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Introduction

Take a straight line in the plane and code it by a 0 -1 sequence as follows: each time it crosses an integer vertical line (that is, x = n for some n ∈ Z) write a 0 and each time it crosses an integer horizontal line (y = n for some n ∈ Z) write a 1. In the case of irrational slope the corresponding sequence is called a Sturmian sequence [F]. A classical result tells us that each word that appears in such a sequence has a limiting frequency. Moreover, the set of numbers occurring as limit frequencies can be completely described [B]. Recently similar condings have been considered for quadratic functions and limiting frequencies are caluculated for words which appear [DTZ].

In this article we ask the question if limiting frequencies can appear in more general circumstance: namely for typical, in the sense of Baire, continuous functions. For such functions it is not clear which kind of coding should be used. Here we propose three different notions of coding. For each of these codings we study two different questions: if all finite words can appear in a code or not, and if words in the code of a typical function can have a limiting frequency.

A discretization system of [0, 1] is a sequence

X n := {0 = x n 1 , x n 2 , ..., x n Nn = 1} ⊂ [0, 1] where, (1) X 1 ⊂ X 2 ⊂ ... ⊂ X n ⊂ .... ⊂ [0, 1], (2) For each X n , x n i < x n i+1 for all 1 ≤ i < N n , (3) The maximal resolution H n := max 1≤i<Nn |x n i+1 -x n i | converges to zero. We denote by h n := min 1≤i<Nn |x n i+1 -x n i |, the minimal resolution.
To each discretization system X n , we associate the (uniform) discretization of the image space given by Y n := {y n j = jh n :

j ∈ N}. Let f ∈ C([0, 1]). For each x n i ∈ X n there is a unique j ∈ Z such that f (x n i ) ∈ [y n j , y n (j+1)
). Let us denote this j by f n i .

Definition 1. (See Figure 1) The quantitative code

Q(f, n) ∈ Z Nn-1 of f ∈ C([0, 1]) is defined by: Q(f, n) i := f n i+2 -f n i+1 , 0 ≤ i < N n -1. 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 x 2 x 3 x 4 x 6 x 7 0 = x 1 1 = x 8 Figure 1. The various codes considered: quantitative: Q(f, n) = 5 -2 -3022 -3 qualitative: q(f, n) = 1 -1 -1011 -1 stretched: s(f, n) = 111110 -1 -10 -1 -1 -100110110 -1 -1 -10
The qualitative version q(f, n) ∈ {-1, 0, 1} Nn-1 of the quantitative code Q(f, n) is defined by setting

q(f, n) i :=      1, if Q(f, n) i > 0 0, if Q(f, n) i = 0 -1, if Q(f, n) i < 0.
Finally, the stretched version s(f, n) ∈ {1, 0, -1} * of the quantitative code Q(f, n) is defined as follows: if Q(f, n) i is positive then we replace it by a run of Q(f, n) i 1's followed by a zero and by a run of -1's followed by a zero if Q(f, n) i is negative.

All three of these codes seem natural in terms of discrete curves on the computer screen. In case when the discretization system is uniform, the streched quantitative code of a line segment with irrational slope is exactly the well known coding by Sturmian sequences [F].

Let us introduce some more notation in order to state our main results. Let w, v be finite words over the same alphabet Σ (finite or infintie) such that |w| ≤ |v|. We denote by oc (w, v) := #{j :

v j+|w| j = w, 0 ≤ j ≤ |v| -|w|} (1) 
the number of times w occurs in v and by fr (w, v) := oc (w,v) |v| the relative frequency of w in v. The minimal periodic factor length p(w) of w is defined to be p(w) := min{|u| : oc (w, wu) = 2}. For example, p(010) = 2.

Remark 1. The limit relative frequency of w in some infinite sequence v n is at most

1 p(w) . That is: lim sup n fr (w, v n ) ≤ 1 p(w)
.

Our main result is the following:

Theorem 1. Let X n be a discretization system. For a typical f ∈ C([0, 1]) the following holds: (i) (Qualitative) For any w ∈ {-1, 0, 1} * and α ∈ [0, 1 p(w) ]
, there exists a subsequence n i such that

lim i→∞ fr(w, q(f, n i )) = α.
(ii) (Quantitative) Suppose that X n satisfies lim inf n nh n = 0. Then for any w ∈ Z * and α ∈ [0, 1 p(w) ], there exists a subsequence n i such that

lim i→∞ fr(w, Q(f, n i )) = α. (iii) (Stretched) Suppose that X n satisfies lim inf n nh n = 0 and Hn hn is bounded. Then lim inf n→∞ fr(0, s(f, n)) = 0, if f (1) ≥ f (0) lim inf n→∞ fr(1, s(f, n)) = lim sup n→∞ fr(-1, s(f, n)) = 1 2 , and if f (1) ≤ f (0) lim sup n→∞ fr(1, s(f, n)) = lim inf n→∞ fr(-1, s(f, n)) = 1 2 2. Preliminaries
We start by a simple result, which says that one can focus on functions which do not intersect the discretization.

