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Abstract

Approximate differential equations are introduced for the renormaliza-
tion group β-function in the supersymmetric Wess–Zumino model and the
φ3

6
scalar model. This allows to obtain the asymptotic behavior of their

perturbative coefficients and paves the way for non-perturbative studies.

1 Introduction

New methods for efficient perturbative calculations in Quantum Field The-
ory are badly needed, both for practical and theoretical reasons. This work
explores the possibility of approximating Schwinger–Dyson equations as differ-
ential equations on the renormalization group functions. Differential equations
can be used to prove the existence of a function, and even if they do not allow
for analytical solutions, they give a sound basis for the application of resumma-
tion techniques. Furthermore, in many cases, the asymptotic behavior of the
solutions can be obtained, giving insights on the large coupling properties of
the theory.

This work will study and compare four situations, based on two distinctions:
the Schwinger–Dyson equation is either linear or quadratic and the theory is
either a four dimensional supersymmetric model or a six dimensional scalar one.

In the case of linear Schwinger–Dyson equations, Broadhurst and Kreimer
obtained differential equations for the renormalization group functions in [1]. A
generalization to the case of non-linear Schwinger–Dyson equations is the aim
of this work. In a preceding work [2], we have shown how to obtain numerically
high orders of the perturbative solution of a nonlinear Schwinger–Dyson equa-
tion, elaborating on methods proposed in [3]. These computations allowed for
predictions about the singularities of the Borel transform of the perturbative
series, showing that the singularity on the positive axis is weaker than the one
predicted by cruder approximations.

The computations of [2] are based on two elements. A scheme for the ex-
ponentiation of the renormalization group allows to obtain the full propagator
from the renormalization group function. The primitive divergence is com-
puted with propagators to real powers, yielding a function, the Mellin trans-
form, whose Taylor coefficients give the contribution from arbitrary logarithmic
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corrections to the propagator. The approximation scheme I present is based on
the fact that at high orders, the Taylor expansion of a function is dominated by
the contributions of the singularities nearer the development point: a suitable
rational function yields a good approximation of the whole Taylor expansion.
Finally, with a rational Mellin transform, the Schwinger–Dyson equation can
be converted in a differential equation for the renormalization group function.
In the non-linear cases, these differential equations are not exact, but we see
that the coefficients of their perturbative solutions are comparable to those ob-
tained from the full Schwinger–Dyson equations. The asymptotic behavior of
the perturbative coefficients is easily deduced from the differential equations.

The next section will precise the models and equations we study, and recall
the results in [2] which will be our starting point. Then follows the study of the
Mellin transform and the nature of its singularities. We then obtain four ap-
proximate differential equations and study their implications. We conclude with
the perspectives this work opens, in particular for Schwinger–Dyson equations
including more primitives.

2 The models

The present study only considers massless models where renormalization is
limited to the propagator. As in [2], one of these models is the supersymmetric
Wess–Zumino model. The vertex functions are never divergent in this case, as
can be proven to all orders in perturbation theory by superspace techniques.
An other model of interest is the six-dimensional theory of a scalar complex
field with the interaction:

λ

3!
(φ3 + φ̄3) (1)

The one-loop three-point function is zero: the vertices associated to the φ3

interactions and those associated to its complex conjugate must alternate and
this is not possible in a three point loop. Furthermore, the two-loop contribu-
tion to the three-point function is non-planar, so that it does not contribute
in a large N limit. It is therefore a coherent approximation to consider the
Schwinger–Dyson equation associated to its unique one-loop divergence, which
is a propagator correction.

The fundamental object of study of this work is therefore the simplest non-
linear Schwinger–Dyson equation, which is graphically:

( )

−1
= 1 − a (2)

In this equation, a denotes a suitable equivalent of the fine structure constant,
which is equal to λ2 up to some numerical constant.

The simpler linear Schwinger–Dyson equation, which has been extensively
studied in [1], will also be considered as a test bed and for comparative purposes.
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It is graphically depicted as

( )

−1
= 1 − a (3)

In both cases, these equations express a one-particle irreducible two-point
function in term of an integral over the propagator, which is its inverse. The
difficulty in providing for solutions of these Schwinger–Dyson equations stem
from the need to obtain the full propagator, when only its first derivative is
easily deduced. The gap is bridged by the use of the renormalization group
combined with a renormalization condition taken at a fixed impulsion.

