
HAL Id: hal-00403798
https://hal.science/hal-00403798v1

Preprint submitted on 13 Jul 2009 (v1), last revised 6 Dec 2010 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of the Toolkit method for the time-dependant
Schrödinger equation

Lucie Baudouin, Julien Salomon, Gabriel Turinici

To cite this version:
Lucie Baudouin, Julien Salomon, Gabriel Turinici. Analysis of the Toolkit method for the time-
dependant Schrödinger equation. 2009. �hal-00403798v1�

https://hal.science/hal-00403798v1
https://hal.archives-ouvertes.fr


ANALYSIS OF THE TOOLKIT METHOD FOR THE

TIME-DEPENDANT SCHRÖDINGER EQUATION

Lucie Baudouin,Julien Salomon,Gabriel Turinici

Abstract. The goal of this paper is to provide an analysis of the “toolkit”
method used in the numerical approximation of the time-dependent Schrödinger
equation. The “toolkit” method is based on precomputation of elementary
propagators and was seen to be very efficient in the optimal control frame-
work. Our analysis shows that this method provides better results than the
second order Strang operator splitting. In addition, we present two improve-
ments of the method in the limit of low and large intensity control fields.

1. Introduction

The control of the evolution of molecular systems at the quantum level has been
a long standing goal ever since the beginning of the laser technology. After an
initial slowed down of the investigations in this area due to unsuccessful experi-
ments, the realization that the problem can be recast and attacked with the tools
of (optimal) control theory [10] greatly contributed to the first positive experimen-
tal results [1, 11, 12, 19, 20]. Ever since, the desire to understand theoretically how
the laser acts to control the molecule lead the investigators to resort to numerical
simulations which require repeated resolution of the Time Dependent Schrödinger
Equation of the type (1); additional motivation comes from related contexts (online
identification algorithms, learning algorithms, quantum computing [7], etc.).

The numerical method used to solve the time dependent Schrödinger equation
must provide accurate results without prohibitive computational cost. The conser-
vation of the L2 norm of the wave function ψ(x, t) is also generally required for
stability and as a mean of qualitative validation of the numerical solution.

In this context, the second order Strang operator splitting is often considered [4,
8, 18]. However, this method suffers from two drawbacks. First, the numerical
error is proportional to the norm of the control which implies poor accuracy when
dealing with large laser fields ε(t) and make necessary the use of small time steps.
Secondly, it requires at each time step three matrix products. This difficulty is
enhanced in some particular settings e.g., in optimal control, where the matrices
involved in the control term must be assembled online.

Recently introduced, the “toolkit method” [21, 22] solves this last problem by
precomputing a set of elementary matrices, used in the numerical resolution. Each
matrix is associated to (one or several) field values and enables to solve the evolution
over one time step. This algorithm has been used in various frameworks and shows
excellent results. It has also been coupled successfully with optimal control and
identification issues [3]. The dependence on the L∞-norm of the control, which is
a restriction of the Strang method, is also improved by the “toolkit method” as it
will be shown in our analysis.

The goal of the paper is to provide a (first) numerical analysis of the “toolkit
method”. Our mathematical tools are related to that in [4] (but for a different
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setting; see also [9, 16] for connected results); the treatment here is different because
of the quantization appearing in the values of the control ε(t) which impacts both
the mathematical analysis and the numerical efficiency of the method. The analysis
enables us to propose two possible improvements.

The paper is organized as follows: after having introduced the model and some
notations in Section 2, the toolkit method is presented and analyzed in Section 3.
An improvement of this method in the limit of small control fields is introduced
in Section 4. A second improvement, in the limit of large control fields is given in
Section 5. Finally, Section 6 gathers some numerical results.

2. Model and notations

In this section, we present the Schrödinger Equation that will be considered in
the paper and some useful notations.

We consider the time dependent Schrödinger equation (TDSE)
{
i∂tψ(x, t) = (H0(x) − µ(x)ε(t))ψ(x, t), R3 × (0, T )
ψ(x, 0) = ψ0(x), R3.

(1)

This equation governs the evolution of a quantum system, described by its wave
function ψ, that interacts with a laser pulse of amplitude ε, the control variable.
The factor µ is the dipole moment operator of the system. The Hamiltonian of
the system is H0 = −∆x + V where ∆x is the Laplacian operator over the space
variables and V = V (x) the electrostatic potential in which the system evolves.
We refer to [13] for more details about models involved in quantum control. Note
that to obtain Eq. (1), one has considered the laser effect as a perturbative term,
so that the control term ε(t)µ(x) is obtained through a first order approximation
with respect to ε(t). While often considered, this approximation fails at describing
some models involving non linear laser-dipole interaction, see e.g. [15]. Conse-
quently, the norm of the field cannot be always considered as a small parameter,
and numerical solvers have to tolerate large controls, as the one described here after.

Throughout this paper, T > 0 is the time of control of a quantum system. The
space Lp(0, T ;X), with p ∈ [1,+∞) denotes the usual Lebesgue space taking its
values in a Banach space X . The notation W 1,1(0, T ) corresponds to the space of
time dependent functions belonging to L1(0, T ; R) such that their first time deriv-
ative also belongs to L1(0, T ). We denote by L2 the space L2(R3,C) and by W 2,∞

and H2 the Sobolev spaces W 2,∞(R3,R) and H2(R3,C). The space L(H2) is the
space of linear functionals on H2. One can refer to [5] (or the introduction of [6])
for more details about the definitions of these functional spaces.

Finally, in order to introduce some numerical solver of (1), let us consider an
integer N and ∆t > 0 such that N∆t = T . We introduce the time discretization
(tj)0≤j≤N of [0, T ] with tj = j∆t and we also denote by tj+ 1

2
the intermediate time

tj+tj+1

2 = (j + 1
2 )∆t.

Let us first recall some basic results of existence and regularity of the solution of
the TDSE. These are corollaries of a general result on time dependent Hamiltonians
(see [14], p. 285, Theorem X.70).
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Lemma 1. Let µ ∈ L(H2), V ∈ W 2,∞, ε ∈ L2(0, T ) and ψ0 ∈ H2. The
Schrödinger equation

(2)

{
i∂tψ(t) = (H0 − µε(t))ψ(t) R3 × (0, T )
ψ(0) = ψ0, R3,

has a unique solution ψ ∈ L∞(0, T ;H2) ∩W 1,∞(0, T ;L2) such that

‖ψ(t)‖L∞(0,T ;H2) + ‖∂tψ(t)‖L∞(0,T ;L2) ≤ C‖µ‖L(H2)‖ε‖W 1,1(0,T )‖ψ0‖H2 .

Moreover, for all t ∈ [0, T ], ‖ψ(t)‖L2 = ‖ψ0‖L2.

It is also well known (see [6] for instance) that for any T > 0 and φ0 ∈ H2, if we
have ε(t) = ε̄ ∈ R, independent of time t, the Schrödinger equation

{
i∂tφ(t) = (H0 − µε̄)φ(t), R3 × (0, T )
φ(0) = φ0, R3

has a unique solution φ(t) = S(t)φ0 such that φ ∈ C([0, T ];H2) ∩ C1([0, T ];L2),
where (S(t))t∈R denotes the one-parameter semi-group generated by the operator
H0 − µε̄. Moreover, for all t ∈ [0, T ], S(t) ∈ L(H2) and we have

(3)

S(t)φ0 ∈ C(0, T ;H2), ∀φ0 ∈ H2;
‖S(t)‖L(H2) ≤ 1 + CT ≤ K, ∀t ∈ [0, T ];K = K(‖µ‖L(H2), εmax);
‖S(t)φ0‖L2 = ‖φ0‖L2 , ∀φ0 ∈ L2, ∀t ∈ R;
S(0) = Id,
S(t+ s) = S(t)S(s), ∀s, t ∈ R.

