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VAN DEN BERGH ISOMORPHISMS IN STRING

TOPOLOGY

LUC MENICHI

Abstract. Let M be a path-connected closed oriented d-dimensional
smooth manifold and let k be a principal ideal domain. By Chas
and Sullivan, the shifted free loop space homology of M , H∗+d(LM)
is a Batalin-Vilkovisky algebra. Let G be a topological group such
that M is a classifying space of G. Denote by S∗(G) the (nor-
malized) singular chains on G. Suppose that G is discrete or
path-connected. We show that there is a Van Den Bergh type
isomorphism

HH−p(S∗(G), S∗(G)) ∼= HHp+d(S∗(G), S∗(G)).

Therefore, the Gerstenhaber algebra HH∗(S∗(G), S∗(G)) is a Batalin-
Vilkovisky algebra and we have a linear isomorphism

HH∗(S∗(G), S∗(G)) ∼= H∗+d(LM).

This linear isomorphism is expected to be an isomorphism of Batalin-
Vilkovisky algebras. We also give a new characterization of Batalin-
Vilkovisky algebra in term of derived bracket.

1. Introduction

We work over an arbitrary principal ideal domain k. Let M be a
compact oriented d-dimensional smooth manifold. Denote by LM :=
map(S1, M) the free loop space on M . Chas and Sullivan [5] have
shown that the shifted free loop homology H∗+d(LM) has a structure of
Batalin-Vilkovisky algebra (Definition 21). In particular, they showed
that H∗+d(LM) is a Gerstenhaber algebra (Definition 19). On the other
hand, let A be a differential graded (unital associative) algebra. The
Hochschild cohomology of A with coefficients in A, HH∗(A, A), is a
Gerstenhaber algebra. These two Gerstenhaber algebras are expected
to be related:

Key words and phrases. String Topology, Batalin-Vilkovisky algebra, Hochschild
cohomology, free loop space, derived bracket, Van den Bergh duality, Poincaré
duality group, Calabi-Yau algebra.
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Conjecture 1. Let G be a topological group such that M is a classi-
fying space of G. There is an isomorphism of Gerstenhaber algebras
H∗+d(LM) ∼= HH∗(S∗(G), S∗(G)) between the free loop space homology
and the Hochschild cohomology of the algebra of singular chains on G.

Suppose that G is discrete or path-connected. In this paper, we
define a Batalin-Vilkovisky algebra structure on HH∗(S∗(G), S∗(G))
and an isomorphism of graded k-modules

BFG−1 ◦ D : H∗+d(LM) ∼= HH∗(S∗(G), S∗(G))

which is compatible with the two ∆ operators of the two Batalin-
Vilkovisky algebras: BFG−1 ◦ D ◦ ∆ = ∆ ◦ BFG−1 ◦ D. Indeed,
Burghelea, Fiedorowicz [4] and Goodwillie [16] gave an isomorphism of
graded k-modules

BFG : HH∗(S∗(G), S∗(G))
∼=
→ H∗(LM).

which interchanges Connes boundary map B and the ∆ operator on
H∗+d(LM): BFG ◦B = ∆ ◦BFG. And in this paper, our main result
is:

Theorem 2. (Theorems 42 and 40) Let G be a discrete or a path-
connected topological group such that its classifying space BG is an
oriented Poincaré duality space of formal dimension d. Then

a) there exists k-linear isomorphisms

D : HHd−p(S∗(G), S∗(G))
∼=
→ HHp(S∗(G), S∗(G)).

b) If B denotes Connes boundary map on HH∗(S∗(G), S∗(G)) then
∆ := D ◦ B ◦ D−1 defines a structure of Batalin-Vilkovisky algebra
on HH∗(S∗(G), S∗(G)), extending the canonical Gerstenhaber algebra
structure.

Note that when G is a discrete group, the algebra of normalized
singular chains on G, S∗(G) is just the group ring k[G].

To prove Conjecture 1 in the discrete or path-connected case, it
suffices now to show that the composite BFG−1 ◦ D is a morphism of
graded algebras. When k is a field of characteristic 0 and G is discrete,
this was proved by Vaintrob [32].

Suppose now that

(3) M is simply-connected and that k is a field.

In this case, there is a more famous dual conjecture relating Hochschild
cohomology and string topology.
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Conjecture 4. Under (3), there is an isomorphism of Gerstenhaber
algebras H∗+d(LM) ∼= HH∗(S∗(M), S∗(M)) between the free loop space
homology and the Hochschild cohomology of the algebra of singular
cochains on M .

And in fact, Theorem 2 is the Eckmann-Hilton or Koszul dual of the
following theorem.

Theorem 5. ([10, Theorem 23] and [27, Theorem 22]) Assume (3).
a) There exist isomorphism of graded k-vector spaces

FTV : HHp−d(S∗(M), S∗(M)∨)
∼=
→ HHp(S∗(M), S∗(M)).

b) The Connes coboundary B∨ on HH∗(S∗(M), S∗(M)∨) defines via
the isomorphism FTV a structure of Batalin-Vilkovisky algebra extend-
ing the Gerstenhaber algebra HH∗(S∗(M), S∗(M)).

Jones [19] proved that there is an isomorphism

J : Hp+d(LM)
∼=
→ HH−p−d(S∗(M), S∗(M)∨)

such that the ∆ operator of the Batalin-Vilkovisky algebra H∗+d(LM)
and Connes coboundary map B∨ on HH∗−d(S∗(M), S∗(M)∨) satisfies
J ◦∆ = B∨ ◦J . Therefore, as we explain in [27], to prove conjecture 4,
it suffices to show that the composite FTV ◦J is a morphism of graded
algebras.

In [9], together with Felix and Thomas, we prove that Hochschild
cohomology satisfies some Eckmann-Hilton or Koszul duality.
Theorem 6. [9, Corollary 2] Let k be a field. Let G be a connected
topological group. Denote by S∗(BG) the algebra of singular cochains
on the classifying space of G. Then there exists an isomorphism of
Gerstenhaber algebras

Gerst : HH∗(S∗(G), S∗(G))
∼=
→ HH∗(S∗(BG), S∗(BG)).

Therefore under (3), conjectures 4 and 1 are equivalent and under (3),
Theorem 2 as stated in this introduction follows from Theorem 5.

The problem is that the isomorphism Gerst in Theorem 6 does not
admit a simple formula. On the contrary, as we explain in Theorems 42
and 40, in this paper, the isomorphism D is very simple: D−1 is given
by the cap product with a fundamental class c ∈ HHd(S∗(G), S∗(G)).

In [15, Theorem 3.4.3 i)], Ginzburg (See also [22, Proposition 1.4])
shows that for any Calabi-Yau algebra A, the Van den Bergh duality

isomorphism D : HHd−p(A, A)
∼=
→ HHp(A, A) is HH∗(A, A)-linear:

D−1 is also given by the cap product with a fundamental class c ∈
HHd(A, A).
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We now give the plan of the paper:
Section 2: We recall the definitions of the Bar construction, of the

Hochschild (co)chain complex and of Hochschild (co)homology.
Section 3: We show that, for some augmented differential graded

algebra A such that the dual of its reduced bar construction B(A)∨ sat-
isfies Poincaré duality, we have a Van den Bergh duality isomorphism
HHd−p(A, A) ∼= HHp(A, A) if A is connected (Proposition 12).

Section 4: There is a well known isomorphism between group
(co)homology and Hochschild (co)homology. We show that, through
this isomorphism, cap products in Hochschild (co)homology correspond
to cap products in group (co)homology.

Section 5: We give a new characterization of Batalin-Vilkovisky
algebras.

Section 6: Ginzburg proved that if Hochschild (co)homology satis-
fies a Van den Bergh duality isomorphism HHd−p(A, A) ∼= HHp(A, A)
then Hochschild cohomology has a Batalin-Vilkovisky algebra struc-
ture. We rewrite the proof of Ginzburg using our new characterization
of Batalin-Vilkovisky algebras and insisting on signs.

Section 7: We show that a differential graded algebra quasi-isomorphic
to an algebra satisfying Poincaré duality, also satisfies Poincaré dual-
ity (Proposition 38). Finally, we show our main theorem for path-
connected topological group.

