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We study when a given Gaussian random variable on a given probability space (Ω, F , P ) is equal almost surely to β 1 where β is a Brownian motion defined on the same (or possibly extended) probability space. As a consequence of this result, we prove that the distribution of a random variable in a finite sum of Wiener chaoses (satisfying in addition a certain property) cannot be normal. This result also allows to understand better a characterization of the Gaussian variables obtained via Malliavin calculus.

Introduction

We study when a Gaussian random variable defined on some probability space can be expressed almost surely as a Wiener integral with respect to a Brownian motion defined on the same space. The starting point of this work are some recent results related to the distance between the law of an arbitrary random variable X and the Gaussian law. This distance can be defined in various ways (the Kolmogorov distance, the total variations distance or others) and it can be expressed in terms of the Malliavin derivative DX of the random variable X when this derivative exists. These results lead to a characterization of Gaussian random variables through Malliavin calculus. Let us briefly recall the context. Suppose that (Ω, F, P ) is a probability space and let (W t ) t∈[0,1] be a F t Brownian motion on this space, where F t is its natural filtration. Equivalent conditions for the standard normality of a centered random variable X with variance 1 are the following: E 1 -DX, D(-L) -1 |X = 0 or E f ′ z (X)(1 -DX, D(-L) -1 = 0 for every z where D denotes the Malliavin derivative, 1 L is the Ornstein-Uhlenbeck operator, •, • denotes the scalar product in L 2 ([0, 1]) and the deterministic function f z is the solution of the Stein's equation (see e.g. [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF]). This characterization is of course interesting and it can be useful in some cases. It is also easy to understand it for random variables that are Wiener integrals with respect to W . Indeed, assume that X = W (h) where h is a deterministic function in L 2 ([0, 1]) with h L 2 ([0,1]) = 1. In this case DX = h = D(-L) -1 X and then DX, D(-L) -1 = 1 and the above equivalent conditions for the normality of X can be easily verified. In some other cases, it is difficult, even impossible, to compute the quantity E DX, D(-L) -1 |X or E f ′ z (X)(1 -DX, D(-L) -1 . Let us consider for example the case of the random variable Y = 1 0 sign(W s )dW s . This is not a Wiener integral with respect to W . But it is well-known that it is standard Gaussian because the process β t = t 0 sign(W s )dW s is a Brownian motion as follows from the Lévy's characterization theorem. The chaos expansion of this random variable is known and it is recalled in Section 2. In fact Y can be expressed as an infinite sum of multiple Wiener-Itô stochastic integrals and it is impossible to check if the equivalent conditions for its normality are satisfied (it is even not differentiable in the Malliavin calculus sense). The phenomenon that happens here is that Y can be expressed as the value at time 1 of the Brownian motion β which is actually the Dambis-Dubbins-Schwarz (DDS in short) Brownian motion associated to the martingale

M Y = (M Y t ) t∈[0,1] , M Y t = E (Y |F t ) (recall that F t is
the natural filtration of W and β is defined on the same space Ω (or possibly on a extension of Ω) and is a G s -Brownian motion with respect to the filtration G s = F T (s) where

T (s) = inf(t ∈ [0, 1]; M Y t ≥ s))
. This leads to the following question: is any standard normal random variable X representable as the value at time 1 of the Brownian motion associated, via the Dambis-Dubbins-Schwarz theorem, to the martingale M X , where for every t M X t = E(X|F t )?

By combining the techniques of Malliavin calculus and classical tools of the probability theory, we found the following answer: if the bracket of the F t martingale M X is bounded a.s. by 1 then this property is true, that is, X can be represented as its DDS Brownian motion at time 1. The property also holds when the bracket M X 1 is bounded by an arbitrary constant and M X 1 and β M X 1 are independent. If the bracket of M X is not bounded by 1, then this property is not true. An example when it fails is obtained by considering the standard normal random variable W (h 1 )sign(W (h 2 )) where h 1 , h 2 are two orthonormal elements of L 2 ([0, 1]). Nevertheless, we will prove that we can construct a bigger probability space Ω 0 that includes Ω and a Brownian motion on Ω 0 such that X is equal almost surely with this Brownian motion at time 1. The construction is done by the means of the Karhunen-Loève theorem. Some consequences of this result are discussed here; we believe that these consequences could be various. We prove that the standard normal random variables such that the bracket of its associated DDS martingale is bounded by 1 cannot live in a finite sum of Wiener chaoses: they can be or in the first chaos, or in an infinite sum of chaoses. We also make a connection with some results obtained recently via Stein's method and Malliavin calculus.