Therefore, the solution of Eq. (2) is obtained equivalently as a solution to the
integral equation

ψ(t) = S(t)ψ0 + i

∫ t

0

S(t− s)(ε(s) − ε̄)µψ(s) ds.

3. The toolkit method

We now present the toolkit method and describe the corresponding error analysis.

3.1. Algorithm. In this method, we assume that the control field ε satisfies the
following hypothesis:

(H) ∀t ∈ [0, T ], ε(t) ∈ [εmin, εmax].

The values of the control field are discretized according to:

(4) ε̄ℓ = εmin + ℓ∆ε, ℓ = 0...m,

with m = εmax−εmin

∆ε . Here, the values ε̄ℓ have been here uniformly chosen in the
interval [εmin, εmax]. If some properties of the field are known, e.g. its mean value
or its variance, some improvement of the method can be obtained by optimizing
the distribution of the values ε̄ℓ. More generally, this topic enters the field of scalar
quantization, that will not be considered in this paper. We refer to [17] and the
references therein for a review of standard methods in this domain. In order to
solve numerically equation (2), the toolkit method proceeds as follows.
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Algorithm 1. (toolkit method)

(1) Preprocessing. Precompute the “toolkit”, i.e. the set of propagators:

Sℓ(∆t) for ℓ = 0, · · · ,m,

where (Sℓ(t))t∈R denotes the one-parameter semi-group generated by the
operator H0 − µε̄ℓ, the sequence (εℓ)ℓ=0,··· ,m, being defined by (4).

(2) Given a control field ε ∈ L2 satisfying H and ψK
0 = ψ0, the sequence

(ψK
j )j=0,...,N that approximates (ψ(tj))j=0,...,N , is obtained recursively by

iterating the following loop:
(a) Find:

ℓj = argminℓ=1,··· ,m{|ε(tj+ 1
2
) − ε̄ℓ|},

(b) Set ψK
j+1 = Sℓj

(∆t)ψK
j .

In this “toolkit” approximation, we consider that the changes in the Hamiltonian
H(t) := H0 − µε(t) can be neglected over a time step ∆t. In this way, if ∆ε = 0
(infinite toolkit), and for a relevant time discretization, the simulation correspond-
ing to piecewise constant control fields is exact. Such a property does not hold
with methods that approximate the exponential, e.g. the second order Strang op-
erator splitting. Indeed, these approaches introduce an algebraic error, due to the
non-commutation of the operators H0 and µ that is consequently proportional to
‖ε‖L∞(0,T ).

Remark 1. In the original form of the toolkit method [2, 21, 22], the mid-point
choice proposed in Step 2a of Algorithm 1 is not considered. Yet, the introduction
of this strategy enables us to improve the order of the method (see the analysis
hereafter).

3.2. Analysis of the method. Let us now present an error analysis of the toolkit
method. More precisely, this section aims at proving the following result:

Theorem 2. Let ε ∈ W 2,∞(0, T ) and ψ the corresponding solution of (2). Let ψK

be the approximation of ψ obtained with Algorithm 1. Given ∆t > 0 and ∆ε > 0,
there exists λ1 > 0, λ2 > 0, that do not depend on ‖ε‖L∞(0,T ) such that:

(5) ‖ψ(T )− ψK(T )‖L2 ≤ λ1∆ε+ λ2∆t
2.

Moreover, there exists ν1 > 0, ν2 > 0 depending on ‖ε‖W 1,1(0,T ) such that:

(6) ‖ψ(T ) − ψK(T )‖H2 ≤ ν1∆ε+ ν2∆t
2.

Remark 2. This result shows that the toolkit method enables to work with large
control fields, transferring the computational effort due to such cases to the pre-
processing step: given ∆ε, the computational cost of this step only depends on the
norm ‖ε‖L∞(0,T ), i.e., on Hypothesis H.

Proof. To obtain (5) and (6), we will focus first on the local error, i.e. the approx-
imation obtained on one time step [tj , tj+1].
The sequence (ψK

j )j=0,...,N is a time discretization of the solution of
{
i∂tψ

K(t) = (H0 − µε̄(t))ψK(t), R3 × (0, T )
ψK(0) = ψ0, R3(7)
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where the space variable has been omitted and ε̄(t) = ε̄ℓj
is constant over each inter-

val [tj , tj+1[= [j∆t, (j+1)∆t[, with j = 0, ..., N−1. We denote by (Sj(t))j=0,...,N−1

(instead of Sℓj
) the one-parameter semi-group generated by the operator H0−µε̄ℓj

and we introduce δ(t) = ε(t) − ε̄ where ε̄ (instead of ε̄ℓj
) is the constant value of

ε̄(t) over [tj , tj+1]. Therefore, the solution ψ of (2) is actually the solution of the
integral equation, settled for t ∈ [tj , tj+1[:

(8) ψ(t) = Sj(t− tj)ψ(tj) + i

∫ t

tj

Sj(t− s)µδ(s)ψ(s) ds.

For the upcoming calculations, one should notice that we have

(9) |δ(tj+ 1
2
)| ≤

∆ε

2

and that for all t ∈ [tj , tj+1],

(10) |δ(t)| ≤
1

2

(
∆ε+ ‖ε̇‖L∞(0,T )∆t

)
.

We consider the following decomposition:

ψ(T ) − ψK(T ) = ψ(T ) − SN−1(∆t)ψ(tN−1)

+
N−2∑

j=0

SN−1(∆t) . . . Sj+1(∆t)
(
ψ(tj+1) − Sj(∆t)ψ(tj)

)

+ SN−1(∆t) . . . S0(∆t)ψ0 − ψK(T )

where the last line is equal to 0 since ψK satisfies (7) on [0, T ].

From now on and in all the following sections, we will consider either that
‖ψ0‖L2 = 1 or that ‖ψ0‖H2 = 1. From (3), we know that the operators Sj are
isometries in L2. Therefore, the use of a triangular inequality brings

(11) ‖ψ(T )− ψK(T )‖L2 ≤

N−1∑

j=0

‖ψ(tj+1) − Sj(∆t)ψ(tj)‖L2 .

We will thus calculate and estimate in L2-norm for all j the difference

ψ(tj+1) − Sj(∆t)ψ(tj) = i

∫ tj+1

tj

Sj(tj+1 − s)δ(s)µψ(s) ds

= i

∫ tj+1

tj

Sj(tj+1 − s)δ(s)µ (ψ(s) − Sj(s− tj)ψ(tj)) ds

+ i

∫ tj+1

tj

Sj(tj+1 − s)δ(s)µSj(s− tj)ψ(tj) ds.

= i

∫ tj+1

tj

Sj(tj+1 − s)δ(s)µ (ψ(s) − Sj(s− tj)ψ(tj)) ds

+ i

∫ tj+1

tj

δ(s)ϕj(s)ψ(tj) ds(12)

where ϕj(s) := Sj(tj+1 − s)µSj(s− tj) ∈ L(L2).
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In what follows, we work in parallel on L2 and H2-estimates of ψ(tj+1) −
Sj(∆t)ψ(tj). We will need basic L2 and H2-estimates of ψ(t) − Sj(t − tj)ψ(tj)
for the study of the first integral term of (12), the second one will be dealt with
using a Taylor expansion of δ(t).