Section 8: We show our main theorem for discrete groups. Extend-
ing a result of Kontsevich [15, Corollary 6.1.4] and Lambre [22, Lemme
6.2], we also show that, over any commutative ring k, the group ring
k[G] of an orientable Poincaré duality group is a Calabi-Yau algebra.

Appendix: We recall the notion of derived bracket following Kosmann-
Schwarzbach [20]. We interpret our new characterization of Batalin-
Vilkovisky algebra in term of derived bracket (Theorem 53). To any
differential graded algebra A, we associate

-a new Lie bracket on A (Remark 50),
-a new Gerstenhaber algebra which is a sub algebra of the endomor-

phism algebra of HH∗(A, A) (Theorem 54).
We conjecture that Theorem 2 is true without assuming that G is

discrete or path-connected. Note that the proof of the discrete case
(Sections 4 and 8) is independent of the proof of the path-connected
case (Sections 3 and 7).

Acknowledgment: We wish to thank Jean-Claude Thomas for point-
ing us the Mittag-Leffler condition which is the key of Proposition 12.



VAN DEN BERGH ISOMORPHISMS IN STRING TOPOLOGY 5

2. Hochschild homology and cohomology

We work over an arbitrary commutative ring k except in sections
3 and 7, where k is assumed to be a principal ideal domain. We use
the graded differential algebra of [8, Chapter 3]. In particular, an
element of lower degree i ∈ Z is by the classical convention [8, p. 41-
2] of upper degree −i. Differentials are of lower degree −1. All the
algebras considered in this paper, are unital and associative. Let A be
a differential graded algebra. Let M be a right A-module and N be a
left A-module. Denote by sA the suspension of A, (sA)i = Ai−1. Let d0

be the differential on the tensor product of complexes M ⊗T (sA)⊗N .
We denote the tensor product of the elements m ∈ M , sa1 ∈ sA, . . . ,
sak ∈ sA and n ∈ N by m[a1| · · · |ak]n. Let d1 be the differential on
the graded vector space M ⊗ T (sA)⊗N defined by:

d1m[a1| · · · |ak]n =(−1)|m|ma1[a2| · · · |ak]n

+

k−1∑

i=1

(−1)εim[a1| · · · |aiai+1| · · · |ak]n

− (−1)εk−1m[a1| · · · |ak−1]akn;

Here εi = |m|+ |a1|+ · · ·+ |ai|+ i.
The bar construction of A with coefficients in M and in N , denoted

B(M ; A; N), is the complex (M⊗T (sA)⊗N, d0+d1). The bar resolution
of A, denoted B(A; A; A), is the differential graded (A, A)-bimodule
(A ⊗ T (sA) ⊗ A, d0 + d1). If A is augmented then the reduced bar
construction of A, denoted B(A), is B(k; A; k).

Denote by Aop the opposite algebra of A and by Ae := A ⊗ Aop

the envelopping algebra of A. Let M be a differential graded (A, A)-
bimodule. Recall that any (A, A)-bimodule can be considered as a left
(or right) Ae-module. The Hochschild chain complex is the complex
M ⊗Ae B(A; A; A) denoted C∗(A, M). Explicitly C∗(A, M) is the com-
plex (M ⊗ T (sA), d0 + d1) with d0 obtained by tensorization and [6,
(10) p. 78]

d1m[a1| · · · |ak] =(−1)|m|ma1[a2| · · · |ak]

+

k−1∑

i=1

(−1)εim[a1| · · · |aiai+1| · · · |ak]

− (−1)|sak|εk−1akm[a1| · · · |ak−1].
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The Hochschild homology of A with coefficients in M is the homology
H of the Hochschild chain complex:

HH∗(A, M) := H(C∗(A, M)).

The Hochschild cochain complex of A with coefficients in M is the com-
plex HomAe(B(A; A; A), M) denoted C∗(A, M). Explicitly C∗(A, M) is
the complex

(Hom(T (sA), M), D0 + D1).

Here for f ∈ Hom(T (sA), M), D0(f)([ ]) = dM(f([ ])), D1(f)([ ]) = 0,
and for k ≥ 1, we have:

D0(f)([a1|a2|...|ak]) = dM(f ([a1|a2|...|ak]))−
k∑

i=1

(−1)ǫif([a1|...|dAai|...|ak])

and

D1(f)([a1|a2|...|ak]) = −(−1)|sa1| |f |a1f([a2|...|ak])

−
∑k

i=2(−1)ǫif([a1|...|ai−1ai|...|ak])

+(−1)ǫkf([a1|a2|...|ak−1])ak ,

where ǫi = |f |+ |sa1|+ |sa2|+ ... + |sai−1|.
The Hochschild cohomology of A with coefficients in M is

HH∗(A, M) = H(C∗(A, M)).

Suppose that A has an augmentation ε : A ։ k. Let A := Kerε be
the augmentation ideal. We denote by B(A) := (TsA, d0 +d1) the nor-
malized reduced Bar construction, by C∗(A, M) := (M ⊗ T (sA), d0 +

d1) the normalized Hochschild chain complex and by C
∗
(A, M) :=

(Hom(T (sA), M), D0 + D1) the normalized Hochschild cochain com-
plex.

3. The isomorphism between Hochschild cohomology and
Hochschild homology for differential graded

algebras

Let A be a differential graded algebra. Let P and Q be two A-
bimodules.

The action of HH∗(A, Q) on HH∗(A, P ) comes from a (right) action
of the C∗(A, Q) on C∗(A, P ) given by [6, (18) p. 82], [22]

∩ : C∗(A, P )⊗ C∗(A, Q)→ C∗(A, P ⊗A Q)
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(7)

(m[a1| . . . |an], f) 7→ (m[a1| . . . |an])∩f :=
n∑

p=0

±(m⊗Af [a1| . . . |ap])[ap+1| . . . |an].

Here ± is the Koszul sign (−1)|f |(|a1|+...|an|+n) [27, Proof of Lemma 16].
Let f : A→ B be a morphism of differential graded algebras and let

N be a B-bimodule. The linear map B ⊗A N → N , b ⊗ n 7→ b.n is a
morphism of B-bimodules. We call again cap product the composite

(8) C∗(A, B)⊗ C∗(A, N)
∩
→ C∗(A, B ⊗A N)→ C∗(A, N).

In this paper, our goal (statement 9) is to relate the cap product with
B = A to the cap product with N = B = k.

Statement 9. Let A be an augmented differential graded algebra such
that each Ai is k-free, i ∈ Z. Let N be an A-bimodule. Let c ∈
HHd(A, A). Denote by [m] ∈ TorA

d (k, k) the image of c by the mor-
phism

HHd(A, ε) : HHd(A, A)→ HHd(A, k) = TorA
d (k, k).

Suppose that
• TorA

i (k, k) = 0 for i ≤ −n or i ≥ n for some positive integer n,
• each TorA

i (k, k) is of finite type, i ∈ Z,
• the morphism of right Ext∗A(k, k)-modules

ExtpA(k, k)
∼=
→ TorA

d−p(k, k), a 7→ [m] ∩ a

is an isomorphism.
Then the morphism

D−1 : HHp(A, N)
∼=
→ HHd−p(A, N), a 7→ c ∩ a

is also an isomorphism.

This statement is the Eckmann-Hilton or Koszul dual of [27, Proposi-
tion 11]. In this section, we will prove this statement if A is connected.
But we wonder if this statement is true in general or even for ungraded
algebras.

Property 10. Let B and N be two complexes. Consider the natural
morphism of complexes Θ : B∨⊗N → Hom(B, N), which sends ϕ⊗ n
to the linear map f : B → N defined by f(b) := ϕ(b)n. Suppose that
each Bi is k-free.

1) If Bi = 0 for i ≤ −n or i ≥ n for some positive integer n and if
each Bi is of finite type or

2) If Hi(B) = 0 for i ≤ −n or i ≥ n for some positive integer n and
if each Hi(B) is of finite type
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then Θ is a homotopy equivalence.

Proof. 1) Since B is bounded, the component of degre n of Hom(B, N)
is the direct sum ⊕q∈ZHom(Bq−n, Nq). Since Bq−n is free of finite type,
Hom(Bq−n, Nq) is isomorphic to B∨q−n⊗Nq. Therefore Θ is an isomor-
phism.
2) Since k is a principal ideal domain, the proof of [30, Lemma 5.5.9]
shows that there exists an complex B′ satisfying 1) homotopy equiv-
alent to B. By naturality of Θ, Θ is a homotopy equivalence of com-
plexes. �

Lemma 11. The statement holds whenever N is a trivial A-bimodule,
i.e. a.n = ε(a)n = n.a for a ∈ A and n ∈ N .

