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Abstract

The extension of lattice based operators to manifolds is

still a challenging theme in mathematical morphology. In

this paper, we propose to explicitly construct complete lat-

tices and replace each element of a manifold by its rank

suitable for classical morphological processing. Manifold

learning is considered as the basis for the construction of

a complete lattice.

Index Terms— Manifold Learning, Complete Lattice.

1 Introduction

Mathematical Morphology (MM) is a nonlinear approach

to image processing that relies on a fundamental structure,

the complete lattice L [7] (a nonempty set equipped with

an ordering relation). With the complete lattice theory, it

is possible to define morphological operators for any type

of data once a proper ordering is established [1]. If Math-

ematical Morphology is well defined for binary and gray

scale images, there exist no general extension that per-

mits to perform basic operations on manifolds (multivari-

ate data) since there is no natural ordering on vectors. In

this paper, we propose to use a rank transformation with

Manifold Learning for complete lattice creation.

2 Rank transform

A manifold is considered as a mapping f : Ω → R
p where

p is the dimensionality of the vectors living on the mani-

fold. One way to define an ordering relation between vec-

tors is to use a transform [4] h : R
p → R

q, with q ≪ p
followed by a conditional ordering on each dimension of

R
q. Then, ∀(xi, xj) ∈ R

p × R
p, xi ≤ xj ⇔ h(xi) ≤

h(xj). From this, it is easy to show the following equiva-

lence (complete lattice on R
p)⇔(bijective application h :

R
p → R

q)⇔(rank transform on R
p) [3, 6]. This implies

that, to induce a complete lattice, the vectors’ values are

not important but only their position in the lattice: this

corresponds to a rank transform defined by the mapping

h : R
p → N. Ordering comparisons involved in morpho-

logical operations are performed directly on ranks and one

obtains a common framework valid for data of arbitrary

dimensions.

3 Mathematical Morphology on Graphs

A graph is a couple G = (V,E) where V is a finite set

of vertices and E is a set of edges included in a subset of

V × V . Two vertices are adjacent if the edge (u, v) ∈ E.

u ∼ v denotes the set of vertices u connected to the vertex

v via the edges (u, v) ∈ E. A graph is weighted if it is

associated with a weight function k : E → R
+ satisfying

k(u, v) > 0 if (u, v) ∈ E, and k(u, v) = 0 if (u, v) /∈ E.

We now introduce several definitions. The neighborhood

set of vertices N (G, v) of a vertex v is defined as:

N (G, v) = {u ∈ V : (u, v) ∈ E} ∪ {v}.

The set of edges A(G, v) connecting any vertices in N (G, v)
is defined as:

A(G, v) = {(u, w) ∈ E : u ∈ N (G, v), w ∈ N (G, v)}.

A structuring element S(G, v) at a given vertex v is a sub-

graph of G defined as: S(G, v) = (N (G, v),A(G, v)).
With these definitions, the erosion ǫ of a function f on a

graph G at a vertex v is defined by:

ǫ(G, f, v) = {f(u) : h(f(u)) = ∧h(f(w)), w ∈ N (G, v)}.

If we compare this definition with the usual definition of

an erosion, the structuring element is directly expressed by

the graph topology and the lattice is defined by the use of

the rank transform h. Similar definitions can be found in

[5]. With this definition, the graph topology never changes,

but only vectors associated to vertices. We can reformulate

the erosion as a contracting erosion that modifies the graph

topology. To that aim, we define the erosion at a vertex v
in terms of vertex preservation:

ǫV(G, f, v) = {u : h(f(u)) = ∧h(f(w)), w ∈ N (G, v)}.

Then, one can define the vertex erosion ǫV(G, f) and the

edge erosion ǫE(G, f) of a graph as:

ǫV(G, f) = V ∩ {ǫV(G, f, v),∀v ∈ V }

and

ǫE(G, f) = {(u, v) ∈ E, u ∈ ǫV(G, f), v ∈ ǫV(G, f)}.

Finally a contracting erosion ǫC(G, f) is an operation that

produces a new graph (ǫV(G, f), ǫE(G, f)) that is a sub-

graph of G. Similar definitions apply for dilation.



