),

(14)



where g j = (g1, j, . . . ,gn, j), and

F(K,e) =

 k1de1cα1

...
knde1cαn

 , (15)

the error system is given by:

ė = Ae−F(K,e)−ρS−1
∞ (θ)CTCe+D(x, x̂,u). (16)

In order to prove the global convergence of the ob-
server, we prove first the existence of a "Lyapunov"
function V for the error system (16) which is positive
definite on Rn and such that d

dt V is negative definite on
Rn−BS∞(θ)(r). Then we will prove that the error sys-
tem is finite time stable at the origin on BS∞(θ)(2r). The
negativeness of d

dt V on Rn −BS∞(θ)(r) and the finite
time stability on BS∞(θ)(2r) prove that the error equa-
tion is globally asymptotic stable and finite-time stable
at the origin. We apply then the Lemma 1 which gives
the result.
Let us consider:

V (e) = eT S∞(θ)e. (17)

By using (10) and (16), the derivative of V is given by:

d
dt (e

T S∞(θ)e) = −θeT S∞(θ)e− (2ρ−1)(Ce)2

−2eT S∞(θ)F(K,e)
+2eT S∞(θ)D(x, x̂,u).

(18)
It leads to:

d
dt (e

T S∞(θ)e) ≤ −θ‖e‖2
S∞(θ)− (2ρ−1)(Ce)2

−2eT S∞(θ)F(K,e)
+2‖e‖S∞(θ)‖D(x, x̂,u)‖S∞(θ).

(19)
Since ϕ and gi, j (i = 1, . . . ,n, j = 1, . . . ,m) are globally
Lipschitzian with a constant l and u is bounded by u0, it
follows that:

‖D(x, x̂,u)‖S∞(θ)

=

(
∑

1≤i, j≤n
S∞(θ)i, jDi(xi, x̂i,u)D j(x j, x̂ j,u)

) 1
2

≤

(
(lu0)2

∑
1≤i, j≤n

|S∞(1)i, j|.‖ei‖1,i‖e j‖1, j
1

θ i+ j−1

) 1
2

≤

(
(lu0)2Sθ ∑

1≤i, j≤n

∥∥∥∥ 1
θ i ei

∥∥∥∥
1,i

∥∥∥∥ 1
θ j e j

∥∥∥∥
1, j

) 1
2

(20)
where S = max1≤i, j≤n|S∞(1)i, j|. Set ξi = ei

θ i , clearly for
θ ≥ 1: ∥∥∥∥ 1

θ i ei

∥∥∥∥
1,i
≤
∥∥∥ξ i

∥∥∥
1,i
≤ ‖ξ‖1,n. (21)

By norm equivalence, there exists C1 > 0 such that:

‖ξ‖1,n ≤ C1‖ξ‖S∞(1), (22)

‖ξ‖2
S∞(1) =

1
θ
‖e‖2

S∞(θ), (23)

it leads to

‖D(x, x̂,u)‖S∞(θ) ≤ nlu0C1
√

S‖e‖S∞(θ). (24)

Finally, we have

d
dt V (e) ≤ (−θ +M)V (e)

−(2ρ−1)(Ce)2

−2eT S∞(θ)F(K,e),
(25)

where M = 2nlu0C1
√

S.
According to (25) in order to prove the negative definit-
ness of d

dt V on Rn−BS∞(θ)(r), we use an overvaluation
of eT S∞(θ)F(K,e). According to lemma 2, we have the
following equalities:

eT S∞(θ)F(K,e)

= ∑
1≤i, j≤n

ei
(S∞(1))i, j

θ i+ j−1

(
S−1

∞ (1)
)

j,1 θ
jde1cα j ,

=
n

∑
j=1

(
S−1

∞ (1)
)

j,1 de1cα j
n

∑
i=1

ei

θ i−1 (S∞(1))i, j .

(26)

We overvalue (26) in two times. We cut the subset Pr =
Rn−BS∞(θ)(r) in two complementary parts:

Pr
<1 = {e ∈ Rn : |e1|< 1}∩Pr, (27)

Pr
≥1 = {e ∈ Rn : |e1| ≥ 1}∩Pr. (28)

On Pr
<1, we have:

|e1|αi < 1, i = 1, . . . ,n. (29)

Hence

|eT S∞(θ)F(K,e)| ≤ nS1θ

n

∑
i=1

∣∣∣ ei

θ i

∣∣∣ , (30)

where S1 = max1≤i, j≤n
∣∣S−1

∞ (1) j,1
∣∣×∣∣S∞(1)i, j

∣∣. Let ξi =
ei
θ i for i = 1, . . . ,n, it follows:

|eT S∞(θ)F(K,e)| ≤ nS1θ‖ξ‖1,n. (31)

As

‖ξ‖1,n ≤ C1‖ξ‖S∞(1), (32)

‖ξ‖2
S∞(1) =

1
θ
‖e‖2

S∞(θ), (33)

we have

|eT S∞(θ)F(K,e)| ≤ nS.C1
√

θ‖e‖S∞(θ). (34)



Let C2 = nSC1. Taking r > 1, then ‖e‖S∞(θ) ≤ ‖e‖2
S∞(θ)

for e ∈ Pr, so:

|eT S∞(θ)F(K,e)| ≤C2
√

θ‖e‖2
S∞(θ). (35)

Thus it leads to:

d
dt

V (e) ≤ (−θ +M +C2
√

θ)V (e) (36)

−(2ρ−1)(Ce)2

≤ (−θ +M +C2
√

θ)V (e). (37)

So there exists θ1 > 0 such that for all θ ≥ θ1,
d
dt V (e) < 0 for all e ∈ Pr

<1.