Proof. Since N is a trivial A-bimodule, the normalized Hochschild
chain complex C∗(A, N) is just the tensor product of complexes C∗(A, k)⊗
N = B(A)⊗N (This is also true for the unnormalized Hochschild chain
complex, but less obvious). And the normalized Hochschild cochain

complex C
∗
(A, N) is just the Hom complex Hom(C∗(A, k), N) = Hom(B(A), N).

Since the augmentation ideal of A, A, is k-free, B(A) is also k-free.
Each Hi(B(A)) is of finite type and Hi(B(A)) = TorA

i (k, k) is null if

i ≤ −n or i ≥ n. Therefore by part 2) of Property 10, Θ : B(A)∨⊗N
≃
→

Hom(B(A), N) is a quasi-isomorphism. A straightforward calculation
shows that the following diagram commutes

B(A)∨ ⊗N
Θ

≃
//

([m]∩−)⊗N ))TTTTTTTTTTTTTTT

Hom(B(A), N) = C
∗
(A, N)

c∩−

��

B(A)⊗N = C∗(A, N)

Since B(A) is k-free and its dual B(A)∨ is torsion free, by naturality
of Kunneth formula [30, Theorem 5.3.3], ([m] ∩ −) ⊗ N is a quasi-
isomorphism. Therefore c ∩ − is also a quasi-isomorphism. �

Proposition 12. The statement is true if A and N are non-negatively

graded and H0(ε) : H0(A)
∼=
→ k is an isomorphism.

Proof. For any k ≥ 0, let F k := Ae
k
.N . The F k form a decreasing

filtration of sub-A-bimodules and sub-complexes of N . Since F k/F k+1

is a trivial A-bimodule, by Lemma 11, the morphism of complexes

C∗(A, F k/F k+1)
≃
→ C∗(A, F k/F k+1), a 7→ c ∩ a

is a quasi-isomorphism. By Noether theorem, we have the short exact
sequences of A-bimodules
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0→ F k/F k+1 → N/F k+1 → N/F k → 0.

Since TsA is k-free, the functors Homk(TsA,−) and −⊗kTsA preserve
short exact sequences. Therefore consider the morphism of short exact
sequences of complexes induced by the cap product with c

0 // C∗(A, F k/F k+1) //

c∩−≃
��

C∗(A, N/F k+1) //

c∩−
��

C∗(A, N/F k) //

c∩−
��

0

0 // C∗(A, F k/F k+1) // C∗(A, N/F k+1) // C∗(A, N/F k) // 0

Using the long exact sequences associated and the five lemma, by in-
duction on k, we obtain that the morphism of complexes

C∗(A, N/F k)
≃
→ C∗(A, N/F k), a 7→ c ∩ a

is a quasi-isomorphism for all k ≥ 0.
The two towers of complexes

· · ·։ C∗(A, N/F k+1) ։ C∗(A, N/F k) ։ · · ·

· · ·։ C∗(A, N/F k+1) ։ C∗(A, N/F k) ։ · · ·

satisfy the trivial Mittag-Leffler condition, since all the maps in the
two towers are onto. Therefore by naturality of [33, Theorem 3.5.8],
for each p ∈ Z, we have morphism of short exact sequences induced by
the cap product with c

lim
←

1HHp−1(A, N/F k) //

lim
←

1c ∩ −
��

Hplim
←
C∗(A, N/F k) //

H(lim
←

c ∩−)
��

lim
←

HHp(A, N/F k)

lim
←

c ∩ −
��

lim
←

1HHd+1−p(A, N/F k) // Hd−plim
←
C∗(A, N/F k) // lim

←
HHd−p(A, N/F k)

Using the five Lemma again, we obtain that the middle morphism

H(lim
←

c ∩ −) : Hp lim
←
C∗(A, N/F k)→ Hd−p lim

←
C∗(A, N/F k)

is an isomorphism.
Case 1: We now suppose that A and N are non-negatively graded

and that ε : A0

∼=
→ k is an isomorphism. Then Ae

k
is concentrated

in degres ≥ k. Therefore F k and C∗(A, F k) are also concentrated in
degres ≥ k. This means that for n < k their components of degre n,
(F k)n and [C∗(A, N/F k)]n are trivial. Therefore the tower in degre n

· · · → (N/F k+1)n ։ (N/F k)n → · · ·
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is constant and equal to Nn for k > n. This implies that Nn =
lim
←

(N/F k)n. Therefore as complexes and as A-bimodule, N = lim
←

N/F k.

Since C∗(A, N/F k) is the quotient C∗(A, N)/C∗(A, F k), we also have
that as complexes,

C∗(A, N) = lim
←
C∗(A, N/F k)

The functor C∗(A,−) from (differential) A-bimodules to complexes
is a right adjoint. Therefore C∗(A,−) preserves inverse limits. Since
N = lim

←
N/F k in the category of (differential) A-bimodules, we obtain

that as complex

C∗(A, N) = C∗(A, lim
←

N/F k) = lim
←
C∗(A, N/F k).

Since for any k ≥ 0, the following square commutes

C∗(A, N) //

c∩−

��

C∗(A, N/F k)

c∩−
��

C∗(A, N) // C∗(A, N/F k)

,

the quasi-isomorphism

lim
←

c ∩ − : lim
←
C∗(A, N/F k)→ lim

←
C∗(A, N/F k)

coincides with c ∩ − : C∗(A, N)→ C∗(A, N).
Case 2: We now suppose that A and N are non-negatively graded

and that H0(ε) : H0(A)
∼=
→ k is an isomorphism. Let Ã be the graded

k-module defined by Ã0 = k, Ã1 = Ker d : A1 → A0, Ãn = An for
n ≥ 2 (Compare with the cochain version in [8, p. 184]). Clearly Ã is

a sub differential graded algebra of A and the inclusion j : Ã
≃
→֒ A is a

quasi-isomorphism since Im d : A1 → A0 is equal to A0.

Since the augmentation ideals of A and Ã, A and Ã, are k-free and
non-negatively graded, by [23, 5.3.5] or [7, 4.3(iii)], the three morphisms

HH∗(j, N) : HH∗(Ã, N)
∼=
→ HH∗(A, N), HH∗(j, N) : HH∗(A, N)

∼=
→

HH∗(Ã, N) and HH∗(j, j) : HH∗(Ã, Ã)
∼=
→ HH∗(A, A) are all isomor-

phims. Let c̃ ∈ HHd(Ã, Ã) such that HHd(j, j)(c̃) = c. Using the
definition of the cap product, it is straightforward to check that the
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following square commutes

HH∗(A, N)
HH∗(j,N)

∼=
//

c∩−

��

HH∗(Ã, N)

c̃∩−
��

HH∗(A, N) HH∗(Ã, N)
HH∗(j,N)

∼=oo

Let ˜[m] ∈ TorÃ
d (k, k) such that Torj

d(k, k)( ˜[m]) = [m]. When N = k,
the previous square specializes to the following commutative square

Ext∗A(k, k)
Ext∗j (k,k)

∼=
//

[m]∩− ∼=
��

Ext∗
Ã
(k, k)

˜[m]∩−
��

TorA
∗ (k, k) TorÃ

∗ (k, k)
Torj

∗(k,k)

∼=oo

By hypothesis, [m] ∩ − is an isomorphism. Therefore ˜[m] ∩ − is also
an isomorphism. So since Ã0 = k, we have seen in the case 1, that

c̃ ∩ − : HH∗(Ã, N)
∼=
→ HH∗(Ã, N)

is an isomorphism. Therefore

c ∩ − : HH∗(A, N)
∼=
→ HH∗(A, N)

is also an isomorphism. �

4. Comparison of the Cap products in Hochschild and
group (co)homology

Let G be a discrete group. Let M and N be two k[G]-bimodules.
Let η : k → k[G] be the unit map. Let E : k[G] → k[G × Gop] be the
morphism of algebras mapping g to (g, g−1). Let

η̃ : k[G×Gop]⊗k[G] k→ k[G]

be the unique morphism of left k[G×Gop]-modules extending η. Since
k[G × Gop] is flat as left k[G]-module via E and since η̃ is an iso-
morphism, by Eckmann-Schapiro [18, Chapt IV.Proposition 12.2], we
obtain the well-known isomorphisms between Hochschild (co)homology
and group (co)homology:

Ext∗E(η, N) : HH∗(k[G], N) = Ext∗
k[G×Gop](k[G], N)

∼=
→ Ext∗

k[G](k, Ñ) = H∗(G, Ñ).

and

TorE
∗ (M, η) : H∗(G, M̃) = Tork[G]

∗ (M̃, k)
∼=
→ Tor∗

k[G×Gop](M, k[G]) = HH∗(k[G], M).
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Here M̃ and Ñ denote the k[G]-modules obtained by restriction of
scalar via E. Note that we regard any left k[G]-module as an right
k[G]-module via g 7→ g−1 [3, p. 55].

