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VAN DEN BERGH ISOMORPHISMS IN STRING

TOPOLOGY

LUC MENICHI

Abstract. Let M be a path-connected closed oriented d-dimensional
smooth manifold and let k be a principal ideal domain. By Chas
and Sullivan, the shifted free loop space homology of M , H∗+d(LM)
is a Batalin-Vilkovisky algebra. Let G be a topological group such
that M is a classifying space of G. Denote by S∗(G) the (nor-
malized) singular chains on G. Suppose that G is discrete or
path-connected. We show that there is a Van Den Bergh type
isomorphism

HH−p(S∗(G), S∗(G)) ∼= HHp+d(S∗(G), S∗(G)).

Therefore, the Gerstenhaber algebra HH∗(S∗(G), S∗(G)) is a Batalin-
Vilkovisky algebra and we have a linear isomorphism

HH∗(S∗(G), S∗(G)) ∼= H∗+d(LM).

This linear isomorphism is expected to be an isomorphism of Batalin-
Vilkovisky algebras. We also give a new characterization of Batalin-
Vilkovisky algebra in term of derived bracket.

1. Introduction

We work over an arbitrary principal ideal domain k. Let M be a
compact oriented d-dimensional smooth manifold. Denote by LM :=
map(S1,M) the free loop space on M . Chas and Sullivan [6] have
shown that the shifted free loop homologyH∗+d(LM) has a structure of
Batalin-Vilkovisky algebra (Definition 23). In particular, they showed
thatH∗+d(LM) is a Gerstenhaber algebra (Definition 21). On the other
hand, let A be a differential graded (unital associative) algebra. The
Hochschild cohomology of A with coefficients in A, HH∗(A,A), is a
Gerstenhaber algebra. These two Gerstenhaber algebras are expected
to be related:

Key words and phrases. String Topology, Batalin-Vilkovisky algebra, Hochschild
cohomology, free loop space, derived bracket, Van den Bergh duality, Poincaré
duality group, Calabi-Yau algebra.
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Conjecture 1. Let G be a topological group such that M is a classi-
fying space of G. There is an isomorphism of Gerstenhaber algebras
H∗+d(LM) ∼= HH∗(S∗(G), S∗(G)) between the free loop space homology
and the Hochschild cohomology of the algebra of singular chains on G.

Suppose that G is discrete or path-connected. In this paper, we
define a Batalin-Vilkovisky algebra structure on HH∗(S∗(G), S∗(G))
and an isomorphism of graded k-modules

BFG−1 ◦ D : H∗+d(LM) ∼= HH∗(S∗(G), S∗(G))

which is compatible with the two ∆ operators of the two Batalin-
Vilkovisky algebras: BFG−1 ◦ D ◦ ∆ = ∆ ◦ BFG−1 ◦ D. Indeed,
Burghelea, Fiedorowicz [5] and Goodwillie [19] gave an isomorphism of
graded k-modules

BFG : HH∗(S∗(G), S∗(G))
∼=
→ H∗(LM).

which interchanges Connes boundary map B and the ∆ operator on
H∗+d(LM): BFG ◦B = ∆ ◦BFG. And in this paper, our main result
is:

Theorem 2. (Theorems 45 and 43) Let G be a discrete or a path-
connected topological group such that its classifying space BG is an
oriented Poincaré duality space of formal dimension d. Then

a) there exists k-linear isomorphisms

D : HHd−p(S∗(G), S∗(G))
∼=
→ HHp(S∗(G), S∗(G)).

b) If B denotes Connes boundary map on HH∗(S∗(G), S∗(G)) then
∆ := D ◦ B ◦ D−1 defines a structure of Batalin-Vilkovisky algebra
on HH∗(S∗(G), S∗(G)), extending the canonical Gerstenhaber algebra
structure.

c) The cyclic homology of S∗(G), HC∗(S∗(G)) has a Lie bracket of
degre 2− d.

By [33, Proposition 28], c) follows directly from b). Note that when
G is a discrete group, the algebra of normalized singular chains on G,
S∗(G) is just the group ring k[G].

To prove Conjecture 1 in the discrete or path-connected case, it
suffices now to show that the composite BFG−1 ◦ D is a morphism of
graded algebras. When k is a field of characteristic 0 and G is discrete,
this was proved by Vaintrob [38].

Suppose now that

(3) M is simply-connected and that k is a field.
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In this case, there is a more famous dual conjecture relating Hochschild
cohomology and string topology.

Conjecture 4. Under (3), there is an isomorphism of Gerstenhaber
algebras H∗+d(LM) ∼= HH∗(S∗(M), S∗(M)) between the free loop space
homology and the Hochschild cohomology of the algebra of singular
cochains on M .

And in fact, Theorem 2 is the Eckmann-Hilton or Koszul dual of the
following theorem.

Theorem 5. ([13, Theorem 23] and [33, Theorem 22]) Assume (3).
a) There exist isomorphism of graded k-vector spaces

FTV : HHp−d(S∗(M), S∗(M)∨)
∼=
→ HHp(S∗(M), S∗(M)).

b) The Connes coboundary B∨ on HH∗(S∗(M), S∗(M)∨) defines via
the isomorphism FTV a structure of Batalin-Vilkovisky algebra extend-
ing the Gerstenhaber algebra HH∗(S∗(M), S∗(M)).

Jones [23] proved that there is an isomorphism

J : Hp+d(LM)
∼=
→ HH−p−d(S∗(M), S∗(M)∨)

such that the ∆ operator of the Batalin-Vilkovisky algebra H∗+d(LM)
and Connes coboundary map B∨ on HH∗−d(S∗(M), S∗(M)∨) satisfies
J ◦∆ = B∨ ◦J . Therefore, as we explain in [33], to prove conjecture 4,
it suffices to show that the composite FTV ◦J is a morphism of graded
algebras.

In [12], together with Felix and Thomas, we prove that Hochschild
cohomology satisfies some Eckmann-Hilton or Koszul duality.
Theorem 6. [12, Corollary 2](See also [7, Theorem 69 and below])
Let k be a field. Let G be a connected topological group. Denote by
S∗(BG) the algebra of singular cochains on the classifying space of G.
Then there exists an isomorphism of Gerstenhaber algebras

Gerst : HH∗(S∗(G), S∗(G))
∼=
→ HH∗(S∗(BG), S∗(BG)).

Therefore under (3), Conjectures 4 and 1 are equivalent and un-
der (3), Theorem 2 as stated in this introduction follows from Theo-
rem 5.

The problem is that the isomorphism Gerst in Theorem 6 does not
admit a simple formula. On the contrary, as we explain in Theorems 45
and 43, in this paper, the isomorphism D is very simple: D−1 is given
by the cap product with a fundamental class c ∈ HHd(S∗(G), S∗(G)).

In [18, Theorem 3.4.3 i)], Ginzburg (See also [26, Proposition 1.4])
shows that for any Calabi-Yau algebra A, the Van den Bergh duality
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isomorphism D : HHd−p(A,A)
∼=
→ HHp(A,A) is HH∗(A,A)-linear:

D−1 is also given by the cap product with a fundamental class c ∈
HHd(A,A).

We now give the plan of the paper:
Section 2: We recall the definitions of the Bar construction, of the

Hochschild (co)chain complex and of Hochschild (co)homology.
Section 3: We show that, for some augmented differential graded

algebra A such that the dual of its reduced bar construction B(A)∨ sat-
isfies Poincaré duality, we have a Van den Bergh duality isomorphism
HHd−p(A,A) ∼= HHp(A,A) if A is connected (Corollaries 13 and 14).

Section 4: There is a well known isomorphism between group
(co)homology and Hochschild (co)homology. We show that, through
this isomorphism, cap products in Hochschild (co)homology correspond
to cap products in group (co)homology.

Section 5: We give a new characterization of Batalin-Vilkovisky
algebras.

Section 6: Ginzburg proved that if Hochschild (co)homology satis-
fies a Van den Bergh duality isomorphism HHd−p(A,A) ∼= HHp(A,A)
then Hochschild cohomology has a Batalin-Vilkovisky algebra struc-
ture. We rewrite the proof of Ginzburg using our new characterization
of Batalin-Vilkovisky algebras and insisting on signs.

Section 7: We show that a differential graded algebra quasi-isomorphic
to an algebra satisfying Poincaré duality, also satisfies Poincaré dual-
ity (Proposition 41). Finally, we show our main theorem for path-
connected topological group.

Section 8: We show our main theorem for discrete groups. Extend-
ing a result of Kontsevich [18, Corollary 6.1.4] and Lambre [26, Lemme
6.2], we also show that, over any commutative ring k, the group ring
k[G] of an orientable Poincaré duality group is a Calabi-Yau algebra.

Section 9: Let G be a path-connected compact Lie group of dimen-
sion d. We give another Van Den Bergh type isomorphism

HHp(S∗(BG), S∗(BG)) ∼= HH−d−p(S
∗(BG), S∗(BG)).

Therefore, the Gerstenhaber algebraHH∗(S∗(BG), S∗(BG)) is a Batalin-
Vilkovisky algebra and we have a linear isomorphism

HH∗(S∗(BG), S∗(BG)) ∼= H∗+d(LBG).

Appendix: We recall the notion of derived bracket following Kosmann-
Schwarzbach [24]. We interpret our new characterization of Batalin-
Vilkovisky algebra in term of derived bracket (Theorem 66). To any
differential graded algebra A, we associate

-a new Lie bracket on A (Remark 63),
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-a new Gerstenhaber algebra which is a sub algebra of the endomor-
phism algebra of HH∗(A,A) (Theorem 67).

We conjecture that Theorem 2 is true without assuming that G is
discrete or path-connected. Note that the proof of the discrete case
(Sections 4 and 8) is independent of the proof of the path-connected
case (Sections 3 and 7).

Acknowledgment: We wish to thank Jean-Claude Thomas for sev-
eral discussions, in particular for pointing the Mittag-Leffler condition
which is the key of Proposition 12.

2. Hochschild homology and cohomology

We work over an arbitrary commutative ring k except in sections 3
and 7, where k is assumed to be a principal ideal domain and in section
9 where k is assumed to be a field. We use the graded differential
algebra of [11, Chapter 3]. In particular, an element of lower degree
i ∈ Z is by the classical convention [11, p. 41-2] of upper degree −i.
Differentials are of lower degree −1. All the algebras considered in
this paper, are unital and associative. Let A be a differential graded
algebra. Let M be a right A-module and N be a left A-module. Denote
by sA the suspension of A, (sA)i = Ai−1. Let d0 be the differential on
the tensor product of complexes M⊗T (sA)⊗N . We denote the tensor
product of the elements m ∈ M , sa1 ∈ sA, . . . , sak ∈ sA and n ∈ N
by m[a1| · · · |ak]n. Let d1 be the differential on the graded vector space
M ⊗ T (sA)⊗N defined by:

d1m[a1| · · · |ak]n =(−1)|m|ma1[a2| · · · |ak]n

+
k−1∑

i=1

(−1)εim[a1| · · · |aiai+1| · · · |ak]n

− (−1)εk−1m[a1| · · · |ak−1]akn;

Here εi = |m|+ |a1|+ · · ·+ |ai|+ i.
The bar construction of A with coefficients in M and in N , denoted

B(M ;A;N), is the complex (M⊗T (sA)⊗N, d0+d1). The bar resolution
of A, denoted B(A;A;A), is the differential graded (A,A)-bimodule
(A ⊗ T (sA) ⊗ A, d0 + d1). If A is augmented then the reduced bar
construction of A, denoted B(A), is B(k;A; k).