We structured our paper as follows. Section 2 starts with a short description of the elements of the Malliavin calculus and it also contains our main result on the structure of Gaussian random variables. In Section 3 we discusses some consequences of our characterization. In particular we prove that the random variables whose associated DDS martingale has bracket bouned by 1 cannot belong to a finite sum of Wiener chaoses and we relate our work with recent results on standard normal random variables obtained via Malliavin calculus.

On the structure of Gaussian random variable

Let us consider a probability space (Ω, F, P ) and assume that (W t ) t∈[0,1] is a Brownian motion on this space with respect to its natural filtration (F t ) t∈[0,1] . Let I n denote the multiple Wiener-Itô integral of order n with respect to W . The elements of the stochastic calculus for multiple integrals and of Malliavin calculus can be found in [START_REF] Malliavin | Stochastic Analysis[END_REF] or [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF]. We will just introduce very briefly some notation. We recall that any square integrable random variable which is measurable with respect to the σ-algebra generated by W can be expanded into an orthogonal sum of multiple stochastic integrals

F = n≥0 I n (f n ) (2) 
where

f n ∈ L 2 ([0, 1] n ) are (uniquely determined) symmetric functions and I 0 (f 0 ) = E [F ].
The isometry of multiple integrals can be written as: for m, n positive integers and

f ∈ L 2 ([0, 1] n ), g ∈ L 2 ([0, 1] m ) E (I n (f )I m (g)) = n! f, g L 2 ([0,1]) ⊗n if m = n, E (I n (f )I m (g)) = 0 if m = n. (3) 
It also holds that

I n (f ) = I n f
where f denotes the symmetrization of f defined by f (x 1 , . . . , x x ) = 1 n! σ∈Sn f (x σ(1) , . . . , x σ(n) ). We will need the general formula for calculating products of Wiener chaos integrals of any orders m, n for any symmetric integrands

f ∈ L 2 ([0, 1] ⊗m ) and g ∈ L 2 ([0, 1] ⊗n ); it is I m (f )I n (g) = m∧n l=0 l!C l m C l n I m+m-2l (f ⊗ l g) (4) 
where the contraction

f ⊗ l g (0 ≤ l ≤ m ∧ n) is defined by (f ⊗ ℓ g)(s 1 , . . . , s n-ℓ , t 1 , . . . , t m-ℓ ) = [0,T ] m+n-2ℓ f (s 1 , . . . , s n-ℓ , u 1 , . . . , u ℓ )g(t 1 , . . . , t m-ℓ , u 1 , . . . , u ℓ )du 1 . . . du ℓ . (5) 
Note that the contraction (f ⊗ ℓ g) is an element of L 2 ([0, 1] m+n-2ℓ ) but it is not necessary symmetric. We will by (f ⊗ℓ g) its symmetrization. We denote by D 1,2 the domain of the Malliavin derivative with respect to W which takes values in L 2 ([0, 1] × Ω). We just recall that D acts on functionals of the form f (X), with X ∈ D 1,2 and f differentiable, in the following way: D α f (X) = f ′ (X)D α X for every α ∈ (0, 1] and on multiple integrals

I n (f ) with f ∈ L 2 ([0, 1] n ) as D α I n (f ) = nI n-1 f (•, α).
The Malliavin derivative D admits a dual operator which is the divergence integral δ(u) ∈ L 2 (Ω) if u ∈ Dom(δ) and we have the duality relationship

E(F δ(u)) = E DF, u , F ∈ D 1,2 , u ∈ Dom(δ). (6) 
For adapted integrands, the divergence integral coincides with the classical Itô integral.

Let us fix the probability space (Ω, F, P ) and let us assume that the Wiener process (W t ) t∈[0,1] lives on this space. Let X be a centered square integrable random variable on Ω. Assume that X is measurable with respect to the sigma-algebra F 1 . After Proposition 1 the random variable X will be assumed to have standard normal law.