4 Complete lattice learning

In the previous definitions of Mathematical Morphology

on Graphs, the complete lattice is assumed to be known

and expressed by the rank transform h. However, the con-

struction of such a rank transform is a difficult problem. To

perform this, we consider manifold learning methods that

enable to perform dimensionality reduction. This is equiv-

alent to a rank transform when the dimension of the pro-

jected is space is equal to one. Graph-based methods have

recently emerged as powerful tools for nonlinear dimen-

sionality reduction. Among the existing methods, we con-

sider Laplacian Eigenmaps [2]. Let {x1, x2, · · · , xn} ∈ R
p

be a set of n initial vectors. Manifold learning aims at

searching for a new representation {y1, y2, · · · , yn} with

yi ∈ R
n. From a neighborhood graph G built from the

initial data set, an adjacency matrix W is considered and

weighted by a Gaussian kernel Wij = e
(

− ||xi−xj ||
2

σ2

)

. To

have a parameterless Gaussian kernel, σ is estimated by

σ = maxv∈V,u∼v ‖f(v)− f(u)‖. Then, one seeks to min-

imize 1

2

∑

ij

Wij‖yi−yj‖2 = Tr(YT ∆Y) with ∆ = D−W

that represents the un-normalized Laplacian (D is the de-

gree matrix). The solution of the previous minimization

problem can be found by solving ∆y = λDy. The eigen-

vectors of this equation corresponding to the smallest non

zero eigenvalues form the manifold representation. To per-

form a complete lattice learning with manifold learning, a

vertex is associated to each input vector data and a neigh-

borhood graph is constructed. Then, we consider only the

first non-zero eigenvector of the obtained Manifold repre-

sentation and re-arrange the initial vectors increasingly ac-

cording to their value in the first non-zero eigenvector: this

defines the rank transform. Manifold learning, although

being attractive, is a time consuming step for the complete

lattice construction when the amount of data is large: com-

plexity is O(n3). To overcome this, several strategies can

be considered that rely on the same idea: to reduce the size

of the data on which the complete lattice construction is

performed. We propose two strategies in the sequel.

4.1 Data Quantization

A first strategy can consist in reducing the input data size

by Vector Quantization (VQ). Given an initial data set of

size n, VQ: R
p → R

p is applied to construct a codebook

C : N → R
p and an encoder I : R

p → N. An index

h : Ω → N can be deduced from D and I by applying

h(x) = I(f(x)) to each vector f(x) = x of the original

data set. The initial data set can be reconstructed with loss

from the index and the codebook by C(h(x)): the obtained

data set is an approximation of the initial data set with only

2k elements. The codebook being of reduced size, one can

apply manifold learning on the complete graph associated

to the codebook. This enables to construct the complete

lattice (the ordering of the codebook) and to define the rank

transform (obtained with the function h).

Original 512 colors Quantized

f : Z
2
→ R

3 C ◦ h : Z
2
→ R

3

Rank Image Complete Lattice of the codebook

h = I ◦ f : Z
2
→ N from top left to right down

with I : R
3
→ N C : N → R

3

Dilation (11 × 11) Erosion (11 × 11)

Closing (11 × 11) Opening (11 × 11)

Opening by reconstruction Alternate Sequential Filter

(11 × 11) (4 iterations with a square)

Gradient (3 × 3) Watershed of the gradient with

gradient minima as markers.

Figure 1: Processing examples with a rank image obtained

from Manifold Learning with Vector Quantization.



Channel 1 Channel 10 Rank Image

ASF (7 iterations MM gradient Watershed

with a square) (3 × 3 square)

Figure 2: MM Processing example of a 20-channels multi-

spectral barley grain image.

4.2 Local lattice learning

A second strategy can consist in performing locally the

complete lattice creation. The rank transform h is defined

on sub-graphs of the initial graph: the structuring elements

S(G, v). This comes to define the rank transform only on

a reduced set of vertices: N (G, v).The manifold learning

is therefore applied on the data set {f(u), u ∈ N (G, v)}.