Denote by Aop the opposite algebra of A and by Ae := A ⊗ Aop

the envelopping algebra of A. Let M be a differential graded (A,A)-
bimodule. Recall that any (A,A)-bimodule can be considered as a left
(or right) Ae-module. The Hochschild chain complex is the complex
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M ⊗Ae B(A;A;A) denoted C∗(A,M). Explicitly C∗(A,M) is the com-
plex (M ⊗ T (sA), d0 + d1) with d0 obtained by tensorization and [8,
(10) p. 78]

d1m[a1| · · · |ak] =(−1)|m|ma1[a2| · · · |ak]

+

k−1∑

i=1

(−1)εim[a1| · · · |aiai+1| · · · |ak]

− (−1)|sak|εk−1akm[a1| · · · |ak−1].

The Hochschild homology of A with coefficients in M is the homology
H of the Hochschild chain complex:

HH∗(A,M) := H(C∗(A,M)).

The Hochschild cochain complex of A with coefficients in M is the com-
plex HomAe(B(A;A;A),M) denoted C∗(A,M). Explicitly C∗(A,M) is
the complex

(Hom(T (sA),M), D0 +D1).

Here for f ∈ Hom(T (sA),M), D0(f)([ ]) = dM(f([ ])), D1(f)([ ]) = 0,
and for k ≥ 1, we have:

D0(f)([a1|a2|...|ak]) = dM(f ([a1|a2|...|ak]))−

k∑

i=1

(−1)ǫif([a1|...|dAai|...|ak])

and

D1(f)([a1|a2|...|ak]) = −(−1)|sa1| |f |a1f([a2|...|ak])

−
∑k

i=2(−1)ǫif([a1|...|ai−1ai|...|ak])

+(−1)ǫkf([a1|a2|...|ak−1])ak ,

where ǫi = |f |+ |sa1|+ |sa2|+ ...+ |sai−1|.
The Hochschild cohomology of A with coefficients in M is

HH∗(A,M) = H(C∗(A,M)).

Suppose that A has an augmentation ε : A ։ k. Let A := Kerε be
the augmentation ideal. We denote by B(A) := (TsA, d0 +d1) the nor-
malized reduced Bar construction, by C∗(A,M) := (M ⊗ T (sA), d0 +

d1) the normalized Hochschild chain complex and by C
∗
(A,M) :=

(Hom(T (sA),M), D0 + D1) the normalized Hochschild cochain com-
plex.



VAN DEN BERGH ISOMORPHISMS IN STRING TOPOLOGY 7

3. The isomorphism between Hochschild cohomology and
Hochschild homology for differential graded

algebras

Let A be a differential graded algebra. Let P and Q be two A-
bimodules.

The action of HH∗(A,Q) on HH∗(A,P ) comes from a (right) action
of the C∗(A,Q) on C∗(A,P ) given by [8, (18) p. 82], [26]

∩ : C∗(A,P )⊗ C∗(A,Q)→ C∗(A,P ⊗A Q)

(7)

(m[a1| . . . |an], f) 7→ (m[a1| . . . |an])∩f :=

n∑

p=0

±(m⊗Af [a1| . . . |ap])[ap+1| . . . |an].

Here ± is the Koszul sign (−1)|f |(|a1|+...|an|+n) [33, Proof of Lemma 16].
Let f : A→ B be a morphism of differential graded algebras and let

N be a B-bimodule. The linear map B ⊗A N → N , b ⊗ n 7→ b.n is a
morphism of B-bimodules. We call again cap product the composite

(8) C∗(A,B)⊗ C∗(A,N)
∩
→ C∗(A,B ⊗A N)→ C∗(A,N).

In this paper, our goal (statement 9) is to relate the cap product with
B = A to the cap product with N = B = k.

Statement 9. Let A be an augmented differential graded algebra such
that each Ai is k-free, i ∈ Z. Let N be an A-bimodule. Let c ∈
HHd(A,A). Denote by [m] ∈ TorAd (k, k) the image of c by the mor-
phism

HHd(A, ε) : HHd(A,A)→ HHd(A, k) = TorAd (k, k).

Suppose that
• TorAi (k, k) = 0 for i ≤ −n or i ≥ n for some positive integer n,
• each TorAi (k, k) is of finite type, i ∈ Z,
• the morphism of right Ext∗A(k, k)-modules

ExtpA(k, k)
∼=
→ TorAd−p(k, k), a 7→ [m] ∩ a

is an isomorphism.
Then the morphism

D−1 : HHp(A,N)
∼=
→ HHd−p(A,N), a 7→ c ∩ a

is also an isomorphism.
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This statement is the Eckmann-Hilton or Koszul dual of [33, Proposi-
tion 11]. In this section, we will prove this statement if A is connected.
But we wonder if this statement is true in general or even for ungraded
algebras.

Property 10. Let B and N be two complexes. Consider the natural
morphism of complexes Θ : B∨⊗N → Hom(B,N), which sends ϕ⊗ n
to the linear map f : B → N defined by f(b) := ϕ(b)n. Suppose that
each Bi is k-free.

1) If Bi = 0 for i ≤ −n or i ≥ n for some positive integer n and if
each Bi is of finite type or

2) If Hi(B) = 0 for i ≤ −n or i ≥ n for some positive integer n and
if each Hi(B) is of finite type
then Θ is a homotopy equivalence.

Proof. 1) Since B is bounded, the component of degre n of Hom(B,N)
is the direct sum ⊕q∈ZHom(Bq−n, Nq). Since Bq−n is free of finite type,
Hom(Bq−n, Nq) is isomorphic to B∨q−n⊗Nq. Therefore Θ is an isomor-
phism.
2) Since k is a principal ideal domain, the proof of [36, Lemma 5.5.9]
shows that there exists an complex B′ satisfying 1) homotopy equiv-
alent to B. By naturality of Θ, Θ is a homotopy equivalence of com-
plexes. �

Lemma 11. The statement holds whenever N is a trivial A-bimodule,
i.e. a.n = ε(a)n = n.a for a ∈ A and n ∈ N .

Proof. Since N is a trivial A-bimodule, the normalized Hochschild
chain complex C∗(A,N) is just the tensor product of complexes C∗(A, k)⊗
N = B(A)⊗N (This is also true for the unnormalized Hochschild chain
complex, but less obvious). And the normalized Hochschild cochain

complex C
∗
(A,N) is just the Hom complex Hom(C∗(A, k), N) = Hom(B(A), N).

Since the augmentation ideal of A, A, is k-free, B(A) is also k-free.
Each Hi(B(A)) is of finite type and Hi(B(A)) = TorAi (k, k) is null if

i ≤ −n or i ≥ n. Therefore by part 2) of Property 10, Θ : B(A)∨⊗N
≃
→

Hom(B(A), N) is a quasi-isomorphism. A straightforward calculation
shows that the following diagram commutes

B(A)∨ ⊗N
Θ

≃
//

([m]∩−)⊗N ))TTTTTTTTTTTTTTT

Hom(B(A), N) = C
∗
(A,N)

c∩−

��

B(A)⊗N = C∗(A,N)



VAN DEN BERGH ISOMORPHISMS IN STRING TOPOLOGY 9

Since B(A) is k-free and its dual B(A)∨ is torsion free, by naturality
of Kunneth formula [36, Theorem 5.3.3], ([m] ∩ −) ⊗ N is a quasi-
isomorphism. Therefore c ∩ − is also a quasi-isomorphism. �

Proposition 12. Let A be an augmented differential graded algebra.
Let N be an A-bimodule. And let c ∈ HHd(A,A) satisfying the hy-

potheses of Statement 9. For any k ≥ 0, let F k := Ae
k
.N . Then taking

the inverse limit of the cap product with c induces a quasi-isomorphism
of complexes

lim
←
c ∩− : lim

←
C∗(A,N/F k)

≃
→ lim

←
C∗(A,N/F

k).

Proof. Consider the augmentation ideal Ae of the envelopping algebra

Ae. For any k ≥ 0, let Ae
k

be the image of the iterated tensor product

Ae
⊗k

by the iterated multiplication of Ae, µ : (Ae)⊗k → Ae and let F k

be the image of Ae
k
⊗N by the action Ae ⊗N → N .

The F k form a decreasing filtration of sub-A-bimodules and sub-
complexes of N . Since F k/F k+1 is a trivial A-bimodule, by Lemma 11,
the morphism of complexes

C∗(A,F k/F k+1)
≃
→ C∗(A,F

k/F k+1), a 7→ c ∩ a

is a quasi-isomorphism. By Noether theorem, we have the short exact
sequences of A-bimodules

0→ F k/F k+1 → N/F k+1 → N/F k → 0.

Since TsA is k-free, the functors Homk(TsA,−) and −⊗kTsA preserve
short exact sequences. Therefore consider the morphism of short exact
sequences of complexes induced by the cap product with c

0 // C∗(A,F k/F k+1) //

c∩−≃
��

C∗(A,N/F k+1) //

c∩−
��

C∗(A,N/F k) //

c∩−
��

0

0 // C∗(A,F
k/F k+1) // C∗(A,N/F

k+1) // C∗(A,N/F
k) // 0

Using the long exact sequences associated and the five lemma, by in-
duction on k, we obtain that the morphism of complexes

C∗(A,N/F k)
≃
→ C∗(A,N/F

k), a 7→ c ∩ a

is a quasi-isomorphism for all k ≥ 0.
The two towers of complexes

· · ·։ C∗(A,N/F k+1) ։ C∗(A,N/F k) ։ · · ·

· · ·։ C∗(A,N/F
k+1) ։ C∗(A,N/F

k) ։ · · ·
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satisfy the trivial Mittag-Leffler condition, since all the maps in the
two towers are onto. Therefore by naturality of [39, Theorem 3.5.8],
for each p ∈ Z, we have the morphism of short exact sequences induced
by the cap product with c

lim
←

1HHp−1(A,N/F k) //

lim
←

1c ∩ −∼=
��

Hplim
←
C∗(A,N/F k) //

H(lim
←
c ∩−)

��

lim
←
HHp(A,N/F k)

lim
←
c ∩ −∼=

��

lim
←

1HHd+1−p(A,N/F
k) // Hd−plim

←
C∗(A,N/F

k) // lim
←
HHd−p(A,N/F

k)

Using the five Lemma again, we obtain that the middle morphism

H(lim
←
c ∩ −) : Hp lim

←
C∗(A,N/F k)→ Hd−p lim

←
C∗(A,N/F

k)

is an isomorphism. �

Corollary 13. The statement is true if A and N are non-negatively

lower graded and H0(ε) : H0(A)
∼=
→ k is an isomorphism.

Proof. Case 1: We first suppose that ε : A0

∼=
→ k is an isomorphism.