Proposition 13. Remark that the canonical surjection

q : M̃ ⊗ Ñ ։ ˜M ⊗k[G] N

is a morphism of k[G]-modules.
i) Cup product ∪ in Hochschild cohomology versus cup product in

group cohomology (slight extension of [29, Proposition 3.1]). The fol-
lowing diagram commutes

HH∗(k[G], M)⊗HH∗(k[G], N)
∪ //

Ext
∗

E(η,M)⊗Ext
∗

E(η,N)

��

HH∗(k[G], M ⊗k[G] N)

Ext
∗

E(η,M⊗k[G]N)
��

H∗(G, M̃)⊗H∗(G, Ñ) ∪
// H∗(G, M̃ ⊗ Ñ)

H∗(G,q)
// H∗(G, ˜M ⊗k[G] N)

ii) Cap products ∩. The following diagram commutes

HH∗(k[G], M)⊗HH∗(k[G], N)
∩ // HH∗(k[G], M ⊗k[G] N)

H∗(G, M̃)⊗H∗(G, Ñ) ∩
//

Tor
E
∗

(M,η)⊗Ext
∗

E(η,N)−1

OO

H∗(G, M̃ ⊗ Ñ)
H∗(G,q)

// H∗(G, ˜M ⊗k[G] N)

Tor
E
∗

(M⊗k[G]N,η)

OO

Remark 14. In the case M = N = k[G], the diagram i) in Proposi-
tion 13 means that

Ext∗E(η, k[G]) : HH∗(k[G], k[G])→ H∗(G, ˜k[G])

is a morphism of graded algebras.
In the case N = k[G], the diagram ii) means that

TorE
∗ (M, η) : H∗(G, M̃)→ HH∗(k[G], M)

is a morphism of right HH∗(k[G], k[G])-modules:

TorE
∗ (η, k[G]) (α ∩ Ext∗E(η, k[G])(ϕ)) = TorE

∗ (η, k[G])(α) ∩ ϕ

for any α ∈ H∗(G, M̃) and any ϕ ∈ HH∗(k[G], k[G]).

Proof. Siegel and Witherspoon [29, Proposition 3.1] proved i) using
that for any projective resolution P of k as left k[G]-modules,

X := k[G×Gop]⊗k[G] P

is a projective resolution of k[G] as k[G]-bimodules. Let ι : P →֒ X̃
the left k[G]-linear map defined by ι(x) = (1, 1)⊗ x. Using that

HomE(ι, N) : Homk[G×Gop](X, N)
∼=
→ Homk[G](P, Ñ)
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is an isomorphism of complexes inducing Ext∗E(η, N) and that

M ⊗E ι : M̃ ⊗k[G] P
∼=
→ M ⊗k[G×Gop] X

is an isomorphism of complexes inducing TorE
∗ (M, η), Siegel and With-

erspoon [29, Proposition 3.1] proved i). But one can also prove similarly
ii).

We find more simple to give a proof of ii) using the Bar resolution.

Let ι : B(k[G]; k[G]; k)→ ˜B(k[G]; k[G]; k[G]) be the linear map defined
by

ι(g0[g1| · · · |gn]) = g0[g1| · · · |gn]g−1
n . . . g−1

0 .

Obviously ι fits into the commutative diagram of left k[G]-modules

˜B(k[G]; k[G]; k[G]) // k[G]

B(k[G]; k[G]; k) //

ι

OO

k

η

OO

A straightforward computation shows that ι is a morphism of com-
plexes. Therefore HomE(ι, N) is an morphism of complexes from C∗(k[G], N) ∼=
(Homk[G×Gop](B(k[G]; k[G]; k[G]), N) to Homk[G](B(k[G]; k[G]; k), Ñ).
inducing Ext∗E(η, N) and M ⊗E ι is an morphism of complexes from

B(M̃ ; k[G]; k) ∼= M̃ ⊗k[G] B(k[G]; k[G]; k)

to

M ⊗k[G×Gop] B(k[G]; k[G]; k[G]; k[G]) ∼= C∗(k[G], M)

inducing TorE
∗ (M, η). Explicitly M ⊗E ι is the morphism of complexes

B(M̃ ; k[G]; k)→ C∗(k[G], M)

defined by [11, (2.20)]

(15) ξ(m[g1| . . . |gn] = g−1
n . . . g−1

1 m[g1| . . . |gn].

And HomE(ι, N) : C∗(k[G], N)→ Hom(B(k[G]), Ñ), d is the morphism
of complexes ξ mapping ϕ ∈ C∗(k[G], N) to the linear map ξ(ϕ) :
k[G]→ Ñ defined by

ξ(ϕ)([g1| . . . |gn]) = ϕ([g1| . . . |gn])g
−1
n . . . g−1

1 .

Both M ⊗E ι and HomE(ι, N) are in fact isomorphisms of complexes.
The inverse of M⊗E ι is the morphism of complexes Φ : C∗(k[G], M)→

B(M̃ ; k[G]; k) defined by [23, 7.4.2.1]

Φ(m[g1| . . . |gn]) = g1 . . . gnm[g1| . . . |gn].
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Let F be any projective resolution of k as left k[G]-module. Let P and
Q be two k[G]-modules. The cap product in group cohomology is the
composite [3, p. 113], denoted ∩

P ⊗k[G] F ⊗Homk[G](F, Q)

Id⊗k[G]∆⊗k[G]Id

��
P ⊗k[G] (F ⊗ F )⊗ Homk[G](F, Q)

γ

��
(P ⊗Q)⊗k[G] F

where γ(a⊗x⊗y⊗u) = (−1)|u||x|+|u||y|a⊗u(x)⊗y and ∆ is a diagonal
approximation. In the case, F is the Bar resolution B(k[G]; k[G]; k),
one can take ∆ to be the Alexander-Whitney map

AW : B(k[G]; k[G]; k)→ B(k[G]; k[G]; k)⊗B(k[G]; k[G]; k)

defined by [3, p. 108 (1.4)]:

AW (g0[g1| . . . |gn]) =
n∑

p=0

g0[g1| . . . |gp]⊗ g0 . . . gp[gp+1| . . . |gn].

Therefore the cap product

∩ : B(P ; k[G]; k)⊗Hom(B(k[G]), Q), d→ B(P ⊗Q; k[G]; k)

is the morphism of complexes mapping m[g1| . . . |gn] ⊗ u : Gp → Q
to m.g1 . . . gp ⊗ u(g1, . . . , gp).g1 . . . gp[gp+1| . . . |gn]. Using the explicit
formula (7) for the cap product in Hochschild cohomology, it is easy to
check that the following diagram commutes

C∗(k[G], M)⊗ C∗(k[G], N)
∩ //

Φ⊗HomE(ι,N)

��

C∗(k[G], M ⊗k[G] N)

Φ
��

B(M̃ ; k[G]; k)⊗H∗(G, Ñ) ∩
// B(M̃ ⊗ Ñ ; k[G]; k)

B(q;k[G];k)
// B( ˜M ⊗k[G] N ; k[G]; k)

By applying homology, ii) is proved. �

Definition 16. [23, 7.4.5 when z=1] Let σ : B(k[G]) →֒ C∗(k[G], k[G])
be the linear map defined by

σ([g1| . . . |gn]) = g−1
n . . . g−1

1 [g1| . . . |gn].