From Lemma 1, (8) and (10), it is easy to obtain coarse estimates of ψ(t)−Sj(t−
tj)ψ(tj). Indeed, for all t in [tj , tj+1], one can write

‖ψ(t) − Sj(t− tj)ψ(tj)‖L2 =

∥∥∥∥∥i
∫ t

tj

Sj(t− s)µδ(s)ψ(s) ds

∥∥∥∥∥
L2

≤

∫ tj+1

tj

‖Sj(t− s)µδ(s)ψ(s)‖L2 ds

≤ ∆t‖µ‖L(L2)
1

2

(
∆ε+ ‖ε̇‖L∞(0,T )∆t

)
‖ψ0‖L2

≤
1

2
‖µ‖L(L2)

(
∆ε+ ‖ε̇‖L∞(0,T )∆t

)
∆t(13)

and the H2-estimate gives

(14) ‖ψ(t)−Sj(t−tj)ψ(tj)‖H2 ≤ K‖ε‖W 1,1(0,T )‖µ‖L(H2)

(
∆ε+ ‖ε̇‖L∞(0,T )∆t

)
∆t

where K = K(‖µ‖L(H2), εmax) is a generic constant that estimates every ‖Sj‖L(H2).
Therefore, we can obtain more accurate estimates of the first integral term of (12).
Thanks to (13), we obtain

∥∥∥∥∥i
∫ tj+1

tj

Sj(tj+1 − s)δ(s)µ (ψ(s) − Sj(s− tj)ψ(tj)) ds

∥∥∥∥∥
L2

≤
1

2
‖µ‖L(L2)

(
∆ε+ ‖ε̇‖L∞(0,T )∆t

)
∆t sup

t∈[tj ,tj+1]

‖ψ(s) − Sj(s− tj)ψ(tj)‖L2

≤
1

4
‖µ‖2

L(L2)

(
∆ε+ ‖ε̇‖L∞(0,T )∆t

)2
∆t2

≤
1

2
‖µ‖2

L(L2)

(
∆ε2 + ‖ε̇‖2

L∞(0,T )∆t
2
)

∆t2.(15)

Working now on the H2-estimate, we deduce from (14) in the same way that

(16)

∥∥∥∥∥i
∫ tj+1

tj

Sj(tj+1 − s)δ(s)µ (ψ(s) − Sj(s− tj)ψ(tj)) ds

∥∥∥∥∥
L2

≤
1

2
K‖µ‖L(H2)‖ε‖W 1,1(0,T )

(
∆ε2 + ‖ε̇‖2

L∞(0,T )∆t
2
)

∆t2.

In the two cases (L2 and H2), estimates are stronger than the ones we look for,
and we can focus on the second integral term of (12) we want to deal with.

We first consider

(17)
ϕj : [tj , tj+1] → L(H2)

s 7→ Sj(tj+1 − s)µSj(s− tj)
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and note that for all ψ ∈ H2, ‖ϕj(s)ψ‖H2 = ‖Sj(tj+1 − s)µSj(s − tj)ψ‖H2 ≤
K‖ψ‖H2 so that

(18) ∀s ∈ [tj , tj+1], ‖ϕj(s)‖L(H2) ≤ K‖µ‖L(H2).

Let us now consider the derivatives of ϕj(s). Since (Sj(t))t∈R denotes the one-
parameter semi-group generated by the operator H0 − µε̄, the L(H2) identity

∂tSj(t) = −i (H0 − µε̄)Sj(t)

holds and minor calculations give, ∀s ∈ [tj , tj+1],

∂sϕj(s) = iSj(tj+1 − s)[H0, µ]Sj(s− tj)

∂2
ssϕj(s) = Sj(tj+1 − s)

[
[H0, µ], H0 − µε̄

]
Sj(s− tj).

Therefore,

‖∂sϕj(s)‖L(H2) ≤ K‖[H0, µ]‖L(H2)(19)

‖∂2
ssϕj(s)‖L(H2) ≤ K

∥∥[
[H0, µ], H0 − µε̄

]∥∥
L(H2)

.

If we consider the L2-analysis of the method, then ϕj(s) ∈ L(L2) and ∀s ∈ [tj , tj+1],

‖ϕj(s)‖L(L2) ≤ ‖µ‖L(L2)

‖∂sϕj(s)‖L(L2) ≤ ‖[H0, µ]‖L(L2)(20)

‖∂2
ssϕj(s)‖L(L2) ≤

∥∥[
[H0, µ], H0 − µε̄

]∥∥
L(L2)

.

Let us now write the third order Taylor expansion of t 7→ δ(t) = ε(t) − ε̄ in a
neighborhood of tj+ 1

2
:

δ(s) = δ(tj+ 1
2
) + (s− tj+ 1

2
)δ̇(tj+ 1

2
) +

1

2
(s− tj+ 1

2
)2δ̈(θ(s))

= δ(tj+ 1
2
) + (s− tj+ 1

2
)ε̇(tj+ 1

2
) +

1

2
(s− tj+ 1

2
)2ε̈

(
θ(s)

)
,

with θ(s) ∈ [tj , tj+1]. We now focus on estimating the term i

∫ tj+1

tj

δ(s)ϕj(s)ψ(tj) ds.

By means of (20) and the L2-norm conservation, we obtain
∥∥∥∥∥

∫ tj+1

tj

δ(tj+ 1
2
)ϕj(s)ψ(tj)ds

∥∥∥∥∥
L2

≤
1

2
‖µ‖L(L2)∆ε∆t,

∥∥∥∥∥

∫ tj+1

tj

(
s− tj+ 1

2

)
ε̇
(
tj+ 1

2

)
ϕj(s)ψ(tj)ds

∥∥∥∥∥
L2

=

∥∥∥∥∥ε̇
(
tj+ 1

2

)∫ 1
2
∆t

0

s
(
ϕ(tj+ 1

2
+ s) − ϕ(tj+ 1

2
− s)

)
ψ(tj)ds

∥∥∥∥∥
L2

=

∥∥∥∥∥∥
ε̇
(
tj+ 1

2

)∫ 1
2
∆t

0

∫ t
j+ 1

2
+s

t
j+ 1

2
−s

s∂uϕ(u)ψ(tj) duds

∥∥∥∥∥∥
L2

≤
1

12
‖[H0, µ]‖L(L2)‖ε̇‖L∞(tj ,tj+1)∆t

3
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and
∥∥∥∥∥

∫ tj+1

tj

1

2

(
s− tj+ 1

2

)2

ε̈(θ(s))ϕj(s)ψ(tj)ds

∥∥∥∥∥
L2

≤
1

24
‖µ‖L(L2)‖ε̈‖L∞(tj ,tj+1)∆t

3.

Combining these results with (15), we estimate (12) as follows:

‖ψ(tj+1) − Sj(∆t)ψ(tj)‖L2 ≤
1

2
‖µ‖2

L(L2)

(
∆ε2∆t2 + ‖ε̇‖2

∞∆t4
)

+
1

2
‖µ‖L(L2)∆ε∆t

+
1

24

(
2‖[H0, µ]‖L(L2)‖ε̇‖∞ + ‖µ‖L(L2)‖ε̈‖∞

)
∆t3,

with ‖ · ‖L∞(0,T ) = ‖ · ‖∞. By means of (11), the global L2-estimate is then:

‖ψ(T ) − ψK(T )‖L2 ≤

N−1∑

j=0

‖ψ(tj+1) − Sj(∆t)ψ(tj)‖L2

≤
T

2
‖µ‖2

L(L2)

(
∆ε2∆t+ ‖ε̇‖2

∞∆t3
)

+
T

2
‖µ‖L(L2)∆ε

+
T

24

(
2‖[H0, µ]‖L(L2)‖ε̇‖∞ + ‖µ‖L(L2)‖ε̈‖∞

)
∆t2,

and (5) can be deduced with the following constants λ1 and λ2 independent of
‖ε‖L∞(0,T ) :

λ1 =
T

2
‖µ‖L(L2)

(
1 + ∆ε∆t‖µ‖L(L2)

)
,

λ2 =
T

2
‖µ‖2

L(L2)‖ε̇‖
2
∞∆t+

T

12
‖[H0, µ]‖L(L2)‖ε̇‖∞ +

T

24
‖µ‖L(L2)‖ε̈‖∞.