Indeed, the renormalization group equation allows to deduce both the prop-
agator and its inverse from a single renormalization group function. In fact, as
we have seen in [2], any power, positive or negative, of the two point function
has an expansion in power of the logarithm of the impulsion L = log(p2/µ2)
which satisfies a simple recursion. The evaluation of two-point diagram is taken
as the ratio of the propagator to its free counterpart, normalized to be one for
the exterior impulsion p2 = µ2. If G(L) is the nth power of the propagator, it
can be written:

G(L) = 1 +
∑

k

gk
Lk

k!
(4)

I introduce here a factor k! to take gk as the kth derivative of the function,
a convention which was not in either [3] or [2] but proves convenient. The
recursion has two parameters, the power n of the two-point function we consider
and a parameter b which is 2 for the linear Schwinger–Dyson equation and 3
for the non-linear one:

gk+1 = γ(n + ba∂a)gk. (5)

In this equation, γ is the anomalous dimension, the derivative of the propagator
with respect to the variable L. I will note γk the coefficients gk in the case of
the propagator, with the obvious equality γ1 = γ.

The proof, detailed in [2], is based on the fact that the sums of the diagrams
of a given order generate a sub Hopf algebra of the renormalization Hopf alge-
bra [4] and that this property remains true for the partial sums including only
the diagrams generated by a Schwinger–Dyson equation.

In addition, the renormalization group is a one parameter group in the
group of characters of the renormalization Hopf algebra. This fact is simpler
to prove in our case than in the original works of Connes and Kreimer [5]. In
the minimal subtraction scheme they used, the counterterms are not algebra
homomorphism so that it is not trivial that the ratio of the counterterms at two
different scales gives an algebra homomorphism. Here however, renormalization
is at a fixed scale, so that the counterterm is simply the convolution inverse of
the evaluation at the renormalization scale. The renormalization group is a
simple consequence of the definition of the renormalized evaluation, if we know
that the renormalized evaluation has a well defined limit when the regulator is
removed.

ΦR
q2/p2

0

= (Φp2

0

◦ S) ⋆ Φq2
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= (Φp2

0

◦ S) ⋆ Φp2 ⋆ (Φp2 ◦ S) ⋆ Φq2

= ΦR
p2/p2

0

⋆ ΦR
q2/p2

In this equation, the convolution inverse is written using the antipode S of the
renormalization Hopf algebra.

3 Evaluation of loop integrals

In both cases, we simply have to evaluate a single scalar loop integral. This
is clear for the φ3

6 case, and was proven in [6, 2] for the supersymmetric one.
Schwinger parameterization allows to obtain the following result:

F (a, b) =

∫

dkD

(k2)a((p − k)2)b
= π

D

2 (p2)
D

2
−a−b Γ(D

2 − a)

Γ(a)

Γ(D
2 − b)

Γ(b)

Γ(D
2 − c)

Γ(c)

(6)
with c defined as c = D − a − b. This expression is very symmetric in a, b
and c, and this can be explained by the introduction of the two loop vacuum
diagram with three propagators having the exponents a, b and c. The choice of
c makes this diagram scale invariant and hence divergent. This infinite result
can however be understood as a finite quantity multiplying the infinite volume
of the dilatation group. If the invariance under the group of rotations and
dilatations is fixed by choosing one of the impulsions, one obtains this finite

coefficient. The scale can be fixed in a covariant way with (p2)
D

2 δ(p − p0),
to obtain a result independent of the impulsion which has been fixed. This
enhanced symmetry is not very important in this simple one-loop case, where
an explicit expression for the result is at hand, but afford great simplifications
for higher loop cases.

At a given order, the propagator takes the form of the free propagator
multiplied by a polynomial in L = log(p2/µ2). It can be obtained from the
action of a differential operator on (p2)−a. More precisely, we write:

P (p2) =
1

p2

(

1 +
∑

γk
log(p2/µ2)k

k!