Lemma 1. Let X n be a discretization system. Then for a typical function f one has that for all n ∈ N and all i = 1, ..., N n , f (x n i ) ∈ (y n j , y n j+1 ), for the corresponding j ∈ N.

Proof. The set

F n = {f : f (x n i ) = y n j for all j ∈ N and i = 1, ..., N n } is clearly open and dense. Hence, n F n is a G δ -dense set.
One would expect that codings of typical functions contains few zeros and all possible words of 1's and -1 ′ s. This is partially true.

Proposition 1. Let X n be a discretization system. For a typical f , q(f, n) contains no 0, infinitely often.

Proof. We prove that the set of functions such that for all n ∈ N, there exists m ≥ n such that q(f, m) i = 0 for all i = 0, ..., N m -2, is residual in C([0, 1]). Observe that q(f, n

) i = 0 whenever |f (x n i+1 ) -f (x n i )| > h n . Clearly, the set F m = {f : |f (x m i+1 ) -f (x m i )| > h m for all i = 1, ..., N m -1} is open. Moreover, for each n ∈ N, the set m≥n F m
is a dense open set. Indeed, given g ∈ C([0, 1]) and ε > 0, there exists m ≥ n such that h m < ε and it is easy to construct a function

f ∈ F m such that g -f ∞ < ε. Therefore, n m≥n F m is a G δ -dense set.
Remark 2. In the previous result, the symbol 0 cannot be replaced by 1 nor by -1. On the other hand, Theorem 1 says that the qualitative and the quantitative codings of a typical function does not posses any statistical regularity. So that from a statistical viewpoint, the symbols 1 or -1 (or any n ∈ Z in the quantitative case) are not privileged with respect to 0.

2.1. Approximation by ε-boxes. Here we will describe a simple construction which will be used in the proofs of our main results.

Let δ > 0. For a given n we define a subdiscretization X δ n := {x i k : k = 1, ..., K} of X n as follows:

x i1 = 0, x i k+1 = max{x n i ∈ X n : x n i < x i k + 2δ} x iK = 1
The number of points of X n in the interval (x i k , x i k+1 ] will be denoted by l k . With this notation we have

x i k+1 = x i k +l k .
Next, to each g ∈ C([0, 1]) and ε > 0, the associated ε-boxes B k (g, ε, δ) are defined by:

B k (g, ε, δ) := (x i k , x i k + 2δ) × (g(∆ k ) - ε 2 , g(∆ k ) + ε 2 )) (2) 
where

∆ k = xi k +xi k+1 2
. See figure 2.1. We shall write just B k when no confusion is possible.

Let δ g : R + → R + denote the modulus of continuity of g. That is, for every

x, x ′ in [0, 1], if |x -x ′ | < δ g (ε) then |f (x) -f (x ′ )| < ε.
Lemma 2. For the ε-boxes B k (g, ε, δ), k = 1, ..., K, the following holds:

(i) If δ < δ g ( ε 2
) then the ε-boxes form an ε-cover of the graph of g. That is, any

(x, y) ∈ k B k (g, ε, δ g ( ε 2 )) satisfy |g(x) -y| < ε. (ii) If ⌈ 1 2δ ⌉H n < 2δ, then K = ⌈ 1 2δ ⌉ + 1. Proof. Let (x, y) ∈ k B k . Then (x, y) ∈ B k for some k. Hence |x-∆ k | < δ < δ g ( ε 2 ) which implies |g(x) -g(∆ k )| < ε 2 . Since g(∆ k ) -ε 2 < y < g(∆ k ) + ε 2 we conclude |g(x) -y| < ε. Figure 2. An ε-cover by the boxes B k (g, ε, δ) Since x i k+1 < x i k + 2δ, we have that K ≥ ⌈ 1 2δ ⌉ + 1. Now, for each k we have x i k + 2δ -x i k+1 ≤ H n . It follows that K ≤ 1 2δ + ⌈ 1 2δ ⌉H n 2δ . Hence, if 2δ > ⌈ 1 2δ ⌉H n we obtain K ≤ ⌈ 1 2δ ⌉ + 1.
2.2. Words and frequencies. Consider a finite word w over some alphabet Σ.

For each α ∈ [0, 1 p(w) ] and t > 0, it is easy to construct a sequence of finite words

v k , k = 1, ..., K -1, satisfying |v k | = l k -1 and |fr (w, v k ) -α| < 1 3t . Let b k ∈ Σ be any sequence of K -1 letters and put v = v 1 b 1 v 2 b 2 • • • v K-1 b K-1 . Lemma 3. If (K-1)|w| |v| < 1 3t then |fr(w, v) -α| < 1 t . Proof. Put oc (w, v k ) = p k , then we have K-1 k=1 p k |v| ≤ fr (w, f, n) ≤ K-1 k=1 p k |v| + (K -1)|w| |v| (3) 
A simple calculation yields

K-1 k=1 p k |v| = K-1 k=1 p k K-1 k=1 (l k -1) - K-1 k=1 p k ( K-1 k=1 (l k -1)) 2 + (K -1) K-1 k=1 (l k -1) . (4)
On the one hand we have:

K-1 k=1 p k K-1 k=1 (l k -1) -α = 1 K -2 K-1 k=1 fr (w, v k ) -α < 1 3t
and on the other hand, the absolute value of the second term in the right side of equation ( 4) is less than

|v| -(K -1) (|v| -(K -1)) 2 + (|v| -(K -1))(K -1) = 1 |v| ≤ 1 3t so that K-1 k=1 p k |v| -α < 2 3t . Since (K-1)|w| |v| < 1 3t , from equation (3) we obtain |fr (w, f, n) -α| ≤ 1
t and the lemma is proved.