Then Ae
k

is concentrated in degres ≥ k. Therefore F k and C∗(A,F
k)

are also concentrated in degres ≥ k. This means that for n < k their
components of degre n, (F k)n and [C∗(A,N/F

k)]n are trivial. Therefore
the tower in degre n

· · · → (N/F k+1)n ։ (N/F k)n → · · ·

is constant and equal to Nn for k > n. This implies that Nn =
lim
←

(N/F k)n. Therefore as complexes and asA-bimodule, N = lim
←
N/F k.

Since C∗(A,N/F
k) is the quotient C∗(A,N)/C∗(A,F

k), we also have
that as complexes,

C∗(A,N) = lim
←
C∗(A,N/F

k)

The functor C∗(A,−) from (differential) A-bimodules to complexes
is a right adjoint. Therefore C∗(A,−) preserves inverse limits. Since
N = lim

←
N/F k in the category of (differential) A-bimodules, we obtain

that as complex

C∗(A,N) = C∗(A, lim
←
N/F k) = lim

←
C∗(A,N/F k).
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Since for any k ≥ 0, the following square commutes

C∗(A,N) //

c∩−

��

C∗(A,N/F k)

c∩−
��

C∗(A,N) // C∗(A,N/F
k)

,

the quasi-isomorphism given by Proposition 12

lim
←
c ∩ − : lim

←
C∗(A,N/F k)

≃
→ lim

←
C∗(A,N/F

k)

coincides with c ∩ − : C∗(A,N)→ C∗(A,N).

Case 2: Now, we only suppose that H0(ε) : H0(A)
∼=
→ k is an

isomorphism. Let Ã be the graded k-module defined by Ã0 = k,
Ã1 = Ker d : A1 → A0, Ãn = An for n ≥ 2 (Compare with the upper
graded version in [11, p. 184]). Clearly Ã is a k-free sub differential

graded algebra ofA and the inclusion j : Ã
≃
→֒ A is a quasi-isomorphism

since Im d : A1 → A0 is equal to A0.

Since the augmentation ideals of A and Ã, A and Ã, are k-free
and non-negatively lower graded, by [27, 5.3.5] or [10, 4.3(iii)], the

three morphisms HH∗(j, N) : HH∗(Ã, N)
∼=
→ HH∗(A,N), HH∗(j, N) :

HH∗(A,N)
∼=
→ HH∗(Ã, N) and HH∗(j, j) : HH∗(Ã, Ã)

∼=
→ HH∗(A,A)

are all isomorphims. Let c̃ ∈ HHd(Ã, Ã) such that HHd(j, j)(c̃) = c.
Using the definition of the cap product, it is straightforward to check
that the following square commutes

HH∗(A,N)
HH∗(j,N)

∼=
//

c∩−

��

HH∗(Ã, N)

c̃∩−
��

HH∗(A,N) HH∗(Ã, N)
HH∗(j,N)

∼=oo

Let ˜[m] ∈ TorÃd (k, k) such that Torjd(k, k)( ˜[m]) = [m]. When N = k,
the previous square specializes to the following commutative square

Ext∗A(k, k)
Ext∗j (k,k)

∼=
//

[m]∩− ∼=
��

Ext∗
Ã
(k, k)

˜[m]∩−
��

TorA∗ (k, k) TorÃ∗ (k, k)
Torj

∗(k,k)

∼=oo

By hypothesis, [m] ∩ − is an isomorphism. Therefore ˜[m] ∩ − is also

an isomorphism. So since Ã0 = k, we have seen in the case 1, that
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c̃ ∩ − : HH∗(Ã, N)
∼=
→ HH∗(Ã, N)

is an isomorphism. Therefore

c ∩ − : HH∗(A,N)
∼=
→ HH∗(A,N)

is also an isomorphism. �

Corollary 14. The statement is true if A and N are non-negatively

upper graded, H0(ε) : H0(A)
∼=
→ k is an isomorphism and k is a field.

Proof. Case 1: We first suppose that ε : A0
∼=
→ k is an isomorphism.

Since T (sA) has non-trivial elements of negative degres, we need to

use the normalized Hochschild chain and cochain complexes C∗ and C
∗

instead of the unnormalized C∗ and C∗. Now the proof is the same as
in Case 1 of the proof of Corollary 13.

Case 2: Now, we only suppose that that H0(ε) : H0(A)
∼=
→ k is

an isomorphism. Since k is a field, by [11, p. 184]), there exists a
differential graded algebra Ã, non-negatively upper graded, equipped

with a quasi-isomorphism j : Ã
≃
→ A such that Ã0 = k. Now the rest of

the proof is exactly the same as in Case 2 of the proof of Corollary 13.
�

4. Comparison of the Cap products in Hochschild and
group (co)homology

Let G be a discrete group. Let M and N be two k[G]-bimodules.
Let η : k → k[G] be the unit map. Let E : k[G] → k[G × Gop] be the
morphism of algebras mapping g to (g, g−1). Let

η̃ : k[G×Gop]⊗k[G] k→ k[G]

be the unique morphism of left k[G×Gop]-modules extending η. Since
k[G × Gop] is flat as left k[G]-module via E and since η̃ is an iso-
morphism, by Eckmann-Schapiro [22, Chapt IV.Proposition 12.2], we
obtain the well-known isomorphisms between Hochschild (co)homology
and group (co)homology:

Ext∗E(η,N) : HH∗(k[G], N) = Ext∗
k[G×Gop](k[G], N)

∼=
→ Ext∗

k[G](k, Ñ) = H∗(G, Ñ).

and

TorE∗ (M, η) : H∗(G, M̃) = Tork[G]
∗ (M̃, k)

∼=
→ Tor∗

k[G×Gop](M, k[G]) = HH∗(k[G],M).

Here M̃ and Ñ denote the k[G]-modules obtained by restriction of
scalar via E. Note that we regard any left k[G]-module as an right
k[G]-module via g 7→ g−1 [4, p. 55].
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Proposition 15. Remark that the canonical surjection

q : M̃ ⊗ Ñ ։ ˜M ⊗k[G] N

is a morphism of k[G]-modules, since q(gmg−1⊗ gng−1) = gm⊗ ng−1.
i) Cup product ∪ in Hochschild cohomology versus cup product in

group cohomology (slight extension of [35, Proposition 3.1]). The fol-
lowing diagram commutes

HH∗(k[G],M)⊗HH∗(k[G], N)
∪ //

Ext
∗

E(η,M)⊗Ext
∗

E(η,N)

��

HH∗(k[G],M ⊗k[G] N)

Ext
∗

E(η,M⊗k[G]N)
��

H∗(G, M̃)⊗H∗(G, Ñ) ∪
// H∗(G, M̃ ⊗ Ñ)

H∗(G,q)
// H∗(G, ˜M ⊗k[G] N)

ii) Cap products ∩. The following diagram commutes

HH∗(k[G],M)⊗HH∗(k[G], N)
∩ // HH∗(k[G],M ⊗k[G] N)

H∗(G, M̃)⊗H∗(G, Ñ) ∩
//

Tor
E
∗

(M,η)⊗Ext
∗

E(η,N)−1

OO

H∗(G, M̃ ⊗ Ñ)
H∗(G,q)

// H∗(G, ˜M ⊗k[G] N)

Tor
E
∗

(M⊗k[G]N,η)

OO

Remark 16. In the case N = k[G] [35, (3.3)], the morphism of k[G]-

modules q : M̃ ⊗ ˜k[G] ։ ˜M ⊗k[G] k[G] ∼= M̃ is simply the action
m⊗ g 7→ m.g.

In the case M = N = k[G], the diagram i) in Proposition 15 means
that

Ext∗E(η, k[G]) : HH∗(k[G], k[G])→ H∗(G, ˜k[G])

is a morphism of graded algebras.
In the case N = k[G], the diagram ii) means that

TorE∗ (M, η) : H∗(G, M̃)→ HH∗(k[G],M)

is a morphism of right HH∗(k[G], k[G])-modules:

TorE∗ (η, k[G]) (α ∩ Ext∗E(η, k[G])(ϕ)) = TorE∗ (η, k[G])(α) ∩ ϕ

for any α ∈ H∗(G, M̃) and any ϕ ∈ HH∗(k[G], k[G]).

Proof. Siegel and Witherspoon [35, Proposition 3.1] proved i) using
that for any projective resolution P of k as left k[G]-modules,

X := k[G×Gop]⊗k[G] P

is a projective resolution of k[G] as k[G]-bimodules. Let ι : P →֒ X̃
the left k[G]-linear map defined by ι(x) = (1, 1)⊗ x. Using that

HomE(ι, N) : Homk[G×Gop](X,N)
∼=
→ Homk[G](P, Ñ)
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is an isomorphism of complexes inducing Ext∗E(η,N) and that

M ⊗E ι : M̃ ⊗k[G] P
∼=
→ M ⊗k[G×Gop] X

is an isomorphism of complexes inducing TorE∗ (M, η), Siegel and With-
erspoon [35, Proposition 3.1] proved i). But one can also prove similarly
ii).

We find more simple to give a proof of ii) using the Bar resolution.

Let ι : B(k[G]; k[G]; k)→ ˜B(k[G]; k[G]; k[G]) be the linear map defined
by

ι(g0[g1| · · · |gn]) = g0[g1| · · · |gn]g
−1
n . . . g−1

0 .

Obviously ι fits into the commutative diagram of left k[G]-modules

˜B(k[G]; k[G]; k[G]) // k[G]

B(k[G]; k[G]; k) //

ι

OO

k

η

OO

A straightforward computation shows that ι is a morphism of com-
plexes. Therefore HomE(ι, N) is an morphism of complexes from C∗(k[G], N) ∼=
(Homk[G×Gop](B(k[G]; k[G]; k[G]), N) to Homk[G](B(k[G]; k[G]; k), Ñ).
inducing Ext∗E(η,N) and M ⊗E ι is an morphism of complexes from

B(M̃ ; k[G]; k) ∼= M̃ ⊗k[G] B(k[G]; k[G]; k)

to

M ⊗k[G×Gop] B(k[G]; k[G]; k[G]) ∼= C∗(k[G],M)

inducing TorE∗ (M, η). Explicitly M ⊗E ι is the morphism of complexes

B(M̃ ; k[G]; k)→ C∗(k[G],M)

defined by [14, (2.20)]

(17) ξ(m[g1| . . . |gn] = g−1
n . . . g−1

1 m[g1| . . . |gn].

And HomE(ι, N) : C∗(k[G], N)→ Hom(B(k[G]), Ñ), d is the morphism
of complexes ξ mapping ϕ ∈ C∗(k[G], N) to the linear map ξ(ϕ) :
k[G]→ Ñ defined by

ξ(ϕ)([g1| . . . |gn]) = ϕ([g1| . . . |gn])g
−1
n . . . g−1

1 .

