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CODING DISCRETIZATIONS OF CONTINUOUS FUNCTIONS

CRISTOBAL ROJAS AND SERGE TROUBETZKOY

Abstract. We consider several coding discretizations of continuous functions
which reflect their variation at some given precision. We study certain statis-
tical and combinatorial properties of the sequence of finite words obtained by
coding a typical continuous function when the diameter of the discretization
tends to zero. Our main result is that any finite word appears on a subsequence
discretization with any desired limit frequency.

1. Introduction

Take a straight line in the plane and code it by a 0 − 1 sequence as follows:
each time it crosses an integer vertical line (that is, x = n for some n ∈ Z) write
a 0 and each time it crosses an integer horizontal line (y = n for some n ∈ Z)
write a 1. In the case of irrational slope the corresponding sequence is called a
Sturmian sequence [F]. A classical result tells us that each word that appears in
such a sequence has a limiting frequency. Moreover, the set of numbers occurring as
limit frequencies can be completely described [B]. Recently similar condings have
been considered for quadratic functions and limiting frequencies are caluculated for
words which appear [DTZ].

In this article we ask the question if limiting frequencies can appear in more gen-
eral circumstance: namely for typical, in the sense of Baire, continuous functions.
For such functions it is not clear which kind of coding should be used. Here we
propose three different notions of coding. For each of these codings we study two
different questions: if all finite words can appear in a code or not, and if words in
the code of a typical function can have a limiting frequency.

A discretization system of [0, 1] is a sequence Xn := {0 = xn
1 , xn

2 , ..., xn
Nn

= 1} ⊂
[0, 1] where,

(1) X1 ⊂ X2 ⊂ ... ⊂ Xn ⊂ .... ⊂ [0, 1],
(2) For each Xn, xn

i < xn
i+1 for all 1 ≤ i < Nn,

(3) The maximal resolution Hn := max1≤i<Nn
|xn

i+1 − xn
i | converges to zero.

We denote by hn := min1≤i<Nn
|xn

i+1 − xn
i |, the minimal resolution. To each dis-

cretization system Xn, we associate the (uniform) discretization of the image space
given by Yn := {yn

j = jhn : j ∈ N}.

Let f ∈ C([0, 1]). For each xn
i ∈ Xn there is a unique j ∈ Z such that f(xn

i ) ∈
[yn

j , yn
(j+1)). Let us denote this j by fn

i .

Definition 1. (See Figure 1) The quantitative code Q(f, n) ∈ Z
Nn−1 of f ∈

C([0, 1]) is defined by:

Q(f, n)i := fn
i+2 − fn

i+1, 0 ≤ i < Nn − 1.
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Figure 1. The various codes considered:
quantitative: Q(f, n) = 5−2−3022−3
qualitative: q(f, n) = 1−1−1011−1
stretched: s(f, n) = 111110−1−10−1−1−100110110−1−1−10

The qualitative version q(f, n) ∈ {−1, 0, 1}Nn−1 of the quantitative code Q(f, n)
is defined by setting

q(f, n)i :=











1, if Q(f, n)i > 0

0, if Q(f, n)i = 0

−1, if Q(f, n)i < 0.

Finally, the stretched version s(f, n) ∈ {1, 0,−1}∗ of the quantitative code
Q(f, n) is defined as follows: if Q(f, n)i is positive then we replace it by a run
of Q(f, n)i 1’s followed by a zero and by a run of −1’s followed by a zero if Q(f, n)i

is negative.

All three of these codes seem natural in terms of discrete curves on the computer
screen. In case when the discretization system is uniform, the streched quantitative
code of a line segment with irrational slope is exactly the well known coding by
Sturmian sequences [F].

Let us introduce some more notation in order to state our main results. Let w, v

be finite words over the same alphabet Σ (finite or infintie) such that |w| ≤ |v|. We
denote by

oc (w, v) := #{j : v
j+|w|
j = w, 0 ≤ j ≤ |v| − |w|} (1)
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the number of times w occurs in v and by fr (w, v) := oc (w,v)
|v| the relative frequency

of w in v. The minimal periodic factor length p(w) of w is defined to be p(w) :=
min{|u| : oc (w, wu) = 2}. For example, p(010) = 2.

Remark 1. The limit relative frequency of w in some infinite sequence vn is at most
1

p(w) . That is:

lim sup
n

fr (w, vn) ≤
1

p(w)
.