Let us now prove the H2 estimate. By means of (16), (18) and (19) and keeping
in mind that K is a generic constant depending on ‖µ‖L(H2) and εmax, we can
repeat the previous analysis to find the local estimate:

‖ψ(tj+1) − Sj(∆t)ψ(tj)‖H2 ≤ K‖µ‖L(H2)‖ε‖W 1,1(0,T )

(
∆ε2∆t2 + ‖ε̇‖2

L∞(0,T )∆t
4
)

+ K∆ε∆t+K
(
‖[H0, µ]‖L(H2)‖ε̇‖L∞ + ‖ε̈‖L∞

)
∆t3.

Since one can prove that we can actually write a more precise estimate of Sj(∆t)
and replace K by 1 + C∆t (see properties (3)), we get:

‖Sj(∆t)‖L(H2) ≤ 1 + C∆t.

and since we have the following intermediate result, where M > 0 depends on
‖µ‖L(H2), εmax and T but is independent of N :

N−1∑

j=0

(1 + C∆t)N−j∆t ≤M.
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The global estimate is obtained as follows:

‖ψ(T )− ψK(T )‖H2 ≤

N−1∑

j=0

KN−j−1‖ψ(tj+1) − Sj(∆t)ψ(tj)‖H2

≤
N−1∑

j=0

(1 + C∆t)N−j‖ε‖W 1,1(0,T )

(
∆ε2∆t2 + ‖ε̇‖2

∞∆t4
)

+

N−1∑

j=0

(1 + C∆t)N−j
(
∆ε∆t+

(
‖[H0, µ]‖L(H2)‖ε̇‖∞ + ‖ε̈‖∞

)
∆t3

)

≤ M‖ε‖W 1,1(0,T )

(
∆ε2∆t+ ‖ε̇‖2

∞∆t3
)

+M∆ε

+ M
(
‖[H0, µ]‖L(H2)‖ε̇‖∞ + ‖ε̈‖∞

)
∆t2.

We finally get ν1 and ν2 and conclude the proof of Theorem 2:

ν1 = M(1 + ‖ε‖W 1,1(0,T )T∆ε∆t)

ν2 = M
(
‖ε‖W 1,1(0,T )‖ε̇‖

2
∞∆t+ ‖[H0, µ]‖L(H2)‖ε̇‖∞ + ‖ε̈‖∞

)
.

�

Remark 3. The estimate (5) is consistent with the fact that Algorithm 1 used with
a relevant time discretization is exact for the piecewise constant control fields.

4. Improvement in the limit of low intensities

We now describe a way to improve the time order of the previous algorithm.
Since some constants in the following analysis depend in this case of the L∞-norm
of the field and the method requires that the toolkit size scales ∆t3(εmax − εmin),
it applies in the case of (L∞-) small control fields.

4.1. Algorithm. The algorithm we propose mixes the toolkit and the splitting ap-
proaches, in the sense that it applies sequentially various operators to correct the
third order local error that appears in the proof of Theorem 2.

Algorithm 2. (Improved toolkit method for low intensities)

(1) Preprocessing. Precompute the “toolkit”, i.e. the set of propagators:

Sℓ(∆t) for ℓ = 0, · · · ,m,

where (Sℓ(t))t∈R denotes the one-parameter group generated by the operator
H0 − µε̄ℓ, the sequence (εℓ)ℓ=0,··· ,m, being defined by (4). Include in this
set the two special elements:

Ω = e
1
12

[H0,µ]∆t3 ,Θ = e
i
24

µ∆t3

and the initial exponents α0 and β0 such that (ε being extended as an even
function on [-T,0]):

α0 :=
ε(∆t) − ε(0)

∆t
= ε̇(t 1

2
) + O(∆t2),

β0 :=
ε(t1) − 2ε(t 1

2
) + ε(0)

∆t2
= ε̈(t 1

2
) + O(∆t2).
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(2) Given a control field ε ∈ L∞ satisfying H and ψIK
0 = Ωα0Θβ0ψ0, the

sequence (ψIK
j )j=0,...,N that approximates (ψ(tj))j=0,...,N , is obtained re-

cursively by iterating the following loop:
(a) Find:

ℓj = argminℓ=1,··· ,m{|ε(tj+1/2) − ε̄ℓ|},

(b) Compute αj and βj such that:

αj :=
ε(tj+1) − ε(tj)

∆t
= ε̇(tj+ 1

2
) + O(∆t2),(21)

βj :=
ε(tj+1) − 2ε(tj+ 1

2
) + ε(tj)

∆t2
= ε̈(tj+ 1

2
) + O(∆t2).(22)

(c) Set ψIK
j+1 = Sℓj

(∆t)Ωαj ΘβjψIK
j .

In many cases, e.g. in the experimental frameworks, only the values of the field
can be handled. The use of exact values for the time derivatives has then to be
avoided when possible. This motivates the introduction of approximations (21) and
(22) of ε̇(tj) and ε̈(tj) in the latest definitions. The analysis presented hereafter
shows that this does not deteriorate the order of the method.

In this method, one must perform two online matrices exponentiations. By
working in a basis where one of these two matrices is diagonal, the cost of Step 2c
can be reduced to one exponentiation, making the cost of this method equivalent
the second order Strang operator splitting.

4.2. Analysis of the method. We can now repeat the analysis that has been
done in the proof of Theorem 2 to obtain the following estimate.

Theorem 3. Let ε ∈W 2,∞(0, T ), ψ be the corresponding solution of (2) and ψIK

the approximation of ψ obtained with Algorithm 2. Given ∆t > 0 and ∆ε > 0,
there exists λ′1 > 0, λ′2 > 0, with λ′1 independent of ‖ε‖L∞(0,T ) such that:

‖ψ(T )− ψIK(T )‖L2 ≤ λ′1∆ε+ λ′2∆t
3.

Proof. In the framework of this new algorithm, we note that on every time interval
]tj , tj+1[, the approximation ψIK is the solution of the evolution equation:

{
i∂tψ

IK(t) = (H0 − µε̄)ψIK(t), R3 × (tj , tj+1)
ψIK(t+j ) = Ωαj ΘβjψIK(t−j ) R3(23)

where we set ψ(0−) = ψ0. We will keep the notations (Sj , δ(t), ϕ,...) of the proof of
Theorem 2, and we first focus on the local error analysis. We consider the following
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decomposition:

ψ(T ) − ψIK(T ) = ψ(T ) − SN−1(∆t)Ω
αN−1ΘβN−1ψ(tN−1)

+

N−2∑

j=0

SN−1(∆t)Ω
αN−1ΘβN−1 . . . Sj+1(∆t)Ω

αj+1Θβj+1

×
(
ψ(tj+1) − Sj(∆t)Ω

αj Θβjψ(tj)
)

+ SN−1(∆t)Ω
αN−1ΘβN−1 . . . S0(∆t)Ω

α0Θβ0ψ0 − ψIK(T )

where the last line is equal to 0 since ψIK satisfies (23) on [0, T ].
The operators Sj are isometries in L2, we will consider that ‖ψ0‖L2 = 1 and we
also have, for all j

(24) Ωαj Θβj = e
αj
12

[H0,µ]∆t3e
iβj
24

µ∆t3 = Id +

(
αj

12
[H0, µ] +

iβj

24
µ

)
∆t3 + Id O(∆t6)

and thus

(25)
∥∥Ωαj Θβj

∥∥
L(L2)

≤ 1 + O(∆t3).