With this strategy, the complete lattice is not available for

the whole manifold but only one sub-manifold defined, for

a local processing, by S(G, v).

5 Results

In this Section, we illustrate the two above-mentioned strate-

gies for complete lattice learning. First, we consider Vec-

tor Quantization with Manifold Learning. Figure 1 illus-

trates this principle on a color image (f : Z
2 → R

3) rep-

resented by a (k2 − 1)-adjacency graph that means using a

k × k square structuring element. The image is quantized

into 512 colors and the obtained codebook is re-ordered

by Manifold Learning to construct the complete lattice of

the 512 colors. A rank image is created by assigning to

each pixel its rank on the complete lattice of the code-

book. Then, morphological operations are performed on

the rank image and the final color images are obtained by

reconstruction with the codebook defining the lattice. As it

can be seen in Figure 1, the induced morphological opera-

tions enable an accurate processing of the image. To show

that our formalism is easily applicable to any multivariate

image, Figure 2 presents a morphological processing of a

multispectral image (f : Z
2 → R

20) with a 1024 code-

book. The segmentation of the image is performed with a

watershed on the morphological gradient of an Alternate

Sequential Filter of the rank image. Second, we illustrate

the use of local manifold learning for morphological pro-

cessing. Figure 3 presents such a processing on an im-

age manifold of 99 images (f : Ω → R
16×16). In this

case, structuring elements are defined by adjacency rela-

tionships in the graph associated to the data: a 5 nearest

neighbor graph (5-nn) is considered with an Euclidean dis-

tance. Such a processing is interesting for manifold sim-

plification (flat zones are created). Moreover, contracting

morphological operations results are also provided to il-

lustrate the abilities of the method to reduce a dataset to

its main elements. Finally, Figure 4 presents the results

of two successive contracting openings on the iris data set.

Applying a k-means (with k = 3) on both these data sets

(original and after morphological processing) gives 88.7%

and 100% of classification rate. This illustrates the interest

of contracting morphological operations for data mining

purposes.

6 Conclusion

In this paper, we have considered the general case of mor-

phological processing of manifolds. Morphological opera-

tors relying on a complete lattice, the latter is dynamically

constructed by manifold learning with Laplacian Eigen-

maps. Experimental results open new outlooks for the use

of Mathematical Morphology to arbitrary data.
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[1] E. Aptoula and S. Lefèvre. A comparative study

on multivariate mathematical morphology. Pattern

Recognition, 40(11):2914–2929, 2007.

[2] M. Belkin and P. Niyogi. Laplacian eigenmaps for di-

mensionality reduction and data representation. Neu-

ral Computation, 15(6):1373–1396, 2003.

[3] A. Garcia, C. Vachier, and J.-P. Vallée. Multivari-

ate mathematical morphology and bayesian classifier

application to colour and medical images. In Image

Processing: Algorithms and Systems VI, volume 6812,

pages 03–11. SPIE, 2008.

[4] J. Goutsias, H.J.A.M. Heijmans, and K. Sivakumar.

Morphological operators for image sequences. Com-

puter Vision and Image Understanding, 62(3):326–

346, 1995.

[5] H. Heijmans, P. Nacken, A. Toet, and L. Vincent.

Graph morphology. Journal of Visual Communication

and Image Representation, 3(1):24–38, 1992.

[6] O. Lezoray, C. Meurie, and A. Elmoataz. Mathemat-

ical morphology in any color space. In IAPR/IEEE

International Conference on Image Analysis and Pro-

cessing, Computational Color Imaging Workshop.

IEEE, 2007.

[7] C. Ronse. Why mathematical morphology needs

complete lattices. Signal Processing, 21(2):129–154,

1990.



Original Data (USPS Data Set)

Erosion Contracting Erosion

Dilation Contracting Dilation

Closing Contracting Closing

Alternate Sequential Filter Contracting Alternate Sequential

(20 iterations) Filter (2 iterations)

Figure 3: Processing examples with a local complete lat-

tice learning. A 5-nn graph is considered.
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Figure 4: Morphological processing of an arbitrary data set

(the iris data set) with a 20-nn graph and a local complete

lattice learning.