Both M ⊗E ι and HomE(ι, N) are in fact isomorphisms of complexes.
The inverse of M⊗E ι is the morphism of complexes Φ : C∗(k[G],M)→

B(M̃ ; k[G]; k) defined by [27, 7.4.2.1]

Φ(m[g1| . . . |gn]) = g1 . . . gnm[g1| . . . |gn].
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Let F be any projective resolution of k as left k[G]-module. Let P and
Q be two k[G]-modules. The cap product in group cohomology is the
composite [4, p. 113], denoted ∩

P ⊗k[G] F ⊗Homk[G](F,Q)

Id⊗k[G]∆⊗k[G]Id

��
P ⊗k[G] (F ⊗ F )⊗ Homk[G](F,Q)

γ

��
(P ⊗Q)⊗k[G] F

where γ(a⊗x⊗y⊗u) = (−1)|u||x|+|u||y|a⊗u(x)⊗y and ∆ is a diagonal
approximation. In the case, F is the Bar resolution B(k[G]; k[G]; k),
one can take ∆ to be the Alexander-Whitney map

AW : B(k[G]; k[G]; k)→ B(k[G]; k[G]; k)⊗B(k[G]; k[G]; k)

defined by [4, p. 108 (1.4)]:

AW (g0[g1| . . . |gn]) =
n∑

p=0

g0[g1| . . . |gp]⊗ g0 . . . gp[gp+1| . . . |gn].

Therefore the cap product

∩ : B(P ; k[G]; k)⊗Hom(B(k[G]), Q), d→ B(P ⊗Q; k[G]; k)

is the morphism of complexes mapping m[g1| . . . |gn] ⊗ u : Gp → Q
to m.g1 . . . gp ⊗ u(g1, . . . , gp).g1 . . . gp[gp+1| . . . |gn]. Using the explicit
formula (7) for the cap product in Hochschild cohomology, it is easy to
check that the following diagram commutes

C∗(k[G],M)⊗ C∗(k[G], N)
∩ //

Φ⊗HomE(ι,N)

��

C∗(k[G],M ⊗k[G] N)

Φ
��

B(M̃ ; k[G]; k)⊗B(Ñ ; k[G]; k) ∩
// B(M̃ ⊗ Ñ ; k[G]; k)

B(q;k[G];k)
// B( ˜M ⊗k[G] N ; k[G]; k)

By applying homology, ii) is proved. �

Definition 18. [27, 7.4.5 when z=1] Let σ : B(k[G]) →֒ C∗(k[G], k[G])
be the linear map defined by

σ([g1| . . . |gn]) = g−1
n . . . g−1

1 [g1| . . . |gn].

Property 19. i) [27, 7.4.5 when z=1] The map σ is a morphism of cyclic
modules.

ii) The morphism of complexes σ coincides with the composite
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B(k[G])
B(η;k[G];k)
→ B(k̃[G]; k[G]; k)

ξ
→
∼=
C∗(k[G]; k[G]).

Here ξ is the isomorphism of complexes defined by (17). Note that the

unit map η : k→ k̃[G] is a morphism of k[G]-modules.
iii) In particular, in homology, σ coincides with

TorE(η, η) : H∗(G; k)→ HH∗(k[G]; k[G]).

iv) The map σ is a section of

C∗(k[G], ε) : C∗(k[G], k[G])→ C∗(k[G], k) = B(k[G]).

Corollary 20. Let G be any discrete group. Let N be a k[G]-bimodule.
Let σ : H∗(G; k) → HH∗(k[G]; k[G]) be the section of HH∗(k[G], ε) :
HH∗(k[G], k[G])→ H∗(G, k) defined in Definition 18. Let z ∈ Hd(G, k)
be any element in group homology. Then the following square commutes

Hp(G, Ñ)
z∩− // Hd−p(G, Ñ)

Tor
E
∗

(N,η)∼=
��

HHp(k[G], N)
σ(z)∩−

//

Ext
∗

E(η,N) ∼=

OO

HHd−p(k[G], N)

Proof.

HH∗(k[G], k[G])⊗HH∗(k[G], N)
∩ // HH∗(k[G], k[G]⊗k[G] N)

H∗(G, k̃[G])⊗H∗(G, Ñ) ∩
//

TorE
∗

(k[G],η)⊗Ext∗E(η,N)−1

OO

H∗(G, k̃[G]⊗ Ñ)
H∗(G,q)

// H∗(G, Ñ)

TorE
∗

(N,η)

OO

H∗(G, k)⊗H∗(G, Ñ) ∩
//

H∗(G,η)⊗Id

OO

H∗(G, k⊗ Ñ)

H∗(G,η⊗Ñ)

OO

∼=

44jjjjjjjjjjjjjjjjj

The top rectangle commutes by ii) of Proposition 15 in the case M =
k[G]. The bottom square commutes by naturality of the cap product
in group (co)homology with respect to the morphism of k[G]-modules

η : k → k̃[G]. The bottom triangle commutes by functoriality of
H∗(G,−). By ii) or iii) of Property 19, the vertical composite is

σ⊗Ext∗E(η,N)−1 : H∗(G, k)⊗H∗(G, Ñ)→ HH∗(k[G], k[G])⊗HH∗(k[G], N).

�
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5. A new definition of Batalin-Vilkovisky algebras

Definition 21. A Gerstenhaber algebra is a commutative graded alge-
bra A equipped with a linear map {−,−} : Ai⊗Aj → Ai+j+1 of degree
1 such that:
a) the bracket {−,−} gives A a structure of graded Lie algebra of
degree 1. This means that for each a, b and c ∈ A

(22) {a, b} = −(−1)(|a|+1)(|b|+1){b, a} and

{a, {b, c}} = {{a, b}, c}+ (−1)(|a|+1)(|b|+1){b, {a, c}}.

b) the product and the Lie bracket satisfy the following relation called
the Poisson relation:

{a, bc} = {a, b}c+ (−1)(|a|+1)|b|b{a, c}.

Definition 23. A Batalin-Vilkovisky algebra is a Gerstenhaber algebra
A equipped with a degree 1 linear map ∆ : Ai → Ai+1 such that
∆ ◦∆ = 0 and such that the bracket is given by

(24) {a, b} = (−1)|a|
(
∆(a ∪ b)− (∆a) ∪ b− (−1)|a|a ∪ (∆b)

)

for a and b ∈ A.

Remark 25. In (24), a sign (here the sign chosen is (−1)|a|) is needed
(See [25, (1.6)] or [17, beginning of the proof of Proposition 1.2]), since
the Lie bracket of degre +1 is graded antisymmetric (equation (22))while
the associative product is graded commutative. Therefore the defini-
tion of Batalin-Vilkovisky algebra in [18, Theorem 3.4.3 (ii)] and [26,
p. 1] has a sign problem.

The following characterization of Batalin-Vilkovisky algebras was
proved by Koszul and rediscovered by Getzler and by Penkava and
Schwarz.
Proposition 26. [25, p. 3] [17, Proposition 1.2] [34] Let A be a
commutative graded algebra A equipped with an operator ∆ : Ai → Ai+1

of degree 1 such that ∆ ◦∆ = 0. Consider the bracket { , } of degree
+1 defined by

{a, b} = (−1)|a|
(
∆(ab)− (∆a)b− (−1)|a|a(∆b)

)

for any a, b ∈ A. Then A is a Batalin-Vilkovisky algebra if and only if
∆ is a differential operator of degree ≤ 2, this means that for a, b and
c ∈ A,

(27) ∆(abc) = ∆(ab)c + (−1)|a|a∆(bc) + (−1)(|a|−1)|b|b∆(ac)

− (∆a)bc− (−1)|a|a(∆b)c− (−1)|a|+|b|ab(∆c).
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Remark that till now, in this section, it is not necessary that the
algebras have an unit. Now if the algebras have an unit, we give a new
characterization of Batalin-Vilkovisky algebra. One implication in this
new characterization is inspired by Ginzburg’s proof of Proposition 32.
As we will recall in the proof of Theorem 66, the converse in this
characterization is due to [24, “the restriction of this derived bracket
to A is the BV-bracket”, p. 1270].

Proposition 28. Let A be a Gerstenhaber algebra A equipped with an
operator ∆ : A→ A of degree 1 such that ∆ ◦∆ = 0. For any a ∈ A,
denote by la : A→ A, the left multiplication by a, explicitly la(b) = ab,
b ∈ A. Denote by [f, g] = f ◦ g − (−1)|f ||g|g ◦ g the graded commutator
of two endomorphisms f : A → A and g : A → A. Then A is a
Batalin-Vilkovisky algebra if and only if for a, b ∈ A,

l{a,b} = −[[la,∆], lb] and ∆(1) = 0.

Proof. For a and b ∈ A,

[[la,∆], lb] =
(
la ◦∆− (−1)|a∆ ◦ la

)
◦ lb

− (−1)|b|(|a|+1)lb ◦
(
la ◦∆− (−1)|a∆ ◦ la

)

= la ◦∆◦ lb− (−1)|a|∆◦ lab− (−1)|b|lab ◦∆+(−1)|b|(|a|+1)+|a|lb ◦∆◦ la.

Therefore by applying this equality of operators to c ∈ A, we have

(29) − (−1)|a|[[la,∆], lb](c) = −(−1)|a|a∆(bc) + ∆(abc)

+ (−1)|a|+|b|ab∆(c)− (−1)|b|(|a|+1)b∆(ac).

Suppose that A is a Batalin-Vilkovisky algebra. By Proposition 26,
using (29), we obtain that

−(−1)|a|[[la,∆], lb](c) = ∆(ab)c−(∆a)bc−(−1)|a|a(∆b)c = (−1)|a|{a, b}c.

Therefore −[[la,∆], lb] = l{a,b}. In the case a = b = c = 1, equation (27)
gives ∆(1) = 3∆(1)− 3∆(1) = 0.

Conversely, suppose that ∆(1) = 0 and that l{a,b} = −[[la,∆], lb].
Then using (29)

{a, b} = l{a,b}(1) = (−1)|a|(−(−1)|a|a∆(b) + ∆(ab) + 0− (∆a)b).

Therefore, by Definition 23, A is a Batalin-Vilkovisky algebra. �
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6. Batalin-Vilkovisky algebra structures on Hochschild
cohomology

Let A be a differential graded algebra. The cap product defined in
Section 3,

HH∗(A,A)⊗HH∗(A,A)
∩
→ HH∗(A,A), c⊗ a 7→ c ∩ a

is a right action.
Following Tsygan definition of a calculus, we want a left action.

Therefore, we define as in [26, Definition 1.2],

C∗(A,A)⊗ C∗(A,A)→ C∗(A,A)

(30) f ⊗ c 7→ if(c) = f · c := (−1)|c||f |c ∩ f.

Explicitly

if (m[a1| . . . |an]) :=
n∑

p=0

(−1)|m||f |(m.f [a1| . . . |ap])[ap+1| . . . |an].

The sign in [8, (18) p. 82] is different. But with our choice of signs, we
recover Proposition 2.6 in [8, p. 82]. Indeed for D, E ∈ C∗(A,A) and
c ∈ C∗(A,A),

D · (E · c) = (−1)|c||E|D · (c ∩E) = (−1)|c||E|+|D||c|+|D||E|(c ∩E) ∩D

= (−1)|c||E|+|D||c|+|D||E|c ∩ (E ∪D) = (−1)|D||E|(E ∪D) · c

Since the cup product on HH∗(A,A) is graded commutative, for D,
E ∈ HH∗(A,A) and c ∈ HH∗(A,A), we have

(31) D · (E · c) = (D ∪ E) · c,

i. e. a left action. Note that in [33], the author forgot to twist the
right action by the sign (−1)|c||f |, therefore has also a sign problem!
Proposition 32. [18, Theorem 3.4.3 (ii)] Let c ∈ HHd(A,A) such
that the morphism of left HH∗(A,A)-modules

HHp(A,A)
∼=
→ HHd−p(A,A), a 7→ a · c

is an isomorphism. If B(c) = 0 then the Gerstenhaber algebraHH∗(A,A)
equipped with −B is a Batalin-Vilkovisky algebra.