Therefore, the use of a triangular inequality brings

(26) ‖ψ(T ) − ψIK(T )‖L2 ≤ (1 + O(∆t2))
N−1∑

j=0

∥∥ψ(tj+1) − Sj(∆t)Ω
αj Θβjψ(tj)

∥∥
L2

and we will calculate and estimate in L2-norm for all j the difference

ψ(tj+1) − Sj(∆t)Ω
αj Θβjψ(tj)

= Sj(∆t)ψ(tj) + i

∫ tj+1

tj

Sj(tj+1 − s)δ(s)µψ(s) ds − Sj(∆t)Ω
αj Θβjψ(tj)

= Sj(∆t)
(
Id − Ωαj Θβj

)
ψ(tj) + i

∫ tj+1

tj

Sj(tj+1 − s)δ(s)µψ(s) ds.

We define Y (s) = ψ(s) − Sj(s− tj)Ω
αj Θβjψ(tj) for all s ∈ [tj , tj+1] and obtain

(27) Y (tj+1) = Sj(∆t)
(
Id − Ωαj Θβj

)
ψ(tj)

+ i

∫ tj+1

tj

Sj(tj+1 − s)δ(s)µY (s) ds+ i

∫ tj+1

tj

δ(s)ϕj(s)Ω
αj Θβjψ(tj) ds

where ϕj(s) := Sj(tj+1 − s)µSj(s − tj) and its derivatives have been estimated in
L2 in (20). As we did in Theorem 2, we start with an estimate of the first integral
term of (27). For all t ∈]tj , tj+1], we can write:

Y (t) = ψ(t) − Sj(t− tj)ψ(tj) + Sj(t− tj)ψ(tj) − Sj(t− tj)Ω
αj Θβjψ(tj)

=

∫ t

tj

Sj(t− s)δ(s)µψ(s) ds+ Sj(t− tj)
(
Id − Ωαj Θβj

)
ψ(tj).

Moreover, for all t ∈]tj , tj+1], we have

‖Y (t)‖L2 ≤

∥∥∥∥∥

∫ t

tj

Sj(t− s)δ(s)µψ(s) ds

∥∥∥∥∥
L2

+
∥∥Sj(t− tj)

(
Id − Ωαj Θβj

)
ψ(tj)

∥∥
L2
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The operators Sj are isometries in L2 and ∀t ∈ [0, T ], ‖ψ(t)‖L2 = ‖ψ0‖L2. There-
fore, we deduce from (24) that

∥∥Sj(t− tj)
(
Id − Ωαj Θβj

)
ψ(tj)

∥∥
L2 ≤

(
αj

12
‖[H0, µ]‖L(L2) +

iβj

24
‖µ‖L(L2)

)
∆t3+O(∆t6).

Since it is clear that we also have

∥∥∥∥∥

∫ t

tj

Sj(t− s)δ(s)µψ(s) ds

∥∥∥∥∥
L2

≤
1

2
‖µ‖L(L2)

(
∆ε+ ‖ε̇‖L∞(0,T )∆t

)
∆t,

one can finally deduce that:

∥∥∥∥∥i
∫ tj+1

tj

Sj(tj+1 − s)δ(s)µY (s) ds

∥∥∥∥∥
L2

≤
1

2
‖µ‖L(L2)

(
∆ε+ ‖ε̇‖L∞(0,T )∆t

)
∆t sup

t∈[tj ,tj+1]

‖Y (t)‖L2

≤
1

4
‖µ‖2

L(L2)

(
∆ε+ ‖ε̇‖L∞(0,T )∆t

)2
∆t2 + O(∆ε∆t4) + O(∆t5).(28)

We focus now on the first and third terms of (27). Using (24), we get

Sj(∆t)
(
Id − Ωαj Θβj

)
ψ(tj) = −Sj(∆t)

(
αj

12
[H0, µ] +

iβj

24
µ

)
ψ(tj)∆t

3+ψ(tj)O(∆t6).

Let us then consider the second integral term of (27). On the one hand, we consider
the fourth order expansion of δ = ε− ε̄ in a neighborhood of tj+ 1

2
:

δ(s) = δ(tj+ 1
2
) + (s− tj+ 1

2
)δ̇(tj+ 1

2
) +

1

2
(s− tj+ 1

2
)2δ̈(tj+ 1

2
) +

1

6
(s− tj+ 1

2
)3δ(3)(θ(s))

= δ(tj+ 1
2
) + (s− tj+ 1

2
)ε̇(tj+ 1

2
) +

1

2
(s− tj+ 1

2
)2ε̈(tj+ 1

2
) +

1

6
(s− tj+ 1

2
)3ε(3)

(
θ(s)

)

where θ(s) ∈ [tj , tj+1]. On the other hand, we calculate and/or estimate the four
corresponding terms in

i

∫ tj+1

tj

δ(s)ϕj(s)Ω
αj Θβjψ(tj) ds.

From (9) and (20), the term of order 0 gives:

∥∥∥∥∥i
∫ tj+1

tj

δ(tj+ 1
2
)ϕj(s)Ω

αj Θβjψ(tj)ds

∥∥∥∥∥
L2

≤
1

2
‖µ‖2

L(L2)∆ε∆t.
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For the term of order 1, we can write

i

∫ tj+1

tj

(s− tj+ 1
2
)ε̇(tj+ 1

2
)ϕj(s)Ω

αj Θβjψ(tj) ds

= i ε̇
(
tj+ 1

2

)∫ 1
2
∆t

0

s
(
ϕj(tj+ 1

2
+ s) − ϕj(tj+ 1

2
− s)

)
Ωαj Θβjψ(tj) ds

= i ε̇
(
tj+ 1

2

)∫ 1
2
∆t

0

∫ t
j+ 1

2
+s

t
j+ 1

2
−s

s∂uϕj(u)Ω
αj Θβjψ(tj) duds

= i ε̇(tj+ 1
2
)

∫ 1
2
∆t

0

∫ t
j+ 1

2
+s

t
j+ 1

2
−s

s
(
∂uϕj(tj) + (u − tj)τ(u)

)
Ωαj Θβjψ(tj) duds

=
ε̇(tj+ 1

2
)

12
Sj (∆t) [H0, µ]Ωαj Θβjψ(tj)∆t

3

+ i ε̇(tj+ 1
2
)

∫ 1
2
∆t

0

∫ t
j+ 1

2
+s

t
j+ 1

2
−s

s(u− tj)τ(u − tj)Ω
αj Θβjψ(tj) duds

=
αj

12
Sj (∆t) [H0, µ]ψ(tj)∆t

3 + Sj (∆t) [H0, µ]ψ(tj)O(∆t6)

+ i ε̇(tj+ 1
2
)

∫ 1
2
∆t

0

∫ t
j+ 1

2
+s

t
j+ 1

2
−s

s(u− tj)τ(u − tj)Ω
αj Θβjψ(tj) duds

where we used (21), (24) and (20) and the function τ : s ∈ [0,∆t] 7→ τ(s) ∈ L(L2)
is defined as the function that appears in the following expansion of ∂uϕj around
tj , for any ψ ∈ L2

∂uϕj(u)ψ = ∂uϕj(tj)ψ + (u− tj)τ(u − tj)ψ

= iSj(∆t)[H0, µ]ψ + (u− tj)τ(u − tj)ψ.