Our main result is the following:

Theorem 1. Let Xn be a discretization system. For a typical f ∈ C([0, 1]) the
following holds:

(i) (Qualitative) For any w ∈ {−1, 0, 1}∗ and α ∈ [0, 1
p(w) ], there exists a subse-

quence ni such that

lim
i→∞

fr(w, q(f, ni)) = α.

(ii) (Quantitative) Suppose that Xn satisfies lim infn nhn = 0. Then for any w ∈
Z
∗ and α ∈ [0, 1

p(w) ], there exists a subsequence ni such that

lim
i→∞

fr(w, Q(f, ni)) = α.

(iii) (Stretched) Suppose that Xn satisfies lim infn nhn = 0 and Hn

hn

is bounded.
Then

lim inf
n→∞

fr(0, s(f, n)) = 0,

if f(1) ≥ f(0)

lim inf
n→∞

fr(1, s(f, n)) = lim sup
n→∞

fr(−1, s(f, n)) =
1

2
,

and if f(1) ≤ f(0)

lim sup
n→∞

fr(1, s(f, n)) = lim inf
n→∞

fr(−1, s(f, n)) =
1

2

2. Preliminaries

We start by a simple result, which says that one can focus on functions which
do not intersect the discretization.

Lemma 1. Let Xn be a discretization system. Then for a typical function f one
has that for all n ∈ N and all i = 1, ..., Nn, f(xn

i ) ∈ (yn
j , yn

j+1), for the corresponding
j ∈ N.

Proof. The set Fn = {f : f(xn
i ) 6= yn

j for all j ∈ N and i = 1, ..., Nn} is clearly

open and dense. Hence,
⋂

n Fn is a Gδ-dense set. �

One would expect that codings of typical functions contains few zeros and all
possible words of 1’s and −1′s. This is partially true.

Proposition 1. Let Xn be a discretization system. For a typical f , q(f, n) contains
no 0, infinitely often.
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Proof. We prove that the set of functions such that for all n ∈ N, there exists m ≥ n

such that q(f, m)i 6= 0 for all i = 0, ..., Nm−2, is residual in C([0, 1]). Observe that
q(f, n)i 6= 0 whenever |f(xn

i+1) − f(xn
i )| > hn. Clearly, the set

Fm = {f : |f(xm
i+1) − f(xm

i )| > hm for all i = 1, ..., Nm − 1}

is open. Moreover, for each n ∈ N, the set
⋃

m≥n

Fm

is a dense open set. Indeed, given g ∈ C([0, 1]) and ε > 0, there exists m ≥ n such
that hm < ε and it is easy to construct a function f ∈ Fm such that ‖g− f‖∞ < ε.
Therefore,

⋂

n

⋃

m≥n

Fm

is a Gδ-dense set.
�

Remark 2. In the previous result, the symbol 0 cannot be replaced by 1 nor by
−1. On the other hand, Theorem 1 says that the qualitative and the quantitative
codings of a typical function does not posses any statistical regularity. So that from
a statistical viewpoint, the symbols 1 or −1 (or any n ∈ Z in the quantitative case)
are not privileged with respect to 0.

2.1. Approximation by ε-boxes. Here we will describe a simple construction
which will be used in the proofs of our main results.

Let δ > 0. For a given n we define a subdiscretization Xδ
n := {xik

: k = 1, ..., K}
of Xn as follows:

xi1 = 0,

xik+1
= max{xn

i ∈ Xn : xn
i < xik

+ 2δ}
xiK

= 1

The number of points of Xn in the interval (xik
, xik+1

] will be denoted by lk. With
this notation we have xik+1

= xik+lk .
Next, to each g ∈ C([0, 1]) and ε > 0, the associated ε-boxes Bk(g, ε, δ) are

defined by:

Bk(g, ε, δ) := (xik
, xik

+ 2δ) × (g(∆k) −
ε

2
, g(∆k) +

ε

2
)) (2)

where ∆k =
xi

k
+xi

k+1

2 . See figure 2.1. We shall write just Bk when no confusion is
possible.

Let δg : R
+ → R

+ denote the modulus of continuity of g. That is, for every x, x′

in [0, 1], if |x − x′| < δg(ε) then |f(x) − f(x′)| < ε.

Lemma 2. For the ε-boxes Bk(g, ε, δ), k = 1, ..., K, the following holds:

(i) If δ < δg(
ε
2 ) then the ε-boxes form an ε-cover of the graph of g. That is, any

(x, y) ∈
⋃

k Bk(g, ε, δg(
ε
2 )) satisfy |g(x) − y| < ε.