Proofs

Proof of Theorem 1. We begin by proving parts (i) and (ii). For each finite word w in {-1, 0, 1} * or Z * , let {α w s } s∈N be a sequence which is dense on [0, 1 p(w) ]. Let F i denote the open sets defined in Lemma 1 (the set of functions which do not intersect the discretization X i ). For integers s, n, t, consider the sets

F q w,s,n,t := {f ∈ ∩ i≤n F i : |fr (w, q(f, n)) -α s | ≤ 1 t }, F Q w,s,n,t := {f ∈ ∩ i≤n F i : |fr (w, q(f, n)) -α s | ≤ 1 t }.
Clearly these sets are open since a function f in ∩ i≤n F i can be perturbed without changing its code q(f, n) or Q(f, n). Hence, the following sets are open too.

F q

w,s,m,t := {f : ∃n ≥ m, f ∈ F q w,s,n,t },

F Q w,s,m,t := {f : ∃n ≥ m, f ∈ F Q w,s
,n,t }. We now show that these sets are moreover dense. Let g ∈ C([0, 1]) and ε > 0. We will construct a function f in F q w,s,m,t (respectively F Q w,s,m,t ) such that f -g ∞ ≤ ε. Case F q w,s,m,t . Put δ < min{δ g ( ε 2 ), ε 4 } and let B k be the associated ε-boxes. For n ≥ m large enough (in particular such that ⌈ 1 2δ ⌉H n < 2δ) there exists a sequence of finite words v

k , k = 1, ..., K -1, such that |v k | = l k -1, |fr (w, v k ) -α s | < 1 3t and (K-1)|w| Nn < 1
3t . We claim that a function f v can be constructed such that for each k we have q

(f v , n) i k +l k i k +1 = v k and f v is ε-close to g (the interval (x i k , x i k +1
) is reserved to make "the bridge" and there are K such intervals, see figure 3). To see this, observe that the condition 2δ < ε 2 implies that for each k, the triangles of vertices (a k , b k , c k ) defined by

a q k = (x i k +1 , g(∆ k )) b q k = (x i k+1 , g(∆ k ) + |v k |h n ) c q k = (x i k+1 , g(∆ k ) -|v k |h n ) x i k x i k +1 x i k+1 a k b k c k Figure 3. The triangles (a k , b k , c k ).
are included in B k and that for any v k , a function f v such that q(f v , n) i k +l k i k +1 = v k can be inscribed in these triangles. By lemma 2 a function f so constructed satisfies fg ∞ ≤ ε. By lemma 3 we have that |fr (w, q(f, n))α s | < 1 t . Case F Q w,s,m,t . The proof that these sets are dense is the same as for the sets F q w,s,m,t , with the only exception that we have to take δ < ε 4H(w) where H(w) := max i |w i | denotes the hight of w. This condition assures that a function f v such that q(f v , n) i k +l k i k +1 = v k can be inscribed in the corresponding triangles:

a Q k = (x i k +1 , g(∆ k )) b Q k = (x i k+1 , g(∆ k ) + |v k |H(w)h n ) c Q k = (x i k+1 , g(∆ k ) -|v k |H(w)h n ).
It follows that the sets w,s,m,t F q w,s,m,t and w,s,m,t

F Q w,s,m,t
are both G δ -dense. Finally we prove part (iii). Let u n := oc (1, s(f, n)) be the numbers of 1's (or "ups") in s(f, n) and d n := oc (-1, s(f, n)) be the number of -1's (or "downs"), in stage n. Then V n = u n + d n denotes the total n-variation. By definition we have

that |s(f, n)| = V n + N n , where N n is both the cardinality of the discretization and the number of zeros. Hence we have

We will need the following lemma:

Lemma 4. Let X n be a discretization system satisfying lim inf n nh n = 0. Then, for a typical f , there are infinitely many n such that u n > nNn 3 and d n > nNn 3 . Proof. Consider the set of functions

This is an open set. Moreover, for any m ∈ N, the set

for all i. Moreover, we can alternate the sign of |f (x i+1 )f (x i )| at every i, with at most K exceptions. Hence the function so constructed belongs to F n and then the set

Let M be a bound for Hn hn . We have then that 1 hn ≤ M N n and hence ∆ n ≤ (f (1)f (0))M N n . By Lemma 4 we have that

and when f (1) < f (0) we have lim sup

and the results follows by symmetry.