Using the estimate (coming from (20))

(29) ‖τ(s)‖L(L2) ≤
∥∥∥
[
[H0, µ], H0 − µε̄

]∥∥∥
L(L2)

∀s ∈ [0,∆t],

along with ‖ψ(tj)‖L2 = ‖ψ0‖L2 = 1, (21) and (25) we find that for all j,
∥∥∥∥∥∥
iε̇(tj+ 1

2
)

∫ 1
2
∆t

0

∫ t
j+ 1

2
+s

t
j+ 1

2
−s

s(u− tj)τ(u − tj)Ω
αj Θβjψ(tj) duds

∥∥∥∥∥∥
L2

≤
(
αj + O

(
∆t2

)) ∫ 1
2
∆t

0

∫ t
j+ 1

2
+s

t
j+ 1

2
−s

s(u− tj)
∥∥∥
[
[H0, µ], H0 − µε̄

]∥∥∥
L(L2)

‖ψ(tj)‖L2 duds.

≤
αj

24

∥∥∥
[
[H0, µ], H0 − µε̄

]∥∥∥
L(L2)

∆t4 + O
(
∆t5

)
.

We also prove easily that for all j,
∥∥Sj (∆t) [H0, µ]ψ(tj)O(∆t6)

∥∥
L2 = O

(
∆t6

)
.

For the term of order 2, using (22), (24) and (20) and the first order expansion
of ϕj around tj , ϕj(s)ψ = ϕj(tj)ψ + (s − tj)θ(s − tj)ψ for all ψ ∈ L2, defining
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θ : s ∈ [0,∆t] 7→ θ(s) ∈ L(L2), we can write

i

∫ tj+1

tj

1

2
(s− tj+ 1

2
)2ε̈(tj+ 1

2
)ϕj(s)Ω

αj Θβjψ(tj) ds

= iε̈(tj+ 1
2
)

∫ tj+1

tj

1

2
(s− tj+ 1

2
)2 (ϕj(tj) + (s− tj)θ(s− tj)) Ωαj Θβjψ(tj) ds

=
iε̈(tj+ 1

2
)

24
Sj (∆t)µΩαj Θβjψ(tj)∆t

3

+
iε̈(tj+ 1

2
)

2

∫ tj+1

tj

(s− tj+ 1
2
)2(s− tj)θ(s− tj)Ω

αj Θβjψ(tj) ds

=
iβj

24
Sj (∆t)µψ(tj)∆t

3 + Sj (∆t)µψ(tj)O(∆t6)

+
iε̈(tj+ 1

2
)

2

∫ tj+1

tj

(s− tj+ 1
2
)2(s− tj)θ(s− tj)Ω

αj Θβjψ(tj) ds.

Using (20), we get the estimate ‖θ(s)‖L(L2) ≤
∥∥∥
[
H0, µ]

∥∥∥
L(L2)

, ∀s ∈ [0,∆t], and

using it with (22) and (25), we obtain that for all j,

∥∥∥∥∥
iε̈(tj+ 1

2
)

2

∫ tj+1

tj

(s− tj+ 1
2
)2(s− tj)θ(s− tj)Ω

αj Θβjψ(tj) ds

∥∥∥∥∥
L2

≤
1

2

(
βj + O

(
∆t2

)) ∫ tj+1

tj

(s− tj+ 1
2
)2(tj − s) ‖[H0, µ]‖L(L2) ‖ψ(tj)‖L2 ds

≤
1

2

(
βj + O

(
∆t2

))
‖[H0, µ]‖L(L2)

∫ ∆t
2

−∆t
2

u2

(
∆t

2
− u

)
du

≤
βj

48
‖[H0, µ]‖L(L2) ∆t4 + O

(
∆t5

)
.

and we also prove easily that
∥∥Sj (∆t)µψ(tj)O(∆t6)

∥∥
L2 = O

(
∆t6

)
.

Combining these results with (28) into equation (27), we obtain:

‖Y (tj+1)‖L2 =
∥∥ψ(tj+1) − Sj(∆t)Ω

αj Θβjψ(tj)
∥∥

L2

≤

∥∥∥∥∥Sj(∆t)
(
Id − Ωαj Θβj

)
ψ(tj) + i

∫ tj+1

tj

δ(s)ϕj(s)Ω
αj Θβjψ(tj) ds

∥∥∥∥∥
L2

+

∥∥∥∥∥i
∫ tj+1

tj

Sj(tj+1 − s)δ(s)µY (s) ds

∥∥∥∥∥
L2

≤
1

2
‖µ‖2

L(L2)∆ε∆t+
αj

24

∥∥∥
[
[H0, µ], H0 − µε̄

]∥∥∥
L(L2)

∆t4

+
βj

48
‖[H0, µ]‖L(L2) ∆t4 +

1

2
‖µ‖2

L(L2)

(
∆ε2∆t2 + ‖ε̇‖2

L∞(0,T )∆t
4
)

+ O(∆ε∆t4) + O(∆t5)
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We have now a local in time estimate that should be traduced in a global one, and
from (26), we get

‖ψ(T )− ψIK(T )‖L2

≤ (1 + O(∆t2))

N−1∑

j=0

∥∥ψ(tj+1) − Sj(∆t)Ω
αj Θβjψ(tj)

∥∥
L2

≤
T

2
‖µ‖2

L(L2)∆ε+
αjT

24

∥∥∥
[
[H0, µ], H0 − µε̄

]∥∥∥
L(L2)

∆t3

+
βjT

48
‖[H0, µ]‖L(L2) ∆t3 +

T

2
‖µ‖2

L(L2)

(
∆ε2∆t+ ‖ε̇‖2

L∞(0,T )∆t
3
)

+ O(∆ε∆t3) + O(∆t4).

The result follows, with

λ′1 =
T

2
‖µ‖2

L(L2)(1 + ∆ε∆t)

and

λ′2 =
αjT

24

∥∥∥
[
[H0, µ], H0 − µε̄

]∥∥∥
L(L2)

+
βjT

48
‖[H0, µ]‖L(L2) +

T

2
‖µ‖2

L(L2)‖ε̇‖
2
L∞(0,T )

�

In this theorem, the constants λ′2 depends on ‖ε‖L∞(0,T ) through the commutator[
[H0, µ], H0 − µε̄

]
that appears in (29). This contrasts with the result obtained in

Theorem 2. The explanation of this situation comes from the fact that the norms
of ϕj(s) := Sj(tj+1 − s)µSj(s − tj) (defined in (17)) and its first derivative does
not depend on ‖ε‖L∞(0,T ), whereas its second derivative does. Thus, errors in
Algorithm 2 depend on L∞-norm of the control field as in the case of the second
order Strang operator splitting. Although these two methods present the same
computational complexity, the order of Algorithm 2 is higher when ∆ε scales ∆t3.

5. Improvement in the limit of large intensities

We now describe a way to improve the time order of the Algorithm 1 in the case
of large intensities. The following method enables to replace ∆ε by ∆ε∆t in the
estimates.

5.1. Algorithm. The algorithm we propose improve the accuracy in the approxi-
mation of ε. This improvement is obtained by using two toolkit elements instead
of one at each time step.