Property 17. i) [23, 7.4.5 when z=1] The map σ is a morphism of cyclic
modules.

ii) The morphism of complexes σ coincides with the composite



VAN DEN BERGH ISOMORPHISMS IN STRING TOPOLOGY 15

B(k[G])
B(η;k[G];k)
→ B(k̃[G]; k[G]; k)

ξ
→
∼=
C∗(k[G]; k[G]).

Here ξ is the isomorphism of complexes defined by (15). Note that the

unit map η : k→ k̃[G] is a morphism of k[G]-modules.
iii) In particular, in homology, σ coincides with

TorE(η, η) : H∗(G; k)→ HH∗(k[G]; k[G]).

iv) The map σ is a section of

C∗(k[G], ε) : C∗(k[G], k[G])→ C∗(k[G], k) = B(k[G]).

Corollary 18. Let G be any discrete group. Let N be a k[G]-bimodule.
Let σ : H∗(G; k) → HH∗(k[G]; k[G]) be the section of HH∗(k[G], ε) :
HH∗(k[G], k[G])→ H∗(G, k) defined in Definition 16. Let z ∈ Hd(G, k)
be any element in group homology. Then the following square commutes

Hp(G, Ñ)
z∩− // Hd−p(G, Ñ)

Tor
E
∗

(N,η)∼=
��

HHp(k[G], N)
σ(z)∩−

//

Ext
∗

E(η,N) ∼=

OO

HHd−p(k[G], N)

Proof.

HH∗(k[G], k[G])⊗HH∗(k[G], N)
∩ // HH∗(k[G], k[G]⊗k[G] N)

H∗(G, k̃[G])⊗H∗(G, Ñ) ∩
//

TorE
∗

(k[G],η)⊗Ext∗E(η,N)−1

OO

H∗(G, k̃[G]⊗ Ñ)
H∗(G,q)

// H∗(G, Ñ)

TorE
∗

(N,η)

OO

H∗(G, k)⊗H∗(G, Ñ) ∩
//

H∗(G,η)⊗Id

OO

H∗(G, k⊗ Ñ)

H∗(G,η⊗Ñ)

OO

∼=

44jjjjjjjjjjjjjjjjj

The top rectangle commutes by ii) of Proposition 13 in the case M =
k[G]. The Bottom square commutes by naturality of the cap product
in group (co)homology with respect to the morphism of k[G]-modules

η : k → k̃[G]. The Bottom triangle commutes by functoriality of
H∗(G,−). By ii) or iii) of Property 17, the vertical composite is

σ⊗Ext∗E(η, N)−1 : H∗(G, k)⊗H∗(G, Ñ)→ HH∗(k[G], k[G])⊗HH∗(k[G], N).

�
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5. A new definition of Batalin-Vilkovisky algebras

Definition 19. A Gerstenhaber algebra is a commutative graded alge-
bra A equipped with a linear map {−,−} : Ai⊗Aj → Ai+j+1 of degree
1 such that:
a) the bracket {−,−} gives A a structure of graded Lie algebra of
degree 1. This means that for each a, b and c ∈ A

(20) {a, b} = −(−1)(|a|+1)(|b|+1){b, a} and

{a, {b, c}} = {{a, b}, c}+ (−1)(|a|+1)(|b|+1){b, {a, c}}.

b) the product and the Lie bracket satisfy the following relation called
the Poisson relation:

{a, bc} = {a, b}c + (−1)(|a|+1)|b|b{a, c}.

Definition 21. A Batalin-Vilkovisky algebra is a Gerstenhaber algebra
A equipped with a degree 1 linear map ∆ : Ai → Ai+1 such that
∆ ◦∆ = 0 and such that the bracket is given by

(22) {a, b} = (−1)|a|
(
∆(a ∪ b)− (∆a) ∪ b− (−1)|a|a ∪ (∆b)

)

for a and b ∈ A.

Remark 23. In (22), a sign (here the sign chosen is (−1)|a|) is needed
(See [21, (1.6)] or [14, beginning of the Proof of Proposition 1.2]), since
the Lie bracket of degre +1 is graded antisymmetric (equation (20))while
the associative product is graded commutative. Therefore the defini-
tion of Batalin-Vilkovisky algebra in [15, Theorem 3.4.3 (ii)] and [22,
p. 1] has a sign problem.

The following characterization of Batalin-Vilkovisky algebras was
proved by Koszul and rediscovered by Getzler and by Penkava and
Schwarz.
Proposition 24. [21, p. 3] [14, Proposition 1.2] [28] Let A be a
commutative graded algebra A equipped with an operator ∆ : Ai → Ai+1

of degree 1 such that ∆ ◦∆ = 0. Consider the bracket { , } of degree
+1 defined by

{a, b} = (−1)|a|
(
∆(ab)− (∆a)b− (−1)|a|a(∆b)

)

for any a, b ∈ A. Then A is a Batalin-Vilkovisky algebra if and only if
∆ is a differential operator of degree ≤ 2, this means that for a, b and
c ∈ A,

(25) ∆(abc) = ∆(ab)c + (−1)|a|a∆(bc) + (−1)(|a|−1)|b|b∆(ac)

− (∆a)bc− (−1)|a|a(∆b)c− (−1)|a|+|b|ab(∆c).
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Remark that till now, in this section, it is not necessary that the
algebras have an unit. Now if the algebras have an unit, we give a new
characterization of Batalin-Vilkovisky algebra. One implication in this
new characterization is inspired by Ginzburg proof of Proposition 30.
As we will recall in the proof of Theorem 53, the converse in this
characterization is due to [20, “the restriction of this derived bracket
to A is the BV-bracket”, p. 1270].

Proposition 26. Let A be a Gerstenhaber algebra A equipped with an
operator ∆ : A→ A of degree 1 such that ∆ ◦∆ = 0. For any a ∈ A,
denote by la : A→ A, the left multiplication by a, explicitly la(b) = ab,
b ∈ A. Denote by [f, g] = f ◦ g − (−1)|f ||g|g ◦ g the graded commutator
of two endomorphisms f : A → A and g : A → A. Then A is a
Batalin-Vilkovisky algebra if and only if for a, b ∈ A,

l{a,b} = −[[la, ∆], lb] and ∆(1) = 0.

Proof. For a and b ∈ A,

[[la, ∆], lb] =
(
la ◦∆− (−1)|a∆ ◦ la

)
◦ lb

− (−1)|b|(|a|+1)lb ◦
(
la ◦∆− (−1)|a∆ ◦ la

)

= la ◦∆◦ lb− (−1)|a|∆◦ lab− (−1)|b|lab ◦∆+(−1)|b|(|a|+1)+|a|lb ◦∆◦ la.

Therefore by applying this equality of operators to c ∈ A, we have

(27) − (−1)|a|[[la, ∆], lb](c) = −(−1)|a|a∆(bc) + ∆(abc)

+ (−1)|a|+|b|ab∆(c)− (−1)|b|(|a|+1)b∆(ac).

Suppose that A is a Batalin-Vilkovisky algebra. By Proposition 24,
using (27), we obtain that

−(−1)|a|[[la, ∆], lb](c) = ∆(ab)c−(∆a)bc−(−1)|a|a(∆b)c = (−1)|a|{a, b}c.

Therefore −[[la, ∆], lb] = l{a,b}. In the case a = b = c = 1, equation (25)
gives ∆(1) = 3∆(1)− 3∆(1) = 0.

Conversely, suppose that ∆(1) = 0 and that l{a,b} = −[[la, ∆], lb].
Then using (27)

{a, b} = l{a,b}(1) = (−1)|a|(−(−1)|a|a∆(b) + ∆(ab) + 0− (∆a)b).

Therefore, by Definition 21, A is a Batalin-Vilkovisky algebra. �
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6. Batalin-Vilkovisky algebra structures on Hochschild
cohomology

Let A be a differential graded algebra. The cap product defined in
Section 3,

HH∗(A, A)⊗HH∗(A, A)
∩
→ HH∗(A, A), c⊗ a 7→ c ∩ a

is a right action.
Following Tsygan definition of a calculus, we want a left action.

Therefore, we define as [22, Definition 1.2],

C∗(A, A)⊗ C∗(A, A)→ C∗(A, A)

(28) f ⊗ c 7→ if(c) = f · c := (−1)|c||f |c ∩ f.

Explicitly

if (m[a1| . . . |an]) :=

n∑

p=0

(−1)|m||f |(m.f [a1| . . . |ap])[ap+1| . . . |an].