)

=
(

1 +
∑

γk
∂k

x

k!

) 1

(p2)1−x

∣

∣

∣

∣

x=0

(7)

If we plug this value in the loop integral, we can exchange the derivation and
the loop integration, so that we end up multiplying the γk by the coefficients
of the Taylor expansion around (0, 0) of F (1 − x, 1 − y).

The object of interest is therefore the Taylor expansion of F (1 − x, 1 − y).
The function F has poles whenever one of the Γ function in the numerator has
a negative integer as argument, i.e., for the parameters equal to D

2 or greater
integers. The residues are simple polynomials. When a or b is a great enough
integer, it corresponds to infrared divergences. For c instead, the pole comes
from a ultraviolet divergence, but the two are linked by conformal invariance.
This link between poles of the Mellin transform and divergences of the diagram
gives clues for the computation of the residues even at higher loop order, when
the full Mellin transform has no closed form expression. This should allow to
control the effect of higher loop corrections to the Schwinger–Dyson equation
and will be the subject of future work.
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4 The equations

4.1 Linear Schwinger–Dyson equations

In these cases, differential equations for the anomalous dimension was presented
in [1]. However the process through which these equations were encountered,
involving explorations and computer assisted transformations of a system of
partial differential equations, was not enlightening. In this same work, the idea
of propagator–coupling duality gave the same equations we derived from the
renormalization group.

The four dimensional case is very simple, without any possible variation,
and is left as an exercise for the interested reader. In the φ3

6 case, equation (6)
is taken with b = 1, a = 1 − x and D = 6. The Mellin transform becomes a
simple rational function. The Schwinger–Dyson equation takes the following
form:

Π(L) = 1 − a(
∑

γk
∂k

x

k!
)[eLx

− 1]
1

x(1 + x)(2 + x)(3 + x)
(8)

Conformal invariance corresponds to the exchange of a and c and implies a
symmetry for x transformed to −3−x. The application of a suitable differential
operator with respect to L allows to reduce the right hand side to a constant,
and the different terms of the left hand side can be obtained from γ through
the use of some version of equation (5). This derivation has been presented in
Yeats’ thesis [7].

The interest here is the possibility to test the approximation scheme I
propose: let us forget the poles most removed from the origin and compen-
sate with the first few terms of the Taylor expansion. One obtains a sim-
pler differential equation. Instead of applying the full differential operator
∂L(1 + ∂L)(2 + ∂L)(3 + ∂L), we drop the last factors and truncate the Tay-
lor series for 1/(2 + x)(3 + x) to obtain a differential expression on γ of similar
order. Instead of

(3 + γ(2a∂a − 1))(2 + γ(2a∂a − 1))(1 + γ(2a∂a − 1))γ = a, (9)

one obtains:

γ + γ(2a∂a − 1)γ =
a

6

(

1 −
5

6
γ +

19

36
γ(2a∂a + 1)γ

)

(10)

Let us remark that the terms quadratic in γ on the left and right hand sides of
this equation differ, since in one case, one is dealing with the higher derivatives
of the 1PI two-point function and in the other one, with those of its inverse,
the full propagator. A comparison of numerical solutions of the two equations
show that the simplified equation (10) fairs remarkably well: the two solutions
are visually indiscernible up to a = 2, the relative error is around half of a
percent at a = 1. The behaviors however diverge for larger a. When the
exact equation (9) has a regular solution for large a, behaving as a1/2 up to
logarithmic corrections, the solution of the approximate equation (10) hits a
singularity around a = 11.3684.
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The perturbative solutions can also be compared. As in [1], the coefficients
of degree n are multiplied by (−1)n62n−1 to get natural numbers, beginning with
1, 11, 376. These first coefficients are equal, since the approximation is exact at
this order. The coefficients for the approximate solution are comparable to the
one of the full solution, with a ratio decreasing slowly as n−β, with β around
0.22. This value stem from the computation of 200 coefficients. One could also
study the intermediate situation where only the (3+ ∂L) factor is dropped, but
this is of limited interest.