The following result is an immediate consequence of the Dambis-Dubbins-Schwarz theorem (DDS theorem for short, see [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF], Section 3.4, or [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF], Chapter V).

Proposition 1 Let X be a random variable in L 1 (Ω). Then there exists a Brownian motion (β s ) s≥0 (possibly defined on an extension of the probability space) with respect to a filtration

(G s ) s≥0 such that X = β M X 1
where M X = (M X t ) t∈[0,1] is the martingale given by [START_REF] Hu | Some processes associated with fractional Bessel processes[END_REF]. Moreover the random time T = M X 1 is a stopping time for the filtration G s and it satisfies T > 0 a.s. and ET = EX 2 .

Proof: Let T (s) = inf t ≥ 0, M X t ≥ s . By applying Dambis-Dubbins-Schwarz theorem

β s := M T (s)
is a standard Brownian motion with respect to the filtration G s := F T (s) and for every t ∈ [0, 1] we have M X t = β M X t a.s. P . Taking t = 1 we get

X = β M X 1 a.s.. The fact that T is a (G s ) s≥0 stopping time is well known. It is true because ( M X 1 ≤ s) = (T (s) ≥ 1) ∈ F T (s) = G s . Also clearly T > 0 a.s and ET = EX 2 .
In the sequel we will call the Brownian β obtained via the DDS theorem as the DDS Brownian associated to X.

Recall the Ocone-Clark formula: if X is a random variable in D 1,2 then

X = EX + 1 0 E (D α X|F α ) dW α . (7) 
Remark 1 If the random variable X has zero mean and it belongs to the space D 1,2 then by the Ocone-Clark formula [START_REF] Nualart | Central limit theorem for multiple stochastic integrals and Malliavin calculus[END_REF] we have M X t = t 0 E (D α X|F α ) dW α and consequently

X = β R 1 0 (E(DαX|Fα)) 2 dα
where β is the DDS Brownian motion associated to X.

Assume from now on that X ∼ N (0, 1). As we have seen, X can be written as the value at a random time of a Brownian motion β (which is fact the Dambis-Dubbins-Schwarz Brownian associated to the martingale M X ). Note that β has the time interval R + even if W is indexed over [0, 1]. So, if we know that β T has a standard normal law, what can we say about the random time T ? It is equal to 1 almost surely? This is for example the case of the variable X = 1 0 sign(W s )dW s because here, for every t ∈ [0, 1], M X t = t 0 sign(W s )dW s and M X t = t 0 (sign(B s ) 2 ds = t. An other situation when this is true is related to Bessel processes. Let (B (1) , . . . B (d) ) be a d-dimensional Brownian motion and consider the random variable

X = 1 0 B (1) s (B (1) s ) 2 + . . . + (B (d) s ) 2
dB (1) s + . . .

+ 1 0 B (d) s (B (1) 
s ) 2 + . . . + (B (d) s ) 2 dB (d) s (8) 
It also satisfies T := M X t = t for every t ∈ [0, 1] and in particular M X 1 = 1 a.s.. We will see below that the fact that any N (0, 1) random variable is equal a.s. to β 1 (its associated DDS Brownian evaluated at time 1) is true only for random variables for which the bracket of their associated DDS martingale is almost surely bounded and T and β T are independent or if T is bounded almost surely by 1.

We will assume the following condition on the stopping time T .

There exist a constant M > 0 such that T ≤ M a.s.

The problem we address in this section is then the following: let (β t ) t≥0 be a G t -Brownian motion and let T be a almost surely positive stopping time for its filtration such that E(T ) = 1 and T satisfies (9). We will show when T = 1 a.s.

Let us start with the following result.

Theorem 1 Assume (9) and assume that T is independent by β T . Then it holds that ET 2 = 1.

Proof: Let us apply Itô's formula to the G t martingale β T ∧t . Letting t → ∞ (recall that T is a.s. bounded) we get

Eβ 4 T = 6E T 0 β 2 s ds.
Since β T has N (0, 1) law, we have that Eβ 4 T = 3. Consequently

E T 0 β 2 s ds = 1 2 .
Now, by the independence of T and β T , we get E(T

β 2 T ) = ET Eβ 2 T = 1. Applying again Itô formula to β T ∧t with f (t, x) = tx 2 we get ET β 2 T = E T 0 β 2 s ds + E T 0 sds.
Therefore E T 0 sds = 1 2 and then ET 2 = 1.