The sign in [6, (18) p. 82] is different. But with our choice of signs, we
recover Proposition 2.6 in [6, p. 82]. Indeed for D, E ∈ C∗(A, A) and
c ∈ C∗(A, A),

D · (E · c) = (−1)|c||E|D · (c ∩E) = (−1)|c||E|+|D||c|+|D||E|(c ∩E) ∩D

= (−1)|c||E|+|D||c|+|D||E|c ∩ (E ∪D) = (−1)|D||E|(E ∪D) · c

Since the cup product on HH∗(A, A) is graded commutative, for D,
E ∈ HH∗(A, A) and c ∈ HH∗(A, A), we have

(29) D · (E · c) = (D ∪ E) · c,

i. e. a left action. Note that in [27], the author forgot to twist the
right action by the sign (−1)|c||f |, therefore has also a sign problem!
Proposition 30. [15, Theorem 3.4.3 (ii)] Let c ∈ HHd(A, A) such
that the morphism of left HH∗(A, A)-modules

HHp(A, A)
∼=
→ HHd−p(A, A), a 7→ a · c

is an isomorphism. If B(c) = 0 then the Gerstenhaber algebra HH∗(A, A)
equipped with −B is a Batalin-Vilkovisky algebra.

Proof. Let us rewrite the proof of Victor Ginzburg using explicitly our
Proposition 26 and our choice of signs. Denote by

HHp(A, A)⊗HHj(A, A)→ HHj−p+1(A, A)

a⊗ x 7→ La(x)
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the action of the suspended graded Lie algebra HH∗(A, A) on HH∗(A, A).
Gelfand, Daletski and Tsygan [12] proved that the Gerstenhaber alge-
bra HH∗(A, A) and Connes boundary map B on HH∗(A, A) form a
calculus [6, p. 93]. In particular, we have the two relations

La = [B, ia]

and [6, Proposition 2.9 p. 83]

(31) i{a,b} = (−1)|a|+1[La, ib].

Therefore

(32) i{a,b} = (−1)|a|+1[[B, ia], ib] = [[ia, B], ib].

The operator ∆ on HH∗(A, A) is defined by

(∆a) · c := −B(a · c) for any a ∈ HH∗(A, A).

Thus B(c) = 0 implies ∆(1) = 0. Since we have a left action (equa-
tion (29)), la(b) ·c = (a∪b) ·c = a · (b ·c) = ia(b ·c) and so equation (32)
is equivalent to

l{a,b} = −[[la, ∆], lb].

Therefore, by Proposition 26, HH∗(A, A) is a Batalin-Vilkovisky alge-
bra. �

Remark 33. (Signs)
i) In [6, Example 4.6 p. 93], Tsygan writes that it follows from [6,

2.9 p. 83], that i{a,b} = [La, ib]. We do not understand why he has no
sign in this formula. We believe that from [6, 2.9 p. 83], the correct
equation with the signs is equation (31) above.

ii) In a calculus, there is a third relation, that we do not use in this
paper:

Lab = Laib + (−1)|a|iaLb.

Since ab = (−1)|a||b|ba,

Lab = (−1)|a||b|Lba = (−1)|a||b|Lbia + (−1)(|a|+1)|b|ibLa

and therefore

(34) [La, ib] = (−1)|a||b|[Lb, ia]

Since {a, b} = −(−1)(|a|+1)(|b|+1){b, a},
-if we suppose like Tsygan that i{a,b} = [La, ib], we obtain that

(35) [La, ib] = −(−1)(|a|+1)(|b|+1)[Lb, ia].

The two equations (34) and (35) seem incoherent. Therefore we believe
that the definition of calculus of Tsygan has some sign problem.

-on the contrary, if we suppose (31), we obtain again (34).
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7. Proof of the main theorem for path-connected groups

Cap products associated to coalgebras. Let C be a (differential
graded) coalgebra. Then its dual C∨ is a (differential graded) algebra.
Let N be a left C-comodule. Denote by ∆N : N → C⊗N the structure
map. Let ∩ : N → C∨ → N be the composite

N ⊗ C∨
∆N⊗C∨

→ C ⊗N ⊗ C∨
N⊗τ
→ C ⊗ C∨ ⊗N

ev⊗N
→ k⊗N ∼= N.

Here τ denotes the twist map given by n ⊗ ϕ 7→ (−1)|n||ϕ|ϕ ⊗ n and
ev is the evaluation map defined by ev(c ⊗ ϕ) = (−1)|ϕ||c|ϕ(c). Then
N equipped with the cap product is a left C∨-module [31, Proposition
2.1.1]. In this paper, we are only interested in the case N = C.

Example 36. Let X be any topological space. The (normalized or
unnormalized) singular chains of X, S∗(X) forms a differential graded
coalgebra [25, p. 244-5]. The cap product defined above associated to
C = S∗(X), ∩ : S∗(X)⊗ S∗(X)→ S∗(X) is the usual cap product.

Example 37. Let A be any augmented differential graded algebra. Then
the reduced (normalized or not) Bar construction B(A) = C∗(A, k) is a
differential graded coalgebra. The diagonal ∆ : B(A)→ B(A)⊗B(A)
is given by

∆([a1| . . . |an]) =

n∑

p=0

[a1| . . . |ap]⊗ [ap+1| . . . |an].

The cap product defined above associated to C = B(A) is given by

∩ : B(A)⊗B(A)∨ → B(A)

[a1| . . . |an] ∩ f =
n∑

p=0

(−1)|f |(|a1|+···+|an|)f([a1| . . . |ap])[ap+1| . . . |an].

Therefore this cap product coincides with the cap product on the
Hochschild (co)chain complex ∩ : C∗(A, k) ⊗ C∗(A, k) → C∗(A, k) de-
fined by (8) in the case N = B = k.

Proposition 38. Let f : C
≃
→ D be a quasi-isomorphism of coalgebras.

Suppose that C and D are k-free. Let c̃ ∈ C and d̃ ∈ D such that
d̃ = H∗(f)([c̃]). Consider the cap products defined above associated to
the coalgebras C and D. Then

the morphism of right C∨-modules c̃∩− : C∨ → C given by a 7→ c̃∩a
is quasi-isomorphism if and only if

the morphism of right D∨-modules d̃∩− : D∨ → D given by a 7→ d̃∩a
is quasi-isomorphism.
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Proof. The transpose of f : f∨ : D∨ → C∨ is a morphism of differential
graded algebras. Therefore f∨ is a morphism of right D∨-modules.
Dually, since f is a morphism of coalgebras, f is a morphism of left
D-comodules and therefore is also a morphism of right D∨-modules, i.
e. f(c∩f∨(ϕ)) = c∩ϕ for any c ∈ C and ϕ ∈ D∨. Note that if f is the
coalgebra map S∗(λ) : S∗(X) → S∗(X) included by a continuous map
λ : X → Y , this formula is well known ([2, Chapter VI 5. Theorem
(4)] or [17, p. 241]).

The composite of the morphism of right D∨-modules

D∨ → C∨
c̃∩−
→ C

f
→ D

maps 1 to f(c̃) and therefore coincides with the morphism of right

D∨-modules D∨ → D, a 7→ f(c̃) ∩ a. Since [d̃] = [f(c̃)], the two

maps a 7→ f(c̃) ∩ a and a 7→ d̃ ∩ a coincide after passing to homology.
Therefore after passing to homology, the following square commutes

(39) D∨
f∨

//

d̃∩−
��

C∨

c̃∩−
��

D C
f

≃
oo

Since both C and D are k-free and k is a principal ideal domain, by
naturality of the universal coefficient theorem for cohomology, H∗(f

∨)
is an isomorphism since H∗(f) is an isomorphism. The lemma follows
nows from the square (39). �

Theorem 40. Let M be a simply-connected oriented Poincaré duality
space of formal dimension d. Let G be a topological group such that M
is a classifying space for G or let G be ΩM the (Moore) pointed loop
space on M . Let [M ] ∈ Hd(M) be its fundamental class. Let c the
image of [M ] through the composite

H∗(M)
H∗(s)
→ H∗(LM)

BFG−1

→ HH∗(S∗(G), S∗(G)).