What I wanted to show is that with the action of a suitable differential op-
erator such that the Taylor coefficients of the Mellin transform become rapidly
small, truncating the Taylor expansion to a few terms nonetheless produces
sensible results. Furthermore, an equation as (10) allows to compute easily the
ratio of two successive terms in the perturbative expansion, which is n/3. This
would be less clear from the full equation (9).

4.2 Non-linear Schwinger–Dyson for φ3
6

This is a case which has never been studied. In this nonlinear case, the relevant
Mellin transform for the φ3

6 model is:

eL(1+x+y) Γ(2 + x)

Γ(1 − x)

Γ(2 + y)

Γ(1 − y)

Γ(−1 − x − y)

Γ(4 + x + y)
(11)

In this case, the poles associated to the factors Γ(2 + x) or Γ(2 + y) are farther
from the origin and give contributions to the Taylor expansion which decrease
at least as 2−n at order n. The dominant contributions for the high order
of the Taylor expansion come from the poles of Γ(−1 − x − y). As in the
preceding case, we can differentiate with respect to L in order to cancel the
poles near the origin. More precisely, we need to multiply the Mellin transform
by (−1−x− y)(−x− y)(1−x− y) which corresponds to the action of ∂L − ∂3

L.
Using the relevant renormalization group equation for the higher derivative and
a suitable truncation of the Taylor expansion one obtains:

γ − γ(3a∂a − 1)γ(3a∂a − 1)γ =

a

6

(

1 −
11

3
γ +

a

18
(49γ(3a∂a + 1)γ + 67γ2)

)

(12)

The consequences of this equation will not be detailed here, since one lacks
suitable comparison points. However, it is easy to see that for large orders in a,
the dominant term in the expansion of γ comes from the cubic in γ term on the
left hand side. Associated to the lowest order of γ which is a/6, this proves that
the ratio of successive terms is asymptotically −n/2. This fixes the convergence
radius of the Borel transform of the perturbative series and indicates that the
main singularity is on the negative axis.

4.3 The Wess–Zumino model, simple equation.

The γ function for this model was studied in [2] and a number of observations
could be made on the behavior of the resulting series. The approximations we
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propose here will be checked against the detailed computations we made, and
reciprocally, the approximations allow to prove the observed properties of the
series.

Our starting point is the Mellin transform obtained in [2]:

− (eL(x+y)
− 1)

Γ(1 + x)Γ(1 + y)Γ(−x − y)

Γ(1 − x)Γ(1 − y)Γ(2 + x + y)
(13)

The difficulty with this equation is that even if there is a pole for x+y = 1, the
dominant ones are the ones for x = −1 and symmetrically y = −1. This poles
cannot be cancelled by derivations with respect to L, as the ones depending
only on x+ y. The residue of the pole for x = −1 is 1 for the above expression,
but becomes 1 − y or 1 + xy due to the effect of the derivation with respect to
L to cancel the divergence for x = y = 0.

In a first step, let us consider the contribution coming only from (1 + x)−1.
The application of the differential operator

∑

γk∂
k
x/k! gives the sum of the

(−1)kγk. Since γk+1 is deduced from γk by the application of the operator
γ(3a∂a + 1), we obtain the formal series:

∑

k

(−1)kγk =
∑

k

(−1)k[γ(3a∂a + 1)]k1 =
1

1 + γ(3a∂a + 1)
1. (14)

The exact definition of the inverse does not matter, since we will multiply by
the operator to cancel it. A change however is necessary, since the sum of the
γk is multiplied by a. We multiply both sides of the equation by the operator
1 + γ(3a∂a − 2), which becomes the right one after being permuted with a.
Putting it all together, and adding polynomial contributions to have a result
exact up to the third order, we obtain successively:

γ = 2aγ2
− a + 2a

1

1 + γ(3a∂a + 1)
1 (15)

(1 + γ(3a∂a − 2))[γ + a − 2aγ2) = 2a (16)

γ = a − aγ − γ(3a∂a − 2)γ + 2aγ2 + 2a(2a∂a + 1)γ3 (17)