Theorem 2 Let (β t ) t≥0 be a G t Wiener process and let T be a G t bounded stopping time with ET = 1. Assume that T and β t are independent. Suppose β T has a N (0, 1) law. Then T = 1 a.s.

Proof: It is a consequence of the above proposition, since

E(T -1) 2 = ET 2 -2E(T )+1 = 0.
Proposition 2 Assume that (9) is satisfied with M ≤ 1. Then T = 1 almost surely.

Proof: By Itô's formula,

Eβ 4 T = 6E T 0 β 2 s ds = 6E 1 0 β 2 s ds + E R + β 2 s 1 [T,1] (s)ds.
Since 6E Next, we will try to understand if this property is always true without the assumption that the bracket of the martingale M X is finite almost surely. To this end, we will consider the following example. Let (W t ) t∈[0,1] a standard Wiener process with respect to its natural filtration

F t . Consider h 1 , h 2 two functions in L 2 ([0, 1]) such that h 1 , h 2 L 2 ([0,1]) = 0 and h 1 L 2 ([0,1]) = h 2 L 2 ([0,1]) = 1. For example we can choose h 1 (x) = √ 21 [0, 1 2 ] (x) and h 2 (x) = √ 21 [ 1 2
,1] (x) (so, in addition, h 1 and h 2 have disjoint support). Define the random variable

X = W (h 1 )signW (h 2 ). ( 10 
)
It is well-known that X is standard normal. Note in particular that X 2 = W (h 1 ) 2 . We will see that it cannot be written as the value at time 1 of its associated DDS martingale. To this end we will use the chaos expansion of X into multiple Wiener-Itô integrals.

Recall that if h ∈ L 2 ([0, 1]) with h L 2 ([0,1]) = 1 then (see e.g. [START_REF] Hu | Some processes associated with fractional Bessel processes[END_REF])

sign(W (h)) = k≥0 b 2k+1 I 2k+1 (h ⊗(2k+1) ) with b 2k+1 = 2(-1) k √ 2π(2k + 1)k!2 k , k ≥ 0.
We have Proposition 3 The standard normal random variable X given by ( 10) is not equal a.s. to β 1 where β is its associated DDS martingale.

Proof: By the product formula (4) we can express X as (note that h 1 and h 2 are orthogonal and there are not contractions of order l ≥ 1)

X = k≥0 b 2k+1 I 2k+2 h 1 ⊗h ⊗2k+1 2 and E (X|F t ) = k≥0 b 2k+1 I 2k+2 (h 1 ⊗h ⊗2k+1 2 )1 ⊗2k+2 [0,t] (•) for every t ∈ [0, 1].
We have

(h 1 ⊗h ⊗2k+1 2 )(t 1 , . . . , t 2k+2 ) = 1 2k + 2 2k+1 i=1 h 1 (t i )h ⊗2k+1 2 (t 1 , .., ti , .., t 2k+2 ) (11) 
where ti means that the variable t i is missing. Now, M X t = E (X|F t ) = t 0 u s dW s where, by ( 11)

u s = k≥0 b 2k+1 (2k + 2)I 2k+1 (h 1 ⊗h 2k+1 2 )(•, s)1 ⊗2k+1 [0,s] (•) = k≥0 b 2k+1 h 1 (s)I 2k+1 h ⊗2k+1 2 1 ⊗2k+1 [0,s] (•) +(2k + 1)h 2 (s)I 1 (h 1 1 [0,s] (•))I 2k h ⊗2k 2 1 ⊗2k [0,s] (•) .
for every s ∈ [0, 1]. Note first that, due to the choice of the functions h 1 and h 2 ,

h 1 (s)h 2 (u)1 [0,s] (u) = 0 for every s, u ∈ [0, 1].
Thus the first summand of u s vanishes and

u s = k≥0 b 2k+1 (2k + 1)h 2 (s)I 1 (h 1 1 [0,s] (•))I 2k h ⊗2k 2 1 ⊗2k [0,s] (•) . Note also that h 1 (x)1 [0,s] (x) = h 1 (x) for every s in the interval [ 1 2 , 1]. Consequently, for every s ∈ [0, 1] u s = W (h 1 ) k≥0 b 2k+1 (2k + 1)h 2 (s)I 2k h ⊗2k 2 1 ⊗2k [0,s] (•) .
Let us compute the chaos decomposition of the random variable 1 0 u 2 s ds. Taking into account the fact that h 1 and h 2 have disjoint support we can write