Then
a) The morphism of left HH∗(S∗(G), S∗(G))-modules

D−1 : HHp(S∗(G), S∗(G))
∼=
→ HHd−p(S∗(G), S∗(G)), a 7→ a.c,

is an isomorphism.
b) The Gerstenhaber algebra HH∗(S∗(G), S∗(G)) equipped with the

operator ∆ := D ◦B ◦ D−1 is a Batalin-Vilkovisky algebra.

Here s denotes s : M →֒ LM the inclusion of the constant loops into
LM and BFG is the isomorphism of graded k-modules between the
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free loop space homology of M and the Hochschild homology of S∗(G)
introduced by Burghelea, Fiedorowicz [4] and Goodwillie [16]. Finally
B denotes Connes boundary on HH∗(S∗(G), S∗(G)).

Remark 41. We expect that the above theorem can be extended to
any path-connected topological monoid G instead of just the topolog-
ical monoid of pointed Moore loop spaces ΩM or instead of just any
topological group.

Proof. By [7, Proposition 6.13 in the case F=pt] when G is a topological
group or by [7, Theorem 6.3] when G = ΩM , there exists a differential
graded coalgebra B(S∗(EG); S∗(G); k) and two quasi-isomorphisms of
coalgebras

B(S∗(G))
≃
← B(S∗(EG); S∗(G); k)

≃
→ S∗(M).

The induced isomorphism in homology is the well known isomorphism
due to Moore [26, Corollary 7.29]

θ : TorS∗(G)(k, k) = H∗(B(S∗(G)))
∼=
→ H∗(M).

Let [m] ∈ H∗(B(S∗(G))) such that θ([m]) = [M ]. By Proposition 38

and Example 37, the cap product with [m], [m] ∩ − : B(S∗(G))∨
≃
→

B(S∗(G)), a 7→ [m] ∩ a is quasi-isomorphism.
Denote by ev : LM ։ M , l 7→ l(0) the evaluation map. The

isomorphism BFG of Goodwillie, Burghelea and Fiedorowicz fits into
the commutative square.

HH∗(S∗(G), S∗(G))
BFG

∼=
//

HH∗(S∗(G),ε)
��

H∗(LM)

H∗(ev)
��

HH∗(S∗(G), k)
θ

∼=
// H∗(M)

Here ε denote the augmentation of S∗(G). Let c := BFG−1◦Hd(s)([M ]).
Since s is a section of the evaluation map ev, HH∗(S∗(G), ε)(c) = [m].
So the hypothesis of statement 9 are satisfied for A = S∗(G).

Let N be any non-negatively graded S∗(G)-bimodule. Since M is
simply connected, by Proposition 12, we obtain that the morphism

D−1 : HHp(S∗(G), S∗(G))
∼=
→ HHd−p(S∗(G), S∗(G)), a 7→ c ∩ a

is an isomorphism. By taking N = S∗(G) and by passing from a right
action to a left action by (28), we obtain a).

The isomorphism BFG of Goodwillie, Burghelea and Fiedorowicz
satisfies ∆ ◦BFG = BFG ◦B. Consider M equipped with the trivial
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S1-action. The section s : M →֒ LM is S1-equivariant. Since

B(c) = B ◦BFG−1 ◦Hd(s)([M ]) = BFG−1 ◦∆ ◦Hd(s)([M ]) = 0,

by Proposition 30, we obtain b). �

8. Proof of the main theorem for discrete groups

Theorem 42. Let G be a discrete group such that its classifying space
K(G, 1) is an oriented Poincaré duality space of formal dimension d.
Let [M ] ∈ Hd(G, k) be a fundamental class. Let c be the image of [M ]
by TorE

∗ (η, η) : H∗(G, k)→ HH∗(k[G], k[G]). Then
a) The morphism of left HH∗(k[G], k[G])-modules

D−1 : HHp(k[G], k[G])
∼=
→ HHd−p(k[G], k[G]), a 7→ a.c

is an isomorphism.
b) The Gerstenhaber algebra HH∗(k[G], k[G]) equipped with the op-

erator ∆ := D ◦B ◦ D−1 is a Batalin-Vilkovisky algebra.

Proof. Let N be any k[G]-bimodule. Since, by hypothesis, G is ori-
entable Poincaré duality group, the cap product with [M ] in group
(co)homology gives an isomorphism ( [3, 10.1 iv), Remark 1 and Ex-
ample 1 p. 222],[13, Th 15.3.1])

[M ] ∩− : Hp(G, Ñ)
∼=
→ Hd−p(G, Ñ), a 7→ [M ] ∩ a.

Therefore, by Corollary 18, the cap product with c = σ([M ]) in Hochschild
(co)homology gives the isomorphism

c ∩− : HHp(k[G], N)→ HHd−p(k[G], N), a 7→ c ∩ a.

Taking N = k[G] and passing from a right action to left action as
in (28), we obtain a).

By i) of Property 17, σ : H∗(G; k)→ HH∗(k[G], k[G]) commute with
Connes boundary map B on H∗(G; k) and on HH∗(k[G], k[G]). By a
well known result of Karoubi (for example [23, E.7.4.8] or [33, Theorem
9.7.1]), Connes boundary map B is trivial on H∗(G; k). Therefore
B(c) = B ◦ σ([M ]) = σ ◦B([M ]) = 0. By applying Proposition 30, we
obtain b). �

Property 43. Let A and B be two algebras (differential graded if we
want). Let N be an (A, A⊗ B)-bimodule. Let c ∈ HHd(A, A). Then

i) HH∗(A, N) and HH∗(A, N) are two right B-modules and
ii) the cap product

c ∩ − : HHp(A, N)→ HHd−p(A, N), a 7→ c ∩ a

is a morphism of right B-modules.
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Proof. Since N is an (Ae, B)-bimodule, C∗(A, N) ∼= HomAe(B(A; A; A), N)
is a (differential graded) right B-module and its homology HH∗(A, N)
is a right B-module. Similarly C∗(A, N) ∼= N ⊗Ae B(A; A; A) and
HH∗(A, N) are two right B-modules. Let c be a[a1| . . . |an] ∈ Cn(A, A).
Let f ∈ Cp(A, N). By definition, c∩f := ±af([a1| . . . |ap])[ap+1| . . . |an].
Therefore for any b ∈ B,

(c ∩ f) · b = ±af([a1| . . . |ap])b[ap+1| . . . |an] =

± a(f · b)([a1| . . . |ap])[ap+1| . . . |an = c ∩ (f · b).

�

Remark 44. We will be only interested in the case N = A ⊗ A and
B = Ae. Here the A-bimodule structure on N is given by a ·(x⊗y) ·b =
ax ⊗ yb and is called the outer structure [15, (1.5.1)]. And the right
B-module on N is given by (x ⊗ y) · (a ⊗ b) = xa ⊗ by, x ⊗ y ∈ N ,
a⊗ b ∈ B and is called the inner structure.

Definition 45. ([15, Definition 3.2.3, (3.2.5), Remark 3.2.8] or sim-
ply [1, Definition 2.1]) An ungraded algebra A is Calabi-Yau of dimen-
sion d if

i) viewed as an A-bimodule over itself, A admits a finite resolution by
finite type projective A-bimodules, i. e. there exists an exact sequence
of Ae-projective finite type module of the form

0→ Pi → Pi−1 → · · · → P1 → P0 → A→ 0,

ii) for all k 6= d, HHk(A, A⊗A) = 0 and
iii) as (A, A)-bimodule, HHd(A, A ⊗ A) is isomorphic to A (Here

the (A, A)-bimodule on HH∗(A, A ⊗ A) is given by Property 43 and
Remark 44).

Proposition 46. (Stated without proof in [15, Remark 3.4.2]) Let A
be ungraded algebra. Let c ∈ HHd(A, A). Suppose that for every A-

bimodule N , c ∩ − : HHp(A, N)
∼=
→ HHd−p(A, N), a 7→ c ∩ a, is an

isomorphism. Then A satisfies conditions ii) and iii) of Definition 45.