With this formula, it is easy to obtain the asymptotic growth of the coeffi-
cients in the development of γ =

∑

n(−1)n−1cnan. The term γ(3a∂a−2)γ gives
the ratio of successive terms proportional to 3n. The next term for this ratio
is easy to compute, since the term cubic in γ and aγ2 do not contribute at this
level of precision. One obtains:

cn+1 ≃ (3n + 2)cn (18)

This is exactly the result obtained experimentally from the calculation in [2].
The fact that this most simple approximation has this ratio asymptotically
exact up to the constant terms is at first a surprise. It nevertheless has the
interesting consequence that the ratio of these approximate coefficients and the
exact ones will reach a finite limit. Indeed, a product of terms which behaves
asymptotically as 1+O(1/n2) is convergent. The comparison of the coefficients
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obtained from the iterative solution of equation (17) with the more precise
results obtained in [2] indeed shows that their ratio, which starts at 1 for the
first terms, has a limit which can be estimated to be 0.942617 after hitting a
maximal deviation at 0.9250.

In the six-dimensional theory, it was more difficult to obtain this level of
precision. The reason is that in this Wess–Zumino model, the pole at x = −1
gives the exact contribution for y = 0. The rapid growth of the coefficients of
γ and the fact that, at a given order in a, all the γk which are not zero are
of comparable size make the terms which are linear in the γk asymptotically
dominant. However, we would expect that the terms coming from xy/(1−x−y)
and xy/(1+x) contribute finite terms to equation (18). However, xy/(1−x−y)
has all its Taylor coefficients positive so that there are cancellations due to the
alternating signs of the γk for a given order. The case of xy/(1+x) and xy/(1+y)
is more subtle. The corresponding contribution can be written as:

aγ
1

1 + γ(3a∂a + 1)
γ (19)

When multiplying by the operator 1 + γ(3a∂a − 2), the dominant infinite series
is again cancelled for this term also, and we remain with

3a(γa∂aγ)
1

1 + γ(3a∂a + 1)
γ (20)

The infinite series of terms is therefore multiplied by a term of order a3, so that
the coefficients are individually proportional to cn/n2, and their sum cannot
contribute a finite term since there are only n of them.

4.4 The Wess–Zumino model: higher precision equation.

In order to reach a higher precision on the asymptotic behavior, it is necessary
to take into account the pole for x+ y = 1 and the full residue of the poles at x
or y = −1. Canceling the pole for x + y = 1 can be achieved simply by taking
derivatives with respect to L, the logarithm of the impulsion, to multiply the
Mellin transform by (x + y)(1− x− y). This however add to the complexity of
the residue of the poles at x and y = −1. The Mellin transform now reads:

Γ(2 − x − y)Γ(1 + x)Γ(1 + y)

Γ(2 + x + y)Γ(1 − x)Γ(1 − y)
=

(1 − x)(2 − x)

1 + y
+

(1 − y)(2 − y)

1 + x
− 3 + 3(x + y) (21)

−(x + y)2 + 2(ζ(3) − 1)xy(x + y) + · · ·

In our preceding work, we remarked that expressing the residues in terms of
the product xy allowed for a simpler polynomial part, but in the present case,
it is better to have the different summands of the residue give similar terms.
The corresponding equation for the γ function, dropping the term proportional
to ζ(3) − 1, is:

γ − γ(3∇− 1)γ = −3a + 6a γ − 2a γ(3∇ + 2)γ

+ a (4 − 6γ + 2γ(3∇ + 1)γ)
1

1 + γ(3∇ + 1)
1 (22)
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The operator ∇ has been introduced as a short hand for a∂a to keep down the
size of the equation. The formal inverse can be removed by putting everything
else on the other side:

γ + 3a − γ(3∇− 1)γ − 6a γ + 2a γ(3∇ + 2)γ

4 − 6γ + 2γ(3∇ + 1)γ
=

1

1 + γ(3∇− 2)
a (23)

In this form, the differential equation obtained by applying 1+γ(3∇−2) to both
sides looks rather daunting. The presence of a quotient reintroduces the neces-
sity of series inversion that we avoided by a clever use of the renormalization
group equations. Otherwise, the expansion of the derivative of the quotient,
followed by a multiplication by the square of the denominator in (23) gives a
polynomial equation, but with numerous terms.