(ii) If ⌈ 1
2δ
⌉Hn < 2δ, then K = ⌈ 1

2δ
⌉ + 1.

Proof. Let (x, y) ∈
⋃

k Bk. Then (x, y) ∈ Bk for some k. Hence |x−∆k| < δ < δg(
ε
2 )

which implies |g(x) − g(∆k)| < ε
2 . Since g(∆k) − ε

2 < y < g(∆k) + ε
2 we conclude

|g(x) − y| < ε.
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Figure 2. An ε-cover by the boxes Bk(g, ε, δ)

Since xik+1
< xik

+ 2δ, we have that K ≥ ⌈ 1
2δ
⌉ + 1. Now, for each k we have

xik
+ 2δ − xik+1

≤ Hn. It follows that

K ≤

⌈

1

2δ

⌉

+

⌈

⌈ 1
2δ
⌉Hn

2δ

⌉

.

Hence, if 2δ > ⌈ 1
2δ
⌉Hn we obtain K ≤ ⌈ 1

2δ
⌉ + 1. �

2.2. Words and frequencies. Consider a finite word w over some alphabet Σ.
For each α ∈ [0, 1

p(w) ] and t > 0, it is easy to construct a sequence of finite words

vk, k = 1, ..., K − 1, satisfying |vk| = lk − 1 and |fr (w, vk) − α| < 1
3t

. Let bk ∈ Σ
be any sequence of K − 1 letters and put v = v1b1v2b2 · · · vK−1bK−1.

Lemma 3. If (K−1)|w|
|v| < 1

3t
then |fr(w, v) − α| < 1

t
.

Proof. Put oc (w, vk) = pk, then we have
∑K−1

k=1 pk

|v|
≤ fr (w, f, n) ≤

∑K−1
k=1 pk

|v|
+

(K − 1)|w|

|v|
(3)

A simple calculation yields
∑K−1

k=1 pk

|v|
=

∑K−1
k=1 pk

∑K−1
k=1 (lk − 1)

−

∑K−1
k=1 pk

(
∑K−1

k=1 (lk − 1))2 + (K − 1)
∑K−1

k=1 (lk − 1)
. (4)
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On the one hand we have:

∣

∣

∣

∣

∣

∑K−1
k=1 pk

∑K−1
k=1 (lk − 1)

− α

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

K − 2

K−1
∑

k=1

fr (w, vk) − α

∣

∣

∣

∣

∣

<
1

3t

and on the other hand, the absolute value of the second term in the right side of
equation (4) is less than

|v| − (K − 1)

(|v| − (K − 1))2 + (|v| − (K − 1))(K − 1)
=

1

|v|
≤

1

3t

so that
∣

∣

∣

∣

∣

∑K−1
k=1 pk

|v|
− α

∣

∣

∣

∣

∣

<
2

3t
.

Since (K−1)|w|
|v| < 1

3t
, from equation (3) we obtain |fr (w, f, n) − α| ≤ 1

t
and the

lemma is proved. �

3. Proofs

Proof of Theorem 1. We begin by proving parts (i) and (ii). For each finite word
w in {−1, 0, 1}∗ or Z

∗, let {αw
s }s∈N be a sequence which is dense on [0, 1

p(w) ]. Let

Fi denote the open sets defined in Lemma 1 (the set of functions which do not
intersect the discretization Xi). For integers s, n, t, consider the sets

F
q

w,s,n,t := {f ∈ ∩i≤nFi : |fr (w, q(f, n)) − αs| ≤
1

t
},

F
Q

w,s,n,t := {f ∈ ∩i≤nFi : |fr (w, q(f, n)) − αs| ≤
1

t
}.

Clearly these sets are open since a function f in ∩i≤nFi can be perturbed without
changing its code q(f, n) or Q(f, n). Hence, the following sets are open too.

F
q
w,s,m,t := {f : ∃n ≥ m, f ∈ F

q

w,s,n,t},

F
Q
w,s,m,t := {f : ∃n ≥ m, f ∈ F

Q

w,s,n,t}.

We now show that these sets are moreover dense. Let g ∈ C([0, 1]) and ε > 0. We

will construct a function f in F
q
w,s,m,t (respectively F

Q
w,s,m,t) such that ‖f−g‖∞ ≤ ε.