1 0 u 2 s ds = k,l≥0 b 2k+1 b 2l+1 (2k + 1)(2l + 1)W (h 1 ) 2 1 0 dsh 2 (s) 2 I 2k h ⊗2k 2 1 ⊗2k [0,s] (•) I 2l h ⊗2l 2 1 ⊗2l [0,s] (•) . Since W (h 1 ) 2 = I 2 h ⊗2 1 + 1 0 h 1 (u) 2 du = I 2 h ⊗2 1 + 1
and

E (sign(W (h 2 )) 2 = 1 0 dsh 2 2 (s)E   k≥0 b 2k+1 (2k + 1)I 2k h ⊗2k 2 1 ⊗2k [0,s] (•)   2 = 1
we get

1 0 u 2 s ds = 1 + I 2 h ⊗2 1 ×   1 + k,l≥0 b 2k+1 b 2l+1 (2k + 1)(2l + 1) 1 0 dsh 2 (s) 2 I 2k h ⊗2k 2 1 ⊗2k [0,s] (•) I 2l h ⊗2l 2 1 ⊗2l [0,s] (•) -EI 2k h ⊗2k 2 1 ⊗2k [0,s] (•) I 2l h ⊗2l 2 1 ⊗2l [0,s] (•) =: 1 + I 2 h ⊗2 1 (1 + A).
Therefore we obtain that (1 + A) = 1 almost surely which implies that I 2 (h ⊗2 1 )(1 + A) + A = 0 a.s. and this is impossible because I 2 (h ⊗2 1 ) and A are independent.

We obtain an interesting consequence of the above result.

Corollary 1 Let X be given by (10). Then the bracket of the martingale M X with M X t = E (X|F t ) is not bounded by 1.

Proof: It is a consequence of Proposition 3 and of Theorem 2.

Remark 2 Proposition 3 provides an interesting example of a Brownian motion β and of a stopping time T for its filtration such that β T is standard normal and T is not almost surely equal to 1.

Let us make a short summary of the results in the first part of our paper: if X is a standard normal random variable and the bracket of M X is bounded a.s. by 1 then X can be expressed almost surely as a Wiener integral with respect to a Brownian motion on the same (or possibly extended) probability space. The Brownian is obtained via DDS theorem. The property is still true when the bracket is bounded and T and β T are independent random variables. If the bracket of M X is not bounded, then X is not necessarily equal with β 1 , β being its associated DDS Brownian motion. This is the case of the variable (10).

Nevertheless, we will see that after a suitable extension of the probability space, any standard normal random variable can be written as the value at time 1 of a Brownian motion constructed on this extended probability space.

Proposition 4 Let X 1 be a standard normal random variable on (Ω 1 , F 1 , P 1 ) and for every i ≥ 2 let (Ω i , F i , P i , X i ) be independent copies of (Ω 1 , F 1 , P 1 , X 1 ). Let (Ω 0 , F 0 , P 0 ) be the product probability space. On Ω 0 define for every t ∈ [0, 1]

W 0 t = k≥1 f k (t)X k
where (f k ) k≥1 are orthonormal elements of L 2 ([0, 1]). Then W 0 is a Brownian motion on

Ω 0 and X 1 = 1 0 1 u dsf 1 (s) dW 0 u a.s..

Proof:

The fact that W 0 is a Brownian motion is a consequence of the Karhunen-Loève theorem. Also, note that

X 1 = W 0 , f 1 = 1 0 W 0 s f 1 (s)ds
and the conclusion is obtained by interchanging the order of integration.

Remark 3 Let us denote by F 0 t the natural filtration of W 0 . It also holds that

E X 1 |F 0 t = E t 0 g u dW 0 u where g u = 1 u dsf 1 (s).
It is obvious that the martingale E X 1 |F 0 t is a Brownian motion via the DDS theorem and X 1 can be expressed as a Brownian at time 1.