Proof. Let us rewrite the proof of Victor Ginzburg (or more precisely
the proof, we already gave in [33, Proposition 13 and Lemma 15]) using
explicitly our Proposition 28 and our choice of signs. Denote by

HHp(A,A)⊗HHj(A,A)→ HHj−p+1(A,A)

a⊗ x 7→ La(x)
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the action of the suspended graded Lie algebraHH∗(A,A) onHH∗(A,A).
Gelfand, Daletski and Tsygan [15] proved that the Gerstenhaber alge-
bra HH∗(A,A) and Connes boundary map B on HH∗(A,A) form a
calculus [8, p. 93]. In particular, we have the two relations

La = [B, ia]

and [8, Proposition 2.9 p. 83]

(33) i{a,b} = (−1)|a|+1[La, ib].

Therefore

(34) i{a,b} = (−1)|a|+1[[B, ia], ib] = [[ia, B], ib].

The operator ∆ on HH∗(A,A) is defined by

(∆a) · c := −B(a · c) for any a ∈ HH∗(A,A).

Thus B(c) = 0 implies ∆(1) = 0. Since we have a left action (equa-
tion (31)), la(b) ·c = (a∪b) ·c = a · (b ·c) = ia(b ·c) and so equation (34)
is equivalent to

l{a,b} = −[[la,∆], lb].

Therefore, by Proposition 28, HH∗(A,A) is a Batalin-Vilkovisky alge-
bra. �

Remark 35. (Signs)
i) In [8, Example 4.6 p. 93], Tsygan writes that it follows from [8,

2.9 p. 83], that i{a,b} = [La, ib]. We do not understand why he has no
sign in this formula. We believe that from [8, 2.9 p. 83], the correct
equation with the signs is equation (33) above.

ii) In a calculus, there is a third relation, that we do not use in this
paper:

Lab = Laib + (−1)|a|iaLb.

Since ab = (−1)|a||b|ba,

Lab = (−1)|a||b|Lba = (−1)|a||b|Lbia + (−1)(|a|+1)|b|ibLa

and therefore

(36) [La, ib] = (−1)|a||b|[Lb, ia]

Since {a, b} = −(−1)(|a|+1)(|b|+1){b, a},
-if we suppose like Tsygan that i{a,b} = [La, ib], we obtain that

(37) [La, ib] = −(−1)(|a|+1)(|b|+1)[Lb, ia].

The two equations (36) and (37) seem incoherent. Therefore we believe
that the definition of calculus of Tsygan has some sign problem.

-on the contrary, if we suppose (33), we obtain again (36).
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7. Proof of the main theorem for path-connected groups

Cap products associated to coalgebras. Let C be a (differential
graded) coalgebra. Then its dual C∨ is a (differential graded) algebra.
Let N be a left C-comodule. Denote by ∆N : N → C⊗N the structure
map. Let ∩ : N ⊗ C∨ → N be the composite

(38) N ⊗ C∨
∆N⊗C

∨

→ C ⊗N ⊗ C∨
C⊗τ
→ C ⊗ C∨ ⊗N

ev⊗N
→ k⊗N ∼= N.

Here τ denotes the twist map given by n⊗ϕ 7→ (−1)|n||ϕ|ϕ⊗ n and ev
is the evaluation map defined by ev(c ⊗ ϕ) = (−1)|ϕ||c|ϕ(c). Then N
equipped with the cap product is a right C∨-module [37, Proposition
2.1.1]. In this paper, we are only interested in the case N = C.

Example 39. Let X be any topological space. The (normalized or
unnormalized) singular chains of X, S∗(X) forms a differential graded
coalgebra [30, p. 244-5]. The cap product defined by (38) associated
to C = S∗(X), ∩ : S∗(X)⊗ S∗(X)→ S∗(X) is the usual cap product.

Example 40. Let A be any augmented differential graded algebra. Then
the reduced (normalized or not) Bar construction B(A) = C∗(A, k) is a
differential graded coalgebra. The diagonal ∆ : B(A)→ B(A)⊗B(A)
is given by

∆([a1| . . . |an]) =
n∑

p=0

[a1| . . . |ap]⊗ [ap+1| . . . |an].

The cap product defined by (38) associated to C = B(A) is given by

∩ : B(A)⊗B(A)∨ → B(A)

[a1| . . . |an] ∩ f =

n∑

p=0

(−1)|f |(|a1|+···+|an|+n)f([a1| . . . |ap])[ap+1| . . . |an].

Therefore this cap product coincides with the cap product on the
Hochschild (co)chain complex ∩ : C∗(A, k) ⊗ C∗(A, k) → C∗(A, k) de-
fined by (8) in the case N = B = k.

Proposition 41. Let f : C
≃
→ D be a quasi-isomorphism of coalgebras.

Suppose that C and D are k-free. Let c̃ ∈ C and d̃ ∈ D such that
d̃ = H∗(f)([c̃]). Consider the cap products defined by (38) associated
to the coalgebras C and D. Then

the morphism of right C∨-modules c̃∩− : C∨ → C given by a 7→ c̃∩a
is quasi-isomorphism if and only if

the morphism of right D∨-modules d̃∩− : D∨ → D given by a 7→ d̃∩a
is quasi-isomorphism.
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Proof. The transpose of f : f∨ : D∨ → C∨ is a morphism of differential
graded algebras. Therefore f∨ is a morphism of right D∨-modules.
Dually, since f is a morphism of coalgebras, f is a morphism of left
D-comodules and therefore is also a morphism of right D∨-modules
by (38), i. e. f(c∩ f∨(ϕ)) = f(c)∩ϕ for any c ∈ C and ϕ ∈ D∨. Note
that if f is the coalgebra map S∗(λ) : S∗(X) → S∗(X) induced by a
continuous map λ : X → Y , this formula is well known ([3, Chapter
VI 5. Theorem (4)] or [21, p. 241]).

The composite of the morphisms of right D∨-modules

D∨
f∨

→ C∨
c̃∩−
→ C

f
→ D

maps 1 to f(c̃) and therefore coincides with the morphism of right

D∨-modules D∨ → D, a 7→ f(c̃) ∩ a. Since [d̃] = [f(c̃)], the two

maps a 7→ f(c̃) ∩ a and a 7→ d̃ ∩ a coincide after passing to homology.
Therefore after passing to homology, the following square commutes

(42) D∨
f∨ //

d̃∩−
��

C∨

c̃∩−
��

D C
f

≃
oo

Since both C and D are k-free and k is a principal ideal domain, by
naturality of the universal coefficient theorem for cohomology, H∗(f

∨)
is an isomorphism since H∗(f) is an isomorphism. The proposition
follows nows from the square (42). �

Theorem 43. Let M be a simply-connected oriented Poincaré duality
space of formal dimension d. Let G be a topological group such that M
is a classifying space for G or let G be ΩM the (Moore) pointed loop
space on M . Let [M ] ∈ Hd(M) be its fundamental class. Let c the
image of [M ] through the composite

H∗(M)
H∗(s)
→ H∗(LM)

BFG−1

→ HH∗(S∗(G), S∗(G)).

Then
a) The morphism of left HH∗(S∗(G), S∗(G))-modules

D−1 : HHp(S∗(G), S∗(G))
∼=
→ HHd−p(S∗(G), S∗(G)), a 7→ a.c,

is an isomorphism.
b) The Gerstenhaber algebra HH∗(S∗(G), S∗(G)) equipped with the

operator ∆ := −D ◦B ◦ D−1 is a Batalin-Vilkovisky algebra.

Here s denotes s : M →֒ LM the inclusion of the constant loops into
LM and BFG is the isomorphism of graded k-modules between the
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free loop space homology of M and the Hochschild homology of S∗(G)
introduced by Burghelea, Fiedorowicz [5] and Goodwillie [19]. Finally
B denotes Connes boundary on HH∗(S∗(G), S∗(G)).

Remark 44. We expect that the above theorem can be extended to
any path-connected topological monoid G instead of just the topolog-
ical monoid of pointed Moore loop spaces ΩM or instead of just any
topological group.

Proof. By [10, Proposition 6.13 in the case F=pt] when G is a topologi-
cal group or by [10, Theorem 6.3] whenG = ΩM , there exists a differen-
tial graded coalgebra B(S∗(EG);S∗(G); k) and two quasi-isomorphisms
of coalgebras

B(S∗(G))
≃
← B(S∗(EG);S∗(G); k)

≃
→ S∗(M).

The induced isomorphism in homology is the well known isomorphism
due to Moore [31, Corollary 7.29]

θ : TorS∗(G)(k, k) = H∗(B(S∗(G)))
∼=
→ H∗(M).

Let [m] ∈ H∗(B(S∗(G))) such that θ([m]) = [M ]. By Proposition 41

and Example 40, the cap product with [m], [m] ∩ − : B(S∗(G))∨
≃
→

B(S∗(G)), a 7→ [m] ∩ a is quasi-isomorphism.
Denote by ev : LM ։ M , l 7→ l(0) the evaluation map. The

isomorphism BFG of Goodwillie, Burghelea and Fiedorowicz fits into
the commutative square.

HH∗(S∗(G), S∗(G))
BFG

∼=
//

HH∗(S∗(G),ε)
��

H∗(LM)

H∗(ev)
��

HH∗(S∗(G), k)
θ

∼=
// H∗(M)

Here ε denote the augmentation of S∗(G). Let c := BFG−1◦Hd(s)([M ]).
Since s is a section of the evaluation map ev, HH∗(S∗(G), ε)(c) = [m].
So the hypotheses of statement 9 are satisfied for A = S∗(G).

Let N be any non-negatively graded S∗(G)-bimodule. Since M is
simply connected, by Corollary 13, we obtain that the morphism

D−1 : HHp(S∗(G), N)
∼=
→ HHd−p(S∗(G), N), a 7→ c ∩ a

is an isomorphism. By taking N = S∗(G) and by passing from a right
action to a left action by (30), we obtain a).

The isomorphism BFG of Goodwillie, Burghelea and Fiedorowicz
satisfies ∆ ◦BFG = BFG ◦B. Consider M equipped with the trivial
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S1-action. The section s : M →֒ LM is S1-equivariant. Since

B(c) = B ◦BFG−1 ◦Hd(s)([M ]) = BFG−1 ◦∆ ◦Hd(s)([M ]) = 0,

by Proposition 32, we obtain b). �

8. Proof of the main theorem for discrete groups

Theorem 45. Let G be a discrete group such that its classifying space
K(G, 1) is an oriented Poincaré duality space of formal dimension d.
Let [M ] ∈ Hd(G, k) be a fundamental class. Let c be the image of [M ]
by TorE∗ (η, η) : H∗(G, k)→ HH∗(k[G], k[G]) (Property 19 ii)). Then

a) The morphism of left HH∗(k[G], k[G])-modules

D−1 : HHp(k[G], k[G])
∼=
→ HHd−p(k[G], k[G]), a 7→ a.c

is an isomorphism.
b) The Gerstenhaber algebra HH∗(k[G], k[G]) equipped with the op-

erator ∆ := −D ◦B ◦ D−1 is a Batalin-Vilkovisky algebra.