Let us remark that in any case, the derivatives with respect to a get multi-
plied by aγ: the total number of possible terms of a given degree in γ is therefore
limited. It is possible that the combinatorial methods of the operad of algebras
with derivation introduced by Jean-Louis Loday [8] is useful to stitch together
similar terms. The complexity of the obtained equation raises the question
whether a systematic improvement of such approximations by the addition of
the contribution of other poles of the Mellin transform is practical.

The factor aγ coming with each derivatives has a double consequence. On
one side, it ensures that perturbatively, higher derivative terms are subdomi-
nant, but this also makes the differential equation highly singular in the vicinity
of a = 0: proving the non-perturbative existence of the solution is not straight-
forward.

5 Conclusion.

Differential equations for renormalization group functions had been proposed
in recent years. In her thesis [7], Karen Yeats proposed a way to linearize the
nonlinear Schwinger–Dyson equations and obtain simple differential equations
for the renormalization group functions, with a single function catching all the
unknown. The proposition has been applied both to QED [9] and to QCD [10].
However, the transformed Schwinger–Dyson equation is indeed linear, but with
an infinite number of terms. The recursive definition of the function appearing
in the differential equation is very complex, and even the signs of the successive
terms are difficult to predict. With all these unknown, the interest of such
computations is not clear for me.

In the present paper, I have shown how to deduce from Schwinger–Dyson
equations simple differential equations for the renormalization group functions.
They readily give the asymptotic behavior of the perturbative series and in
particular the convergence radius of the Borel transform. The inclusion of the
contributions from other poles of the Mellin transform should allow to better
specify the properties of the Borel transform.

The present work only considered simple Schwinger–Dyson equations, with
a one-loop correction to the propagator. However, the full Schwinger–Dyson
equation includes higher order terms, and we would like to know how these
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additional contributions modify the properties of the renormalization group
functions. The difficulty a priori with such terms is the great number of propa-
gators, each coming with its own variable, and therefore the rapid growth of the
number of terms with a given number of derivatives of the Mellin transform.
However the leading contributions in the Taylor expansion of the multivariable
Mellin transforms correspond to its poles, which can be related to the diver-
gences of the diagram. Indeed, with every propagator coming with a variable
exponent, all subdiagrams become divergent for some choice of the exponents.
A rôle should be find for the core Hopf algebra introduced in [11, 12] to orga-
nize these divergences. The poles have a simple structure, because they only
depend on the sum of the Mellin variables of a given subgraph. The highly
nonlinear character of such Schwinger–Dyson equations should not be a hin-
drance to their successful use. In particular, at least in a large N limit where
the number of primitive divergences does not grow too fast, it could be shown
that these additional terms do not change the leading asymptotic behavior of
the perturbative series.

Another desirable extension is to deal with vertex renormalization. However
the vertices depend a priori on different energy scales and the full vertex is
not entirely defined by its renormalization group dependence. There are also
overlapping divergences, which mean that it is not possible to simply replace
the sum of a vertex and its counterterm by a renormalized vertex. We must also
choose the renormalization point for the vertex. In QED, the Ward identities
are simpler for the vertex with a zero impulse photon, but this is not a suitable
choice in a massless theory.

Whatever the successes we encounter in these improvements, this work has
already delivered. It has shown how to combine Schwinger–Dyson equations and
renormalization group to control the asymptotic behavior of the pertubative se-
ries for exactly renormalizable quantum field theories which are not so artificial
than the ones studied in [1, 6]. This is a remarkable result, since the simple
recursions developed here subsume huge number of individual graphs with their
hierarchy of counterterms, with important cancellations between contributions
of differing signs.

Acknowledgments: I wish to express my special thanks to Olivier Babelon
who suggested to look for global properties of the Mellin transform in order to
understand the asymptotic properties of its local expansion which puzzled us in
our preceding work. The presentation of our previous work in seminars helped
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organizers of a workshop in Cargèse.
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