Consequences

We think that the consequences of this result are multiple. We will prove here first that a random variable X which lives in a finite sum of Wiener chaoses cannot be Gaussian if the bracket of M X is bounded by 1. Again we fix a Wiener process (W t ) t∈[0,1] on Ω.

Let us start with the following lemma.

Lemma 1 Fix N ≥ 1. Let g ∈ L 2 ([0, 1] ⊗N +1
) symmetric in its first N variables such that 1 0 dsg(•, s) ⊗g(•, s) = 0 almost everywhere on [0, 1] ⊗2N . Then for every k = 1, . . . , N -1 it holds that 1 0 dsg(•, s) ⊗k g(•, s) = 0 a.e. on [0, 1] 2N -2k .

Proof: Without loss of generality we can assume that g vanish on the diagonals (t i = t j ) of [0, 1] ⊗(N +1) . This is possible from the construction of multiple stochastic integrals. From the hypothesis, the function

(t 1 , . . . , t 2N ) → 1 (2N )! σ∈S 2N 1 0
dsg(t σ(1) , . . . , t σ(N ) , s)g(t σ(N +1) , . . . , t σ(2N ) , s)

vanishes almost everywhere on [0, 1] ⊗2N . Put t 2N -1 = t 2N = x ∈ [0, 1]. Then for every x, the function (t 1 , . . . t 2N -2 ) → σ∈S 2N-2 1 0
dsg(t σ(1) , . . . , t σ(N -1) , x, s)g(t σ(N ) , . . . , t σ(2N -2) , x, s) is zero a.e. on [0, 1] ⊗(2N -2) and integrating with respect to x we obtain that -2) . By repeating the procedure we obtain the conclusion.

1 0 dsg(•, s) ⊗1 g(•, s) = 0 a.e. on [0, 1] ⊗(2N
Let us also recall the following result from [START_REF] Nualart | Central limit theorem for multiple stochastic integrals and Malliavin calculus[END_REF].

Proposition 5 Suppose that F = I N (f N ) with f ∈ L 2 ([0, 1] N ) symmetric and N ≥ 2 fixed.
Then the distribution of F cannot be normal.

We are going to prove the same property for variables that can be expanded into a finite sum of multiple integrals.

Theorem 3 Fix N ≥ 1 and et let X be a centered random variable such that X = N +1 n=1 I n (f n ) where f ∈ L 2 ([0, 1] n ) are symmetric functions. Suppose that the bracket of the martingale M X (1) is bounded almost surely by 1. Then the law of X cannot be normal.

Proof: We will assume that EX 2 = 1. Suppose that X is standard normal. We can write X as X = 1 0 u s dW s where u s = N n=1 I n (g n (•, s)). As a consequence of Proposition 4,

1 0 u 2 s ds = 1 a. s.
But from the product formula (4)

1 0 u 2 s ds = 1 0 ds N n=1 I n (g n (•, s)) 2 = 1 0 ds N m,n=1 m∧n k=1 k!C k n C k m I m+n-2k (g n (•, s) ⊗ g m (•, s))ds.
The idea is to benefit from the fact that the highest order chaos, which appears only once in the above expression, vanishes. Let us look to the chaos of order 2N in the above decomposition. As we said, it appears only when we multiply I N by I N and consists in the random variable I 2N The conclusion of the above theorem still holds if M X satisfies (9) and M X 1 is independent by β M X 1 .

Finally let us make a connection with several recent results obtained via Stein's method and Malliavin calculus. Recall that the Ornstein-Uhlenbeck operator is defined as [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF]. There exists a connection between δ, D and L in the sense that a random variable F belongs to the domain of L if and only if F ∈ D 1,2 and DF ∈ Dom(δ) and then δDF = -LF .

LF = -n≥0 nI n (f n ) if F is given by
Let us denote by D the Malliavin derivative with respect to W and let, for any

X ∈ D 1,2 G X = DX, D(-L) -1 X .
The following theorem is a collection of results in several recent papers.

Theorem 4 Let X be a random variable in the space D 1,2 . Then the following affirmations are equivalent.

1. X is a standard normal random variable.

For every

t ∈ R, one has E e itX (1 -G X ) = 0. 3. E ((1 -G X )/X) = 0. 4. For every z ∈ R, E (f ′ z (1 -G X )) = 0
, where f z is the solution of the Stein's equation (see [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF]).