Proof. Let N be any ungraded k[G]-bimodule. Since, by hypothesis,
G is orientable Poincaré duality group, the cap product with [M ] in
group (co)homology gives an isomorphism ( [4, 10.1 iv), Remark 1 and
Example 1 p. 222], [16, Th 15.3.1])

[M ] ∩− : Hp(G, Ñ)
∼=
→ Hd−p(G, Ñ), a 7→ [M ] ∩ a.

Therefore, by Corollary 20, the cap product with c = σ([M ]) in Hochschild
(co)homology gives the isomorphism

c ∩− : HHp(k[G], N)→ HHd−p(k[G], N), a 7→ c ∩ a.

Taking N = k[G] and passing from a right action to left action as
in (30), we obtain a).

By i) of Property 19, σ : H∗(G; k)→ HH∗(k[G], k[G]) commute with
Connes boundary map B on H∗(G; k) and on HH∗(k[G], k[G]). By a
well known result of Karoubi (for example [27, E.7.4.8] or [39, Theorem
9.7.1]), Connes boundary map B is trivial on H∗(G; k). Therefore
B(c) = B ◦ σ([M ]) = σ ◦B([M ]) = 0. By applying Proposition 32, we
obtain b). �

Property 46. Let A and B be two algebras (differential graded if we
want). Let N be an (A,A⊗ B)-bimodule. Let c ∈ HHd(A,A). Then

i) HH∗(A,N) and HH∗(A,N) are two right B-modules and
ii) the cap product

c ∩ − : HHp(A,N)→ HHd−p(A,N), a 7→ c ∩ a

is a morphism of right B-modules.
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Proof. SinceN is an (Ae, B)-bimodule, C∗(A,N) ∼= HomAe(B(A;A;A), N)
is a (differential graded) right B-module and its homology HH∗(A,N)
is a right B-module. Similarly C∗(A,N) ∼= N ⊗Ae B(A;A;A) and
HH∗(A,N) are two right B-modules. Let c be a[a1| . . . |an] ∈ Cn(A,A).
Let f ∈ Cp(A,N). By definition, c∩f := ±af([a1| . . . |ap])[ap+1| . . . |an].
Therefore for any b ∈ B,

(c ∩ f) · b = ±af([a1| . . . |ap])b[ap+1| . . . |an] =

± a(f · b)([a1| . . . |ap])[ap+1| . . . |an] = c ∩ (f · b).

�

Remark 47. We will be only interested in the case N = A ⊗ A and
B = Ae. Here the A-bimodule structure on N is given by a ·(x⊗y) ·b =
ax ⊗ yb and is called the outer structure [18, (1.5.1)]. And the right
B-module on N is given by (x ⊗ y) · (a ⊗ b) = xa ⊗ by, x ⊗ y ∈ N ,
a⊗ b ∈ B and is called the inner structure.

Definition 48. ([18, Definition 3.2.3, (3.2.5), Remark 3.2.8] or sim-
ply [2, Definition 2.1]) An ungraded algebra A is Calabi-Yau of dimen-
sion d if

i) viewed as an A-bimodule over itself, A admits a finite resolution by
finite type projective A-bimodules, i. e. there exists an exact sequence
of Ae-projective finite type module of the form

0→ Pi → Pi−1 → · · · → P1 → P0 → A→ 0,

ii) for all k 6= d, HHk(A,A⊗A) = 0 and
iii) as (A,A)-bimodule, HHd(A,A ⊗ A) is isomorphic to A (Here

the (A,A)-bimodule on HH∗(A,A ⊗ A) is given by Property 46 and
Remark 47).

Proposition 49. (Stated without proof in [18, Remark 3.4.2]) Let A
be ungraded algebra. Let c ∈ HHd(A,A). Suppose that for every A-

bimodule N , c ∩ − : HHp(A,N)
∼=
→ HHd−p(A,N), a 7→ c ∩ a, is an

isomorphism. Then A satisfies conditions ii) and iii) of Definition 48.

Proof. Let N be a free (A,A)-bimodule. Then HH∗(A,N) = 0 if
∗ 6= 0. Therefore HHk(A,N) = 0 if k 6= d. Suppose moreover that
N is a (A,A ⊗ B)-bimodule. The quasi-isomorphism of complexes

C∗(A,N) ∼= N ⊗Ae B(A;A;A)
≃
→ N ⊗Ae A is a morphism of right

B-modules. By Property 46,

c ∩− : HHd(A,N)→ HH0(A,N) ∼= N ⊗Ae A

is an isomorphism of right B-modules.
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Let N be the (A,A)-bimodule A ⊗ A with the outer structure and

B = Ae (See Remark 47). Then N ⊗Ae A = (A ⊗ A) ⊗Ae A
∼=
→ A,

(x ⊗ y) ⊗Ae m 7→ ymx is an isomorphism whose inverse is the map
mapping a 7→ (1⊗ 1)⊗Ae a. A straightforward calculation shows that
theses isomorphisms are right Ae-linear. Therefore, we have proved
that HHd(A,A⊗ A) is isomorphic to A as right Ae-modules. �

Theorem 50. Let k be any commutative ring. Let G be a orientable
Poincaré duality group of dimension d. Then its group ring k[G] is a
Calabi-Yau algebra of dimension d.

When k is a field of characteristic 0 or of characteristic prime to the
cardinal of G, this theorem was proved by Kontsevich [18, Corollary
6.1.4] and Lambre [26, Lemme 6.2].

Proof. By [4, Remark 2. p. 222], there exists a finite resolution P
≃
→ k

of k by finite type projective k[G]-left modules. Then X := k[G ×

Gop] ⊗k[G] P
≃
→ k[G] is a finite type resolution of k[G] by finite type

projective k[G]-bimodules.
In the proof of Theorem 45,we saw that for any k[G]-bimodule N ,

c∩− : HHp(k[G], N)
∼=
→ HHd−p(k[G], N), a 7→ c∩a, is an isomorphism.

Therefore, by Proposition 49, k[G] is a Calabi-Yau algebra of dimension
d. �

9. String topology of classifying spaces

In [7], Chataur and the author, and in [1], Behrend, Ginot, Noohi and
Xu developped a string topology theory dual to Chas-Sullivan string
topology.
Theorem 51. [1, 7] Let G be a path-connected compact Lie group of
dimension d. Denote by BG its classifying space. Then the shifted free
loop space cohomology H∗+d(LBG) is a (possibly non-unital) Batalin-
Vilkovisky algebra.

The goal of this section is to prove the following theorem:

Theorem 52. Let G be a path-connected compact Lie group of dimen-
sion d. Denote by S∗(BG) the singular cochains on the classifying
space of G. Then

a) There exists an explicit isomorphism of left HH∗(S∗(BG), S∗(BG))-
modules

D−1 : HHp(S∗(BG), S∗(BG))
∼=
→ HH−d−p(S

∗(BG), S∗(BG)).

b) The Gerstenhaber algebra HH∗(S∗(BG), S∗(BG)) equipped with
the operator ∆ := −D ◦B ◦ D−1 is a Batalin-Vilkovisky algebra.
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Both Batalin-Vilkovisky algebras in Theorems 51 and 52 are deter-
mined by an orientation class of Hd(G). In [23], Jones gave an isomor-
phism of graded vector spaces

J : HH∗(S
∗(BG), S∗(BG))

∼=
→ H∗(LBG).

Again, we conjecture that the isomorphism of graded vector spaces

J ◦ D−1 : HH∗(S∗(BG), S∗(BG))
∼=
→ H∗+d(LBG) is a morphism of

Batalin-Vilkovisky algebras.
Theorem 52 is the Eckmann-Hilton or Koszul dual of the following

theorem proved by Chataur and the author.

Theorem 53. [7, Theorem 54] Let G be a path-connected compact Lie
group of dimension d. Denote by S∗(G) the algebra of singular chains
of G. Consider Connes coboundary map H(B∨) on the Hochschild
cohomology of S∗(G) with coefficients in its dual, HH∗(S∗(G);S∗(G)).
then there is an isomorphism of graded vector spaces of upper degree d

D−1 : HHp(S∗(G);S∗(G))
∼=
→ HHp+d(S∗(G);S∗(G))

such that the Gerstenhaber algebra HH∗(S∗(G);S∗(G)) equipped with
the operator ∆ = D ◦H(B∨) ◦ D−1 is a Batalin-Vilkovisky algebra.

9.1. Frobenius algebras. .

Definition 54. Let A be a differential graded algebra. We say that A
is a Frobenius algebra if there is a quasi-isomorphism of right A-modules

A
≃
→ A∨. In particular, a graded algebra A is a Frobenius algebra if A

is isomorphic as right A-modules to its dual A∨.
Property 55. [29, Theorem 9.8] Let A be a differential graded algebra.
Then A is a Frobenius algebra if and only if its homology H(A) is a
Frobenius algebra.

Proof. Let M be any left A-module. A straightforward computation
shows that the linear map µ : H(Hom(M, k))→ Hom(H(M), k) map-
ping a cycle f : M → k to H(f) : H(M) → k is a morphism of right
H(A)-modules. Since in this section, k is a field, by the universal coef-
ficient theorem for cohomology, this map µ is an isomorphism. We are
only interested in the case M = A.

Suppose that we have an quasi-isomorphism of right A-modules Θ :

A
≃
→ A∨. Then the composite H(A)

H(Θ)
→ H(A∨)

µ
→ H(A)∨ is an

isomorphism of right H(A)-modules.
Conversely, suppose that we have an isomorphism of right H(A)-

modules, Θ : H(A)
∼=
→ H(A)∨. Then the compositeH(A)

Θ
→ H(A)∨

µ−1

→
H(A∨) is also an isomorphism of right H(A)-modules. Let x be a
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cycle of A∨ such that µ−1 ◦ Θ(1) = [x].The morphism of right A-
modules A→ A∨, a 7→ xa, coincides in homology with the isomorphism
µ−1 ◦Θ. �

Corollary 56. Let A and B be two differential graded algebras such
that H(A) ∼= H(B) as graded algebras. Then A is Frobenius if and only
if B is.

Note that it is not necessary that there is a quasi-isomorphism of

algebras f : A
≃
→ B (Compare with Proposition 41 or [29, Corollary

9.9]).

Property 57. Let A be a graded algebra and let C be a graded coalgebra.
Consider a bilinear form < , >: C ⊗ A :→ k. Let φ : A → C∨,
a 7→< −, a > and let ψ : C → A∨, c 7→< c,− > be the right and left
adjoints. Suppose that φ is a morphism of graded algebras. Then

i) ψ is a morphism of right A-modules with respect to the cap prod-
uct (38) associated to the coalgebra C , i. e. ψ(c ∩ φ(a)) = ψ(c).a for
any c ∈ C and a ∈ A.

ii) If A is non-negatively graded and of finite type in each degre then
ψ : C → A∨ is a morphism of graded coalgebras.