Algorithm 3. (Improved toolkit method for large intensities)

(1) Preprocessing. Precompute the “toolkit”, i.e. the set of propagators:

Sℓ(∆t) for ℓ = 0, · · · ,m,

where (Sℓ(t))t∈R denotes the one-parameter group generated by the operator
H0 − µε̄ℓ, the sequence (εℓ)ℓ=0,··· ,m, being defined by (4).

(2) Given a control field ε ∈ L∞ satisfying H and ψJK
0 = ψ0, the sequence

(ψJK
j )j=0,...,N that approximates (ψ(tj))j=0,...,N , is obtained recursively by

iterating the following loop:
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(a) Find ℓj such that:

ε(tj+1/2) ∈ [ε̄ℓj
, ε̄ℓj+1].

(b) Compute αj and βj such that:

αj ε̄ℓj
+ βj ε̄ℓj+1 = ε(tj+1/2)

αj + βj = 1(30)

(c) Set ψJK
j+1 = Sℓj+1(∆t)

βjSℓj
(∆t)αjψJK

j .

In this method, one must perform two online matrices exponentiations. The
cost of the corresponding step, namely Step 2c can be reduced to three matrix
products when precomputing the mappings between the diagonalization basis of
two consecutive toolkit elements.

Remark 4. Another way to reduce the cost of this step, is to quantify the val-
ues of αj (and βj) and precompute a toolkit containing elements of the form :
Sℓj+1(∆t)

βjSℓj
(∆t)αj . This method is tested in Sec. 6.

5.2. Analysis of the method. We can now repeat the analysis that has been
done in the proof of Theorem 2 to obtain the following estimate.

Theorem 4. Let ε ∈W 3,∞(0, T ), ψ be the corresponding solution of (2) and ψJK

the approximation of ψ obtained with Algorithm 2. Given ∆t > 0 and ∆ε > 0,
there exists λ′′1 > 0, λ′′2 > 0, both independent of ‖ε‖L∞(0,T ) such that:

‖ψ(T )− ψJK(T )‖L2 ≤ λ′′1∆ε∆t+ λ′′2∆t2.

Proof. In this algorithm, two control fields are involved successively in the propa-
gation over the interval [tj , tj+1]. As in the previous proofs, we introduce δ(s) =
ε(s) − ε̄(s), with

ε̄(s) =

{
ε̄ℓj

s ∈ [tj , tj + αj∆t[,
ε̄ℓj+1 s ∈ [tj + αj∆t, tj+1[.

Note first that for all s ∈ [tj , tj+1]

(31) |δ(s)| ≤ ∆ε+
1

2
‖ε̇‖L∞(0,T )∆t

and denote by (Sj(t))j=0,...,N−1 and
(
S′

j(t)
)

j=0,...,N−1
the one-parameter semi-

groups generated by the operators H0 − µε̄ℓj
and H0 − µε̄ℓj+1 respectively.

Following the same analysis as for Algorithm 1, we set (ψJK
j )j=0,...,N as the time

discretization of the solution of:
{
i∂tψ

JK(t) = (H0 − µε̄(t))ψJK(t), R3 × (0, T )
ψJK(0) = ψ0, R3(32)

where ε̄(t) (defined right above) is constant over each interval [tj , tj + αj∆t[ and
[tj + αj∆t, tj+1[, with j = 0, ..., N − 1. In the same way as we obtained (8), the
solution ψ of (2) satisfies,

ψ(tj + αj∆t) = Sj(αj∆t)ψ(tj) − i

∫ tj+αj∆t

tj

Sj(tj + αj∆t− s)µδ(s)ψ(s) ds



ANALYSIS OF THE TOOLKIT METHOD FOR THE TIME-DEPENDANT SCHRÖDINGER EQUATION17

and

ψ(tj+1) = S′
j(βj∆t)ψ(tj + αj∆t) − i

∫ tj+1

tj+αj∆t

S′
j(tj+1 − s)µδ(s)ψ(s) ds.

As in (12), it gives rise to:

ψ(tj+1) − S′
j(βj∆t)Sj(αj∆t)ψ(tj)

= i

∫ tj+1

tj+αj∆t

S′
j(tj+1 − s)µδ(s)ψ(s) ds

+i

∫ tj+αj∆t

tj

S′
j(βj∆t)Sj(tj + αj∆t− s)µδ(s)ψ(s) ds

= i

∫ tj+1

tj+αj∆t

S′
j(tj+1 − s)µδ(s)

(
ψ(s) − S′

j(s− tj − αj∆t)ψ(tj + αj∆t)
)
ds

+i

∫ tj+αj∆t

tj

S′
j(βj∆t)Sj(tj + αj∆t− s)µδ(s) (ψ(s) − Sj(s− tj)ψ(tj)) ds

+i

∫ tj+1

tj+αj∆t

δ(s)ϕ̃′
j(s)Sj(αj∆t)ψ(tj) ds

+i

∫ tj+αj∆t

tj

S′
j(βj∆t)δ(s)ϕ̃j(s)ψ(tj) ds.(33)

where ϕ̃′
j(s) := S′

j(tj+1−s)µS
′
j(s−tj−αj∆t) and ϕ̃j(s) := Sj(tj +αj∆t−s)µSj(s−

tj). As in the proof of Theorem 2 (see right above (11)) we use the appropriate
decomposition

ψ(T ) − ψJK(T ) = ψ(T ) − S′
N−1(βN−1∆t)SN−1(αN−1∆t)ψ(tN−1)

+

N−2∑

j=0

S′
N−1(βN−1∆t)SN−1(αN−1∆t) . . . S

′
j+1(βj+1∆t)Sj+1(αj+1∆t)

×
(
ψ(tj+1) − S′

j(βj∆t)Sj(αj∆t)ψ(tj)
)

+ S′
N−1(βN−1∆t)SN−1(αN−1∆t) . . . S

′
0(β0∆t)S0(α0∆t)ψ0 − ψJK(T )

where the last line is equal to 0 since ψJK satisfies (32) on [0, T ]. We have the
corresponding estimate (see (11))

‖ψ(T )− ψJK(T )‖L2 ≤
N−1∑

j=0

∥∥ψ(tj+1) − S′
j(βj∆t)Sj(αj∆t)ψ(tj)

∥∥
L2

and we will thus calculate and estimate in L2-norm for all j the four terms of (33).
As in (15), but using now the new estimate (31) of δ, the two first terms of the
right hand side of (33) can be respectively estimated by:

(34)∥∥∥∥∥i
∫ tj+1

tj+αj∆t

S′
j(tj+1 − s)µδ(s)

(
ψ(s) − S′

j(s− tj − αj∆t)ψ(tj + αj∆t)
)
ds

∥∥∥∥∥
L2

≤ βj‖µ‖
2
L(L2)

(
∆ε2∆t2 +

1

2
‖ε̇‖2

L∞(0,T )∆t
4

)
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and

(35)

∥∥∥∥∥i
∫ tj+αj∆t

tj

S′
j(βj∆t)Sj(tj + αj∆t− s)µδ(s) (ψ(s) − Sj(s− tj)ψ(tj))

∥∥∥∥∥
L2

≤ αj‖µ‖
2
L(L2)

(
∆ε2∆t2 +

1

2
‖ε̇‖2

L∞(0,T )∆t
4

)
.