Proof: We will show that 1. ⇒ 2. ⇒ 3. ⇒ 4. ⇒ 1. First suppose that X ∼ N (0, 1). Then

E e itX (1 -G X ) = E(e itX ) - 1 it E De itX , D(-L) -1 X = E(e itXn ) - 1 it E Xe itX = ϕ X (t) - 1 t ϕ ′ X (t) = 0.
Let us prove now the implication 2. ⇒ 3. It has also proven in [START_REF] Nourdin | Density formula and concentration inequalities with Malliavin calculus[END_REF], Corollary 3.4. Set F = 1 -G X . The random variable E(F |X) is the Radon-Nykodim derivative with respect to P of the measure Q(A) = E(F 1 A ), A ∈ σ(X). Relation 1. means that E e itX E(F/X) = E Q (e itX ) = 0 and consequently Q(A) = E(F 1 A ) = 0 for any A ∈ σ(X n ). In other words, E(F |X) = 0. The implication 3. ⇒ 4 is trivial and the implication 4. ⇒ 1. is a consequence of a result in [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF].

As we said, this property can be easily understood and checked if X is in the first Wiener chaos with respect to W . Indeed, if X = W (f ) with f L 2 ([0,1]) = 1 then DX = D(-L) -1 X = f and clearly G X = 1. There is no need to compute the conditional expectation given X, which is in practice very difficult to be computed. Let us consider now the case of the random variable Y = 1 0 sign(W s )dW s . The chaos expansion of this variable is known. But Y is not even differentiable in the Malliavin sense so it is not possible to check the conditions from Theorem 4. Another example is related to the Bessel process (see the random variable 8). Here again the chaos expansion of X can be obtained (see e.g. [START_REF] Hu | Some processes associated with fractional Bessel processes[END_REF]) but is it impossible to compute the conditional expectation given X.

But on the other hand, for both variables treated above their is another explanation of their normality which comes from Lévy's characterization theorem. Another explanation can be obtained from the results in Section 2. Note that these two examples are random variables such that the bracket of M X is bounded a.s.

Corollary 2 Let X be an integrable random variable on (Ω, F, P ). Then X is a standard normal random variable if and only if there exists a Brownian motion (β t ) t≥0 on an extension of Ω such that D β X, D β (-L β ) -1 X = 1.

(13)

Proof: Assume that X ∼ N (0, 1). Then by Proposition 4, X = β 1 where β is a Brownian motion on an extended probability space. Clearly (13) holds. Suppose that there exists β a Brownian motion on (Ω, F, P ) such that (13) holds. Then for any continuous and piecewise differentiable function f with Ef ′ (Z) < ∞ we have

E f ′ (Z) -f (X)X = E f ′ (X) -f ′ (X) D β X, D β (-L β ) -1 X = E f ′ (Z)(1 -D β X, D β (-L β ) -1 X = 0
and this implies that X ∼ N (0, 1) (see [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF], Lemma 1.2).

1 0 β 2 s

 2 ds = 3 and Eβ 4 T = 3 it follows that E R + β 2 s 1 [T,1] (s)ds = 0 and this implies that β 2 s (ω)1 [T (ω),1] (s) = 0 for almost all s and ω. Clearly T = 1 almost surely.

1 0 u 2 s

 2 ds = 1 almost surely if and only if 1 + I 2 h ⊗2 1

1 0 1 0g

 11 g N (•, s) ⊗ g N (•, s)ds . The isometry of multiple integrals (3) implies that N (•, s) ⊗g N (•, s)ds = 0 a. e. on [0, 1] 2N and by Lemma 1, for every k = 1, . . . , N -1.

1 0g 1 0 1 0

 111 N (•, s) ⊗k g N (•, s)ds = 0 a. e. on [0, 1] 2N -2k . (12) Consider now the the random variable Y := I N +1 (f N +1 ). It can be written as Y = I N (g N (•, s))dW s and b y the DDS theorem, Y = β Y R ds(I N (g N (•,s))) 2 . The multiplication formula together with (12) shows that 1 0 ds(I N (g N (•, s))) 2 is deterministic and as a consequence Y is Gaussian. This is in contradiction with Proposition 5.
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