Proof. Let ∆c =
∑
c′ ⊗ c” be the diagonal of c. By definition, the cap

product c ∩ φ(a) is equal to
∑
± < c′, a > c”. Therefore ψ(c ∩ φ(a))

is the form on A, mapping x ∈ A to
∑
± < c′, a >< c”, x >. On the

other hand, ψ(c).a is the form on A mapping x ∈ A to < c, ax >. But
ψ is a morphism of algebras if only and if for every a, x ∈ A and c ∈ C,
< c, ax >=

∑
± < c′, a >< c”, x >. �

Let us give a well-known application of i) of Property 57. Let C =
S∗(M) and A = C∨ = S∗(M). We obtain that the quasi-isomorphism
ψ : S∗(M) → S∗(M)∨ is a morphism of S∗(M)-modules [13, Section
7]. Therefore by Poincaré duality, S∗(M) is a Frobenius algebra. And
H∗(M) also.

9.2. String topology of manifolds. . Let M be a closed oriented d-
dimensional smooth manifold. Denote by H∗(M) := H∗+d(M). Poincaré
duality [21, Theorem 3.30] gives an isomorphism of graded algebras

H∗(M) ∼= H∗(M)

where
-the product on H∗(M) is the cup product H∗(∆),
-the product on H∗(M) is the intersection product ∆! and
-the fundamental class [M ] ∈ Hd(M) is the unit of H∗(M).
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Chas and Sullivan have defined a Batalin-Vilkovisky algebra on H∗(LM) :=
H∗+d(LM). The Chas-Sullivan loop product on H∗(LM) mixes the in-
tersection product ∆! on H∗(M) and the Pontryagin product H∗(comp)
on H∗(ΩM).

More precisely, let ∆̃ : MS1∨S1
→֒ LM × LM be the inclusion map

and let comp : MS1∨S1
→ LM be the map obtained by composing

loops. The Chas-Sullivan loop product is the composite

H∗(LM × LM)
∆̃!→ H∗−d(M

S1∨S1

)
H∗(comp)
→ H∗−d(LM).

The loop product admits Hd(s)([M ]) as unit. More generally H∗(s) :
H∗(M) → H∗(LM) is a morphism of algebras preserving the units.
Let i : ΩM →֒ LM be the inclusion of the pointed loops into the free
loops. The shriek map of i, called the intersection map, i! : H∗(LM)→
H∗(ΩM), is also a morphism of algebras preserving the units [6, Propo-
sition 3.4].

The unit of the Batalin-Vilkovisky algebra H∗(LM) and the fact
that ∆1 = 0 in any unital Batalin-Vilkovisky algebras was the key for
proving Theorem 43.

9.3. Versus string topology of classifying spaces. . Let G be
a path-connected Lie group of dimension d. Denote by H∗(ΩBG) =
H∗+d(ΩBG). Since H∗(ΩBG) is a finite dimensional Hopf algebra,
H∗(ΩBG) is a Frobenius algebra: there is an isomorphism of right
H∗(ΩBG)-modules [7, Section 4.1]

Θ : H∗(ΩBG) ∼= H∗(ΩBG).

By [37, Theorem 5.1.2, with left Hopf modules instead of right Hopf
modules], the composite of the antipode of the Hopf algebra H∗(ΩBG)

and of Θ, H∗(ΩBG)
S
→ H∗(ΩBG)

Θ
→ H∗(ΩBG) is an isomorphism

of left Hopf modules over H∗(ΩBG), and so coincides with Poincaré
duality.

Therefore this isomorphism Θ is an isomorphism of algebras if
-the product on H∗(ΩBG) is the Pontryagin product H∗(comp),
-the product on H∗(ΩBG) is the composite

H∗(ΩBG)⊗H∗(ΩBG)
τ
→ H∗(ΩBG)⊗H∗(ΩBG)

comp!

→ H∗−d(ΩBG)

where τ denote the twist map given by a⊗b 7→ (−1)|a||b|b⊗a and comp!

is the shriek map of comp.
Of course, Θ(1) is the unit of the algebra H∗(ΩBG).
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The product on H∗(LBG) := H∗+d(LBG) mixes the cup product
H∗(∆) on H∗(BG) and the product comp! on H∗(ΩBG). More pre-
cisely, the product on H∗(LBG) is the composite

H∗(LBG× LBG)
H∗(∆̃)
→ H∗(BGS1∨S1

)
comp!

→ H∗−d(LBG).

Comparing with the definition of the Chas-Sullivan loop product de-
fined above, we see a general principle. In order to pass from string
topology of manifolds to string topology of classifying spaces, you re-
place

-homology by cohomology,
-shriek map in homology like ∆̃! by the map induced in singular

cohomology like H∗(∆̃),
-maps induced in singular homology like H∗(comp) by shriek map in

cohomology like comp!.
In particular, you never change the direction of arrows.

Guided by this general principle, we now transpose the proof of The-
orem 43 into a proof of Theorem 52. Using this general principle, the
product on H∗(LBG) should have s!(1) as an unit. More generally
s! : H∗(BG)→ H∗(LBG) should be a morphism of algebras preserving
the units. Also H∗(i) : H∗(LBG) → H∗(ΩBG) should be a morphism
of algebras preserving the units. The problem is that s! is not easy to
define [7, Remark 56] and that we have not yet proved the previous
assertions. Instead, we are going only to prove the following lemma.

Lemma 58. There exists an explicit element I ∈ Hd(LBG) such that
∆I = 0 and such that the morphism of right H∗(ΩBG)-modules, Θ :

Hp(ΩBG)
∼=
→ Hd−p(ΩBG), a 7→ Hd(i)(I).a is an isomorphism.

As explained above, we believe that I is the unit of the Batalin-
Vilkovisky algebra H∗(LBG).

Proof. Let η : {e} → G be the unit of G. Consider η! : Hd(G)→ k the
shriek map of η. By Lemma 55 of [7], the morphism of right H∗(G)-

modules Hp(G)
∼=
→ Hd−p(G), a 7→ η!.a, is an isomorphism. Consider

the commutative diagram of graded algebras

H∗(LBG)
H∗(γ)

∼=
//

H∗(i)

��

H∗(|ΓG|)

H∗(|j|)

��

H∗(EG×G G
ad)

H∗(|Φ)|

∼=
oo

H∗(Eη×ηG
ad)vvmm

mm
m
m
m
mm

m
m
m

H∗(ΩBG)
H∗(γ̄)

∼=
// H∗(G)
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where the right triangle is the triangle considered in the proof of The-
orem 54 of [7] and the left square is induced by the following commu-

tative square of topological spaces G
|j|

//

γ̄≃

��

|ΓG|

γ≃

��
ΩBG

i // LBG

considered in the

proof of Theorem 7.3.11 of [27]. Consider the equivariant Gysin map:
EG ×G η

! : H∗(BG) → H∗+d(EG ×G G
ad). Let I be the image of 1

by the composite H∗(γ)−1 ◦ H∗(|Φ|) ◦ EG ×G η
!. In [7, (58)], we saw

that ∆I = 0. By Lemma 57 of [7], H∗(Eη ×η G
ad) maps EG ×G η

!(1)
to η! ∈ Hd(G)∨. Therefore using the above commutative diagram,
H∗(i)(I) = H∗(γ̄)−1(η!).

By Lemma 7.3.12 of [27], γ̄ : G
≃
→ ΩBG is the classical homo-

topy equivalence which is well-known to be a morphism of H-spaces.

Therefore the isomorphism induced in homology, H∗(γ̄) : H∗(G)
∼=
→

H∗(ΩBG), is a morphism of algebras. Since H∗(G) is a Frobenius
algebra, H∗(ΩBG) is also a Frobenius algebra. More precisely, the
morphism of right H∗(ΩBG)-modules Θ : Hp(ΩBG) → Hd−p(ΩBG)∨,
a 7→ H∗(γ̄)−1(η!).a is an isomorphism. �

To finish the proof of Theorem 52, we need also the following alge-
braic results.

9.4. Bar and Cobar construction. Let C be a coaugmented DGC.
Denote by C the kernel of the counit. The normalized cobar construc-
tion on C, denoted ΩC, is the augmented differential graded algebra(
T (s−1C), d1 + d2

)
where d1 and d2 are the unique derivations deter-

mined by
d1s
−1c = −s−1dc and

d2s
−1c =

∑

i

(−1)|xi|s−1xi ⊗ s
−1yi, c ∈ C

where the reduced diagonal ∆c =
∑

i

xi ⊗ yi. We follow the sign

convention of [9].
Remark 59. [20, (A.6)] A bilinear form < , >: V ⊗W → k of graded
vector spaces extends a bilinear form < , >: TV ⊗ TW → k defined
by

< v1 ⊗ · · · ⊗ vi, w1 ⊗ · · · ⊗ wi >= ±

i∏

j=1

< vj , wj >

and < v1 ⊗ · · · ⊗ vi, w1 ⊗ · · · ⊗ wj >= 0 if i 6= j. Here again ± is the
sign given by the Koszul sign convention.
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Proposition 60. Let C be a coaugmented differential graded coalgebra.
Denote by A := C∨ the differential graded algebra dual of C. Let < , >:
sA ⊗ s−1C → k be the non-degenerate bilinear form defined in [20, p.
276 in the case V = s−1C and X = A] by < sa, s−1c >= (−1)|a|+1a(c).
Consider the bilinear form < , >: BA ⊗ ΩC → k extending < , >:
sA⊗ s−1C → k (Remark 59). Then

i) the right adjoint φ : ΩC → BA∨ is a natural morphism of differ-
ential graded algebras and the left adjoint ψ : BA→ ΩC∨ is a natural
morphism of complexes,

ii) if C is of finite type in each degre and C = k ⊕ C≥2 then both φ
and ψ are isomorphisms,

iii) if H(C) is of finite type in each degre and C = k⊕C≥2 then both
H(φ) and H(ψ) are isomorphisms.

Proof. i) and ii) Denote by TAW the tensor algebra onW , and by TCV
the tensor coalgebra on V [20, p. 277-8]. It is easy to check that the
right adjoint map φ : TAW → TCV ∨ of the bilinear map defined by
Remark 59 is a morphism of graded algebras. In [32, Proof of Theorem
6.1 ii)], we have checked carefully that ψ : C∗(A,A) → (C ⊗ ΩC, δ)∨,
where (C ⊗ ΩC, δ) is the cyclic cobar complex of C, is a morphism
of complexes and an isomorphism if C is of finite type in each degre
and C = C≥2. The same proof shows that this is also the case for
ψ : BA→ ΩC∨.

iii) By Proposition 4.2 of [9], there exists a differential graded algebra
of the form (TV, d) where V = V ≥2 is of finite type in each degre and a

quasi-isomorphism of augmented differential graded algebras f : TV
≃
→

C∨. By ii) of Property 57, the adjoint map g : C
≃
→ (C∨)∨

f∨

→
≃
TV ∨ is a

quasi-isomorphism of coaugmented differential graded coalgebras [12,
p. 56]. Denote by D := TV ∨.