Let us now focus on the third and fourth terms of (33). We have:

∫ tj+1

tj+αj∆t

δ(s)ϕ̃′
j(s)Sj(αj∆t)ψ(tj) ds =

∫ tj+1

tj+αj∆t

δ(s)ϕ̃′
j(tj + αj∆t)Sj(αj∆t)ψ(tj) ds

+

∫ tj+1

tj+αj∆t

δ(s)

∫ s

tj+αj∆t

∂uϕ̃
′
j(u) du Sj(αj∆t)ψ(tj) ds

=

∫ tj+1

tj+αj∆t

δ(s)S′
j(βj∆t)µSj(αj∆t)ψ(tj) ds

+

∫ tj+1

tj+αj∆t

δ(s)

∫ s

tj+αj∆t

∂uϕ̃
′
j(u) du Sj(αj∆t)ψ(tj) ds

and

∫ tj+αj∆t

tj

S′
j(βj∆t)δ(s)ϕ̃j(s)ψ(tj) ds =

∫ tj+αj∆t

tj

δ(s)S′
j(βj∆t)ϕ̃j(tj + αj∆t)ψ(tj) ds

−

∫ tj+αj∆t

tj

δ(s)S′
j(βj∆t)

∫ tj+αj∆t

s

∂uϕ̃j(u) du ψ(tj) ds

=

∫ tj+αj∆t

tj

δ(s)S′
j(βj∆t)µSj(αj∆t)ψ(tj) ds

−

∫ tj+αj∆t

tj

δ(s)S′
j(βj∆t)

∫ tj+αj∆t

s

∂uϕ̃j(u) du ψ(tj) ds.

By means of (30), we have:

∫ tj+1

tj

δ(s) ds =

∫ tj+1

tj

ε(s) − ε(tj+1/2) ds+

∫ tj+1

tj

ε(tj+1/2) − ε̄(s) ds

=

∫ tj+1

tj

ε(s) − ε(tj+1/2) ds

=

∫ tj+1

tj

ε̈(θ(s))
1

2
(s− tj+1/2)

2 ds,

where θ(s) ∈ [tj , tj+1]. Consequently,

(36)

∥∥∥∥∥

∫ tj+1

tj

δ(s)S′
j(βj∆t)µSj(αj∆t)ψ(tj) ds

∥∥∥∥∥
L2

≤
1

24
‖µ‖L(L2)‖ε̈‖L∞(0,T )∆t

3.
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From (20) and (31), we obtain

(37)

∥∥∥∥∥

∫ tj+1

tj+αj∆t

δ(s)

∫ s

tj+αj∆t

∂uϕ̃
′
j(u) du Sj(αj∆t)ψ(tj) ds

∥∥∥∥∥
L2

≤
1

2
β2

j ‖[H0, µ]‖L(L2)

(
∆ε+

1

2
‖ε̇‖L∞(0,T )∆t

)
∆t2

and similarly, we find that:

(38)

∥∥∥∥∥

∫ tj+αj∆t

tj

δ(s)S′
j(βj∆t)

∫ tj+αj∆t

s

∂uϕ̃j(u) du ψ(tj) ds

∥∥∥∥∥
L2

≤
1

2
α2

j‖[H0, µ]‖L(L2)

(
∆ε+

1

2
‖ε̇‖L∞(0,T )∆t

)
∆t2.

Combining (34), (35), (36), (37) and (38), we obtain:

∥∥ψ(tj+1) − S′
j(βj∆t)Sj(αj∆t)ψ(tj)

∥∥
L2

≤ ‖µ‖2
L(L2)

(
∆ε2 +

1

2
‖ε̇‖2

L∞(0,T )∆t
2

)
∆t2

+
1

24
‖µ‖L(L2)‖ε̈‖L∞(0,T )∆t

3

+
1

2
‖[H0, µ]‖L(L2)

(
∆ε+

1

2
‖ε̇‖L∞(0,T )∆t

)
∆t2.

The global estimate follows

‖ψ(T ) − ψJK(T )‖L2 ≤

N−1∑

j=0

∥∥ψ(tj+1) − S′
j(βj∆t)Sj(αj∆t)ψ(tj)

∥∥
L2

≤ ‖µ‖2
L(L2)

(
∆ε2 +

1

2
‖ε̇‖2

L∞(0,T )∆t
2

)
T∆t

+
1

24
‖µ‖L(L2)‖ε̈‖L∞(0,T )T∆t2

+
1

2
‖[H0, µ]‖L(L2)

(
∆ε+

1

2
‖ε̇‖L∞(0,T )∆t

)
T∆t

and the proof of Theorem 4 is complete, with

λ′′1 =
1

2
‖[H0, µ]‖L(L2)T + ‖µ‖2

L(L2)T∆ε,

λ′′2 =
1

4
‖[H0, µ]‖L(L2)‖ε̇‖L∞(0,T )T +

1

24
‖µ‖L(L2)‖ε̈‖L∞(0,T )T

+
1

2
‖µ‖2

L(L2)‖ε̇‖L∞(0,T )T∆t.

�

6. Numerical results

In this section, we check numerically that the order of the estimates we have
obtained in this paper are optimal, and we compare computational costs of the
methods.
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6.1. Model. In order to test the performance of the algorithms on a realistic case,
a model already treated in the literature has been considered. The system is a mol-
ecule of HCN modeled as a rigid rotator. We refer the reader to [15] for numerical
details concerning this system.
As a control field, we use an arbitrary field of the form ε(t) = εmax sin(ωt), with
εmax = 5.10−5 and ω = 5.10−6. The parameters are chosen in accordance with
usual scales considered for this model. The use of an analytic formula for the field
enables us to work with exact values, i.e. to test the cases ∆ε = 0.

6.2. Orders of convergence. To test the time order, we first work with ∆ε = 0,
with various values of ∆t. The numerical orders correspond to the ones obtained
in our analysis. Curves of convergence are depicted in Fig. 1.
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Figure 1. Error with respect to ∆t, when ∆ε = 0 for toolkit
method and Improved toolkit I method, and when∆ε = c∆t for
Improved toolkit II method. Here, ψnum stands for the approx-
imation of ψ when using the toolkit method, the second order
Strang operator splitting, the Improved toolkit I method and the
Improved toolkit II. The coefficient a is the regression coefficient.

The order with respect to ∆ε is also obtained numerically by using a small
time step. In this test, the numerical order is consistent with the one obtained in
Theorem 2. The convergence with respect to this parameter is presented in Fig. 2.

6.3. Computational cost. In a second test, we compare the computational costs
of the methods. To do this, we look for the values of N = T

∆t and m = εmax

∆ε that

enable to reach a fixed arbitrary error of Tol = 5.10−3 (recall that in any case the
error cannot exceed 2). For sake of simplicity, we only test powers of 2. In this test,
we also include the quantified version of the Improved toolkit II which is described
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Figure 2. Error with respect to ∆ε, when ∆t is small. Here,
ψnum stands for the approximation of ψ when using the toolkit
method.

in Remark 4. In our case, the parameters α and β were quantified among 100 values
uniformly distributed in [0, 1].

N = T
∆t Matrix products m = εmax

∆ε

Strang Op. Splitting 16384 32768 -
Toolkit 8192 8192 16384

Improved toolkit I 1024 2048 16384
Improved toolkit II 4096 12288 16

Quantified Improved toolkit II 4096 4096 6400

Table 1. Values of numerical parameters corresponding to a tol-
erance error of Tol = 5.10−3.

These tests show that toolkit methods always give better results as the second
order Strang operator splitting.
The two improvements we propose in this paper enable to reduce respectively the
global number of matrix products and the size of the toolkit, which is in agree-
ment with the analysis we have done. Note that the second improvement reduce
significantly preprocessing step. This fact makes feasible the quantified version of
it, which requires intrinsically a larger toolkit.
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