Case F
q
w,s,m,t. Put δ < min{δg(

ε
2 ), ε

4} and let Bk be the associated ε-boxes. For

n ≥ m large enough (in particular such that ⌈ 1
2δ
⌉Hn < 2δ) there exists a sequence

of finite words vk, k = 1, ..., K − 1, such that |vk| = lk − 1, |fr (w, vk) − αs| < 1
3t

and (K−1)|w|
Nn

< 1
3t

.
We claim that a function fv can be constructed such that for each k we have

q(fv, n)ik+lk
ik+1 = vk and fv is ε-close to g (the interval (xik

, xik+1) is reserved to make
“the bridge” and there are K such intervals, see figure 3). To see this, observe that
the condition 2δ < ε

2 implies that for each k, the triangles of vertices (ak, bk, ck)
defined by

a
q
k = (xik+1, g(∆k))

b
q
k = (xik+1

, g(∆k) + |vk|hn)

c
q
k = (xik+1

, g(∆k) − |vk|hn)
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xik
xik+1 xik+1

ak

bk

ck

Figure 3. The triangles (ak, bk, ck).

are included in Bk and that for any vk, a function fv such that q(fv, n)ik+lk
ik+1 = vk

can be inscribed in these triangles. By lemma 2 a function f so constructed satisfies
‖f − g‖∞ ≤ ε. By lemma 3 we have that |fr (w, q(f, n)) − αs| < 1

t
.

Case F
Q
w,s,m,t. The proof that these sets are dense is the same as for the sets

F
q
w,s,m,t, with the only exception that we have to take δ < ε

4H(w) where H(w) :=

maxi |wi| denotes the hight of w. This condition assures that a function fv such

that q(fv, n)ik+lk
ik+1 = vk can be inscribed in the corresponding triangles:

a
Q
k = (xik+1, g(∆k))

b
Q
k = (xik+1

, g(∆k) + |vk|H(w)hn)

c
Q
k = (xik+1

, g(∆k) − |vk|H(w)hn).

It follows that the sets
⋂

w,s,m,t

F
q
w,s,m,t and

⋂

w,s,m,t

F
Q
w,s,m,t

are both Gδ-dense.
Finally we prove part (iii). Let un := oc (1, s(f, n)) be the numbers of 1’s (or

“ups”) in s(f, n) and dn := oc (−1, s(f, n)) be the number of −1’s (or “downs”), in
stage n. Then Vn = un + dn denotes the total n-variation. By definition we have
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that |s(f, n)| = Vn +Nn, where Nn is both the cardinality of the discretization and
the number of zeros. Hence we have

fr (1, s(f, n)) =
un

Vn + Nn

.

We will need the following lemma:

Lemma 4. Let Xn be a discretization system satisfying lim infn nhn = 0. Then,
for a typical f , there are infinitely many n such that un > nNn

3 and dn > nNn

3 .

Proof. Consider the set of functions

Fn :=

{

f : card{i : Q(f, n)i > n} >
Nn

3
and card{i : Q(f, n)i < −n} >

Nn

3

}

∩
⋂

i≤n

Fi

This is an open set. Moreover, for any m ∈ N, the set
⋃

n≥m

Fn

is dense. For let g ∈ C[0, 1] and consider the associated ε-boxes Bk. It is clear
that for some n ≥ m such that nhn < ε

2 one can construct a function f satisfying
graph(f) ⊂ ∪kBk and |f(xi+1) − f(xi)| > n for all i. Moreover, we can alternate
the sign of |f(xi+1) − f(xi)| at every i, with at most K exceptions. Hence the
function so constructed belongs to Fn and then the set

⋂

m

⋃

n≥m

Fn

is Gδ dense.
�

Now, a simple calculation yields

un

Vn

=
1

2 − ∆n

un

where ∆n = ⌊ (f(1)−f(0))
hn

⌋. So, if f(1) = f(0) we have un

Vn

= 1
2 . Let M be a bound

for Hn

hn

. We have then that 1
hn

≤ MNn and hence ∆n ≤ (f(1) − f(0))MNn. By
Lemma 4 we have that

(f(1) − f(0))MNn

un

<
3(f(1)− f(0))MNn

nNn

and
Nn

Vn

<
3

n

for infinitely many n, so that,

lim inf
∆n

un

= 0 if f(1) > f(0), (5)

lim sup
∆n

un

= 0 if f(1) < f(0). (6)

Hence, when f(1) > f(0) we have

lim inf
n→∞

un

Vn + Nn

= lim inf
n→∞

un

Vn

=
1

2 − lim inf ∆n

un

=
1

2
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and when f(1) < f(0) we have

lim sup
n→∞

un

Vn + Nn

= lim sup
n→∞

un

Vn

=
1

2 − lim inf ∆n

un

=
1

2

and the results follows by symmetry.
�
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