On Pr
≥1, we have |e1| ≥ 1 so |e1|αi ≤ |e1| for i =

1, . . . ,n.

|eT S∞(θ)F(K,e)|
≤ nSθ ∑

n
i=1

∣∣∣ ei
θ i

∣∣∣ .|e1|,

≤ nS∑
n
i=1

(
θ

2
3

∣∣∣ ei
θ i

∣∣∣)(θ
1
3 |e1|

)
,

≤ nS
2

(
θ

4
3

(
∑

n
i=1

∣∣∣ ei
θ i

∣∣∣2)+nθ
2
3 |e1|2

)
,

≤ nSθ
4
3

2 ‖ξ‖
2
2,n + n2θ

2
3 S

2 |e1|2.

(38)

But

‖ξ‖2
2,n ≤ C3‖ξ‖2

S∞(1), (39)

‖ξ‖2
S∞(1) =

1
θ
‖e‖2

S∞(θ), (40)

hence

|eT S∞(θ)F(K,e)| ≤C4θ
1
3 ‖e‖2

S∞(θ) +
n2θ

2
3 S

2
|e1|2,

(41)
where C4 = nSC3. Thus we have:

d
dt

V (e)≤
(
−θ +M +C4θ

1
3

)
V (e), (42)

and there exists θ2 > 0 such that for all θ ≥ θ2,
d
dt V (e) < 0 for all e ∈ Pr

≥1.
Combining the two previous parts, for all θ ≥
max{θ1,θ2}, we have:

d
dt

V (e) < 0, e ∈ Pr, r > 1. (43)

Let us prove the finite-time stability of the error
system (16) on B‖.‖S∞(θ)

(2r). We consider the follow-
ing Lyapunov function:

Ṽα(e) = ẽT S∞(θ)ẽ, (44)

where ẽ =
(
de1c

1
q de2c

1
α1q . . .denc

1
αn−1q

)
, q =

n−1

∏
i=1

[(i−

1)α− (i−2)] is the product of the weights. We have:

d
dt

Ṽα(e) = A+B+C (45)

where

A = 2ẽT S∞(θ)


1
q |e1|

1
q−1( 1

2 e2− k1de1cα1)
...

1
αnq |en|

1
αnq−1(−knde1cαn)

 , (46)

and

B = 2ẽT S∞(θ)


1
q |e1|

1
q−1( 1

2 e2−ρk1e1)
...

1
αnq |en|

1
αnq−1(−ρkne1)

 , (47)

and

C = 2ẽT S∞(θ)


1
q |e1|

1
q−1D1
...

1
αn−1q |en|

1
αn−1q−1

Dn

 . (48)

We prove now that the second term B is negative. We
use the same technique as in [9], i.e. we use the tube
lemma. As V is proper, B‖.‖S∞(θ)

(2r) is a compact set
of Rn. Define the function ϕ : R>0×B‖.‖S∞(θ)

(2r)→R

(α,e) 7→ B. (49)

Using the same technique as in Gauthier et al. [3],
we easily prove that ϕ(1,e) < 0 for e ∈ Rn. Since ϕ

is continuous, ϕ−1 (R<0) is an open subset of R>0×
B‖.‖S∞(θ)

(2r) containing the slice {1}×B‖.‖S∞(θ)
(2r).

Since B‖.‖S∞(θ)
(2r) is compact, it follows from the tube

lemma that ϕ−1 (R<0) contains some tube (1− µ1,1 +
µ2)×B‖.‖S∞(θ)

(2r) about {1}×B‖.‖S∞(θ)
(2r). For all

(α,e) ∈ (1−µ1,1+ µ2)×B‖.‖S∞(θ)
(2r)

ϕ(α,e) < 0. (50)

Thus there exists ε1 > 0 such that for α ∈ (1− ε1,1):

d
dt

Ṽα(e)≤ A+C. (51)

According to the proof of the main theorem of [20], it
follows that for every compact set U containing the ori-
gin, there exists θ3 > 0 and ε2 > 0 such that for θ ≥ θ3
and α ∈ (1− ε2,1), U ⊂ Ω, where Ω is the domain of



attraction of the observer. But according to [3], there
exists δ0 > 0 such that:

S∞(θ)≥ δ0I, ∀θ ≥ 0. (52)

Hence, there exists θ4 > 0 such that for all θ ≥ θ4:

BS∞(θ)(2r)⊂ δ0B‖.‖2(2r)⊂U . (53)

Finally we take θ ∗ = max{θ1, . . . ,θ4} and ε =
min{ε1,ε2}.
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