Since C≤1 = D≤1 = 0, by Remark 2.3 of [9], Ωf : ΩC
≃
→ ΩD is

a quasi-isomorphism of augmented differential graded algebras. Since

k is a field, f∨ : D∨
≃
→ C∨ is also a quasi-isomorphism of augmented

differential graded algebras. By naturality of ψ, we have the com-

mutative square of complexes B(C∨)
ψ // (ΩC)∨

B(D∨)
ψ

∼=
//

B(f∨) ≃

OO

(ΩD)∨

(Ωf)∨≃

OO
where the two

vertical morphisms are quasi-isomorphisms. By ii), ψ : B(D∨)
∼=
→
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(ΩD)∨ is an isomorphism. Therefore ψ : B(C∨)
≃
→ (ΩC)∨ is a quasi-

isomorphism. Similarly, one proves that φ : ΩC
≃
→ B(C∨)∨ is also a

quasi-isomorphism. �

Proof of Theorem 52. The Eilenberg Moore formula gives an isomor-

phism of graded algebras EM : H∗(ΩBG)
∼=
→ H(ΩS∗(BG)). By Propo-

sition 60 iii), ψ : BS∗(BG)
≃
→ ΩS∗(BG)∨ is a quasi-isomorphism of

complexes. The Jones isomorphism J fits into the commutative dia-
gram

HH∗(S
∗(BG), S∗(BG))

J

∼=
//

HH∗(S∗(BG),ε)
��

H∗(LBG)

H∗(i)

��

TorS
∗(BG)(k, k)

H(ψ)

∼=
// H(ΩS∗(BG))∨

EM∨

∼=
// H∗(ΩBG)

Consider the element I ∈ Hd(LBG) given by Lemma 58. Let c be
J−1(I) ∈ HH−d(S

∗(BG), S∗(BG)). Denote by m ∈ BS∗(BG) a cycle
such that its class [m] is equal to HH−d(S

∗(BG), ε)(c).
Since H∗(ΩBG) is a Frobenius algebra, H(ΩS∗(BG)) is also a Frobe-

nius algebra. More precisely, by Lemma 58, the morphism of right

H∗(ΩBG)-modules Hp(ΩBG)
∼=
→ Hd−p(ΩBG)∨ mapping 1 to Hd(i)(I)

is an isomorphism. Therefore the morphism of right H(ΩS∗(BG))-

modules Hp(ΩS∗(BG))
∼=
→ Hd−p(ΩS∗(BG))∨ mapping 1 to (EM∨)−1 ◦

Hd(i)(I) is an isomorphism. Since the above diagram is commutative,
(EM∨)−1 ◦ Hd(i)(I) = H(ψ)([m]). By Property 55, the differential
graded algebra ΩS∗(BG) is a Frobenius algebra. More precisely, the

morphism of right ΩS∗(BG)-modules θ : ΩS∗(BG)
≃
→ (ΩS∗(BG))∨,

a 7→ ψ(m).a is a quasi-isomorphism.

By Proposition 60, φ : ΩS∗(BG)
≃
→ BS∗(BG)∨ is a quasi-isomorphism

of differential graded algebras. Therefore by i) of Property 57, the fol-
lowing square of complexes commutes.

ΩS∗(BG)
φ

≃
//

θ ≃

��

(BS∗(BG))∨

m∩−≃

��
(ΩS∗(BG))∨ BS∗(BG)

ψ

≃oo

Therefore (Example 40),

[m] ∩ − : Extp
S∗(BG)(k, k)

∼=
→ Tor

S∗(BG)
−d−p (k, k)

is an isomorphism.
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Let N be any non-negatively upper graded S∗(BG)-bimodule. Since
BG is path-connected, by Corollary 14, we obtain that the morphism

D−1 : HHp(S∗(BG), N)
∼=
→ HH−d−p(S

∗(BG), N), a 7→ c ∩ a

is an isomorphism. By taking N = S∗(BG) and by passing from a
right action to a left action by (30), we obtain a).

The isomorphism J of Jones satisfies ∆ ◦ J = J ◦ B. Since by
Lemma 58,

B(c) = B ◦ J−1(I) = J−1 ◦∆(I) = 0,

by Proposition 32, we obtain b).
�

10. Appendix

The key of the proof of Proposition 32 is the relation

i{a,b} = (−1)|a|+1[[B, ia], ib] = [[ia, B], ib].

In this appendix, we recall that [[ia, B], ib] is the derived bracket of ia
and ib and we explain that this relation means that the morphism of
graded algebras

HH∗(A,A)→ End(HH∗(A,A)), a 7→ ia,

is a morphism of generalized Loday-Gerstenhaber algebras (Theorem 67)

Definition 61. [24, p. 1247] A generalized Loday-Gerstenhaber algebra
is a (not necessarily commutative) graded algebra A equipped with a
linear map {−,−} : Ai ⊗Aj → Ai+j+1 of degree 1 such that:
a) the bracket {−,−} gives A a structure of graded Leibniz algebra of
degree 1. This means that for each a, b and c ∈ A
{a, {b, c}} = {{a, b}, c}+ (−1)(|a|+1)(|b|+1){b, {a, c}}.

b) the product and the Leibniz bracket satisfy the following relation
called the Poisson relation:

{a, bc} = {a, b}c+ (−1)(|a|+1)|b|b{a, c}.

Proposition 62. Let A be a graded algebra equipped with an operator
d : An → An+1 such that d ◦ d = 0 and such that d is a derivation.
Then A equipped with the derived bracket defined by [24, (2.8)]

[a, b]d := (−1)|a|+1[da, b]

is a generalized Loday-Gerstenhaber algebra.
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Proof. Since A is an associative graded algebra, the bracket [−,−] de-
fined by

[a, b] := ab− (−1)|a||b|ba,

is a Lie bracket. Since d is a derivation for the associative product
of A, d is a derivation for the Lie bracket [−,−]. Therefore by [24,
Proposition 2.1], the derived bracket [−,−]d satisfies the graded Jacobi
identity and d is a derivation for the derived bracket [−,−]d. Since
[−,−]d does not satisfy in general anticommutativity, [−,−]d is only
a Leibniz bracket in the sense of Loday [28], and not a Lie bracket in
general. The Lie bracket [−,−] satisfies the Poisson relation:

[a, bc] = [a, b]c + (−1)(|a|+1)|b|b[a, c].

Therefore since [a,−]d is the derivation (−1)|a|+1[da,−], the Leibniz
bracket [−,−]d also satisfies the Poisson relation [24, Proposition 2.2]:

[a, bc]d = [a, b]dc+ (−1)(|a|+1)|b|b[a, c]d.

�

Remark 63. In Proposition 62, if instead, we define the bracket by

[a, b]d := ad(b)− (−1)(|a|+1)(|b|+1)bd(a)

then [−,−]d satisfies anti-commutativity and Jacobi: [−,−]d is a Lie
bracket 1 of degre +1. But this time, [−,−]d does not satisfy the
Poisson relation. Note that again d is a derivation for [−,−]d.

Proof. Let a ∈ Ax−1, b ∈ By−1 and c ∈ Cz−1 be three elements of A of
degres x− 1, y − 1 and z − 1. Then

[a, [b, c]d]d = ad(bdc)− (−1)zyad(cdb)

− (−1)xy+xzb(dc)(da) + (−1)xy+xz+yzc(db)(da),

[[a, b]d, c]d = a(db)(dc)− (−1)xyb(da)(dc)

+ (−1)zx+zycd(adb) + (−1)zx+zy+xycd(bda)

and

(−1)xy[b, [a, c]d]d = (−1)xybd(adc)− (−1)xy+xzbd(cda)

− (−1)yza(dc)(db) + (−1)yz+xzc(da)(db).

Since d is a derivation and d2 = 0, d(adb) = (da)(db). Therefore we
have the Jacobi identity:

[a, [b, c]d]d = [[a, b]d, c]d + (−1)xy[b, [a, c]d]d.

1We could not find this Lie bracket in the litterature. So this Lie algebra struc-
ture might be new.



36 LUC MENICHI

Since [da, b]d = (da)(db) and [a, db]d = −(−1)x(y+1)(db)(da),

d([a, b]d) = (da)(db)− (−1)xy(db)(da) = [da, b]d + (−1)x[a, db]d.

This means that d is a derivation for [−,−]d. �

Example 64. (interior derivation) Let A be an associative graded alge-
bra. Let τ ∈ A1 such that τ 2 = 0. Then d := [τ,−] is a derivation
of the associative product and d ◦ d = 0. Therefore, we can apply the
previous proposition. In this case, we denote the derived bracket [a, b]d
simply by [a, b]τ and [24, Example p. 1250]

[a, b]τ = (−1)|a|+1[[τ, a], b] = [[a, τ ], b].
Corollary 65. [24, Beginning of Section 2.4] Let E be a graded k-
module equipped with an operator B : En → En+1 such that B ◦B = 0.
Then End(E) equipped with the derived bracket [a, b]B = [[a,B], b] is a
generalized Loday-Gerstenhaber algebra.

Proof. Apply Proposition 62 and Example 64, to End(E) equipped
with the composition product. �

Theorem 66. (implicit in [24, p. 1269-70 pointed by Krasilshchik])
Let A be a Batalin-Vilkovisky algebra. The morphism of graded algebras
induced by left multiplication

Ψ : A→ End(A), a 7→ la

is an injective morphism of generalized Loday-Gerstenhaber algebras.

Proof. Since A is a graded module equipped with an operator ∆ : An →
An+1 such that ∆◦∆ = 0, by Corollary 65 applied to A and to B = −∆,
End(A) equipped with the derived bracket [f, g]−∆ = [[f,−∆], g] is a
generalized Loday-Gerstenhaber algebra. By Proposition 28,

l{a,b} = −[[la,∆], lb] = [[la, B], lb]

Therefore Ψ is a morphism of generalized Loday-Gerstenhaber algebra
�

Theorem 67. Let A be a differential graded algebra. Then
1) EndHH∗(A,A) equipped with the derived bracket

[a, b]B = [a,B], b]

is a generalized Loday-Gerstenhaber algebra.
2) The morphism of graded algebras induced by the action

Φ : HH∗(A,A)→ EndHH∗(A,A), a 7→ ia,

is a morphism of generalized Loday-Gerstenhaber algebra. In particu-
lar, its image Φ(HH∗(A,A)) is a Gerstenhaber algebra.
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Proof. Since Connes boundary B : HH∗(A,A) → HH∗+1(A,A) satis-
fies B ◦B = 0, by Corollary 65, we obtain 1).

Since iab = ia ◦ ib (equation (31)) and i{a,b} = [[ia, B], ib] = [ia, ib]B,
Ψ is a morphism of generalized Gerstenhaber-Loday algebra.

Since HH∗(A,A) is a Gerstenhaber algebra, Φ(HH∗(A,A)) is also
a Gerstenhaber algebra. �

Remark 68. If A is a differential graded algebra satisfying the hypothe-
ses of Proposition 32, the morphism Φ : HH∗(A,A) →֒ EndHH∗(A,A)
of Theorem 67 is injective and can be identified with the morphism Ψ
of Theorem 66 for the Batalin-Vilkovisky algebra HH∗(A,A).
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