Proof. Let N be a free (A, A)-bimodule. Then HH∗(A, N) = 0 if
∗ 6= 0. Therefore HHk(A, N) = 0 if k 6= d. Suppose moreover that
N is a (A, A ⊗ B)-bimodule. The quasi-isomorphism of complexes

C∗(A, N) ∼= N ⊗Ae B(A; A; A)
≃
→ N ⊗Ae A is a morphism of right

B-modules. By Property 43,

c ∩− : HHd(A, N)→ HH0(A, N) ∼= N ⊗Ae A

is an isomorphism of right B-modules.
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Let N be the (A, A)-bimodule A ⊗ A with the outer structure and

B = Ae (See Remark 44). Then N ⊗Ae A = (A ⊗ A) ⊗Ae A
∼=
→ A,

(x ⊗ y) ⊗Ae m 7→ ymx is an isomorphism whose inverse is the map
mapping a 7→ (1⊗ 1)⊗Ae a. A straightforward calculation shows that
theses isomorphisms are right Ae-linear. Therefore, we have proved
that HHd(A, A⊗ A) is isomorphic to A as right Ae-modules. �

Theorem 47. Let k be any commutative ring. Let G be a orientable
Poincaré duality group of dimension d. Then its group ring k[G] is a
Calabi-Yau algebra of dimension d.

When k is a field of characteristic 0 this theorem was proved by
Kontsevich [15, Corollary 6.1.4] and Lambre [22, Lemme 6.2].

Proof. By [3, Remark 2. p. 222], there exists a finite resolution P
≃
→ k

of k by finite type projective k[G]-left modules. Then X := k[G ×

Gop] ⊗k[G] P
≃
→ k[G] is a finite type resolution of k[G] by finite type

projective k[G]-bimodules.
In the proof of Theorem 42,we saw that for any k[G]-bimodule N ,

c∩− : HHp(k[G], N)
∼=
→ HHd−p(k[G], N), a 7→ c∩a, is an isomorphism.

Therefore, by Proposition 46, k[G] is a Calabi-Yau algebra of dimension
d. �

9. Appendix

The key of the proof of Proposition 30 is the relation

i{a,b} = (−1)|a|+1[[B, ia], ib] = [[ia, B], ib].

In this appendix, we recall that [[ia, B], ib] is the derived bracket of ia
and ib and we explain that this relation means that the morphism of
graded algebras

HH∗(A, A)→ End(HH∗(A, A)), a 7→ ia,

is a morphism of generalized Loday-Gerstenhaber algebras (Theorem 54)

Definition 48. [20, p. 1247] A generalized Loday-Gerstenhaber algebra
is a (not necessarily commutative) graded algebra A equipped with a
linear map {−,−} : Ai ⊗Aj → Ai+j+1 of degree 1 such that:
a) the bracket {−,−} gives A a structure of graded Leibniz algebra of
degree 1. This means that for each a, b and c ∈ A
{a, {b, c}} = {{a, b}, c}+ (−1)(|a|+1)(|b|+1){b, {a, c}}.

b) the product and the Leibniz bracket satisfy the following relation
called the Poisson relation:

{a, bc} = {a, b}c + (−1)(|a|+1)|b|b{a, c}.
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Proposition 49. Let A be a graded algebra equipped with an operator
d : An → An+1 such that d ◦ d = 0 and such that d is a derivation.
Then A equipped with the derived bracket defined by [20, (2.8)]

[a, b]d := (−1)|a|+1[da, b]

is a generalized Loday-Gerstenhaber algebra.

Proof. Since A is an associative graded algebra, the bracket [−,−] de-
fined by

[a, b] := ab− (−1)|a||b|ba,

is a Lie bracket. Since d is a derivation for the associative product
of A, d is a derivation for the Lie bracket [−,−]. Therefore by [20,
Proposition 2.1], the derived bracket [−,−]d satisfies the graded Jacobi
identity and d is a derivation for the derived bracket [−,−]d. Since
[−,−]d does not satisfy in general anticommutativity, [−,−]d is only
a Leibniz bracket in the sense of Loday [24], and not a Lie bracket in
general. The Lie bracket [−,−] satisfies the Poisson relation:

[a, bc] = [a, b]c + (−1)(|a|+1)|b|b[a, c].

Therefore since [a,−]d is the derivation (−1)|a|+1[da,−], the Leibniz
bracket [−,−]d also satisfies the Poisson relation [20, Proposition 2.2]:

[a, bc]d = [a, b]dc + (−1)(|a|+1)|b|b[a, c]d.

�

Remark 50. In Proposition 49, if instead, we define the bracket by

[a, b]d := ad(b)− (−1)(|a|+1)(|b|+1)bd(a)

then [−,−]d satisfies anti-commutativity and Jacobi: [−,−]d is a Lie
bracket 1 of degre +1. But this time, [−,−]d does not satisfy the
Poisson relation. Note that again d is a derivation for [−,−]d.

Proof. Let a ∈ Ax−1, b ∈ By−1 and c ∈ Cz−1 be three elements of A of
degres x− 1, y − 1 and z − 1. Then

[a, [b, c]d]d = ad(bdc)− (−1)zyad(cdb)

− (−1)xy+xzb(dc)(da) + (−1)xy+xz+yzc(db)(da),

[[a, b]d, c]d = a(db)(dc)− (−1)xyb(da)(dc)

+ (−1)zx+zycd(adb) + (−1)zx+zy+xycd(bda)

1We could not find this Lie bracket in the litterature. So this Lie algebra struc-
ture might be new.
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and

(−1)xy[b, [a, c]d]d = (−1)xybd(adc)− (−1)xy+xzbd(cda)

− (−1)yza(dc)(db) + (−1)yz+xzc(da)(db).

Since d is a derivation and d2 = 0, d(adb) = (da)(db). Therefore we
have the Jacobi identity:

[a, [b, c]d]d = [[a, b]d, c]d + (−1)xy[b, [a, c]d]d.

Since [da, b]d = (da)(db) and [a, db]d = −(−1)x(y+1)(db)(da),

d([a, b]d) = (da)(db)− (−1)xy(db)(da) = [da, b]d + (−1)x[a, db]d.

This means that d is a derivation for [−,−]d. �

Example 51. (interior derivation) Let A be an associative graded alge-
bra. Let τ ∈ A1 such that τ 2 = 0. Then d := [τ,−] is a derivation
of the associative product and d ◦ d = 0. Therefore, we can apply the
previous proposition. In this case, we denote the derived bracket [a, b]d
simply by [a, b]τ and [20, Example p. 1250]

[a, b]τ = (−1)|a|+1[[τ, a], b] = [[a, τ ], b].
Corollary 52. [20, Beginning of Section 2.4] Let E be a graded k-
module equipped with an operator B : En → En+1 such that B ◦B = 0.
Then End(E) equipped with the derived bracket [a, b]B = [[a, B], b] is a
generalized Loday-Gerstenhaber algebra.

Proof. Apply Proposition 49 and Example 51, to End(E) equipped
with the composition product. �

Theorem 53. (implicit in [20, p. 1269-70 pointed by Krasilshchik])
Let A be a Batalin-Vilkovisky algebra. The morphism of graded algebras
induced by left multiplication

Ψ : A→ End(A), a 7→ la

is an injective morphism of generalized Loday-Gerstenhaber algebras.

Proof. Since A is a graded module equipped with an operator ∆ : An →
An+1 such that ∆◦∆ = 0, by Corollary 52 applied to A and to B = −∆,
End(A) equipped with the derived bracket [f, g]−∆ = [[f,−∆], g] is a
generalized Loday-Gerstenhaber algebra. By Proposition 26,

l{a,b} = −[[la, ∆], lb] = [[la, B], lb]

Therefore Ψ is a morphism of generalized Loday-Gerstenhaber algebra
�
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Theorem 54. Let A be a differential graded algebra. Then
1) EndHH∗(A, A) equipped with the derived bracket

[a, b]B = [a, B], b]

is a generalized Loday-Gerstenhaber algebra.
2) The morphism of graded algebras induced by the action

Φ : HH∗(A, A)→ EndHH∗(A, A), a 7→ ia,

is a morphism of generalized Loday-Gerstenhaber algebra. In particu-
lar, its image Φ(HH∗(A, A)) is a Gerstenhaber algebra.

Proof. Since Connes boundary B : HH∗(A, A) → HH∗+1(A, A) satis-
fies B ◦B = 0, by Corollary 52, we obtain 1).

Since iab = ia ◦ ib (equation (29)) and i{a,b} = [[ia, B], ib] = [ia, ib]B,
Ψ is a morphism of generalized Gerstenhaber-Loday algebra.

Since HH∗(A, A) is a Gerstenhaber algebra, Φ(HH∗(A, A)) is also
a Gerstenhaber algebra. �

Remark 55. If A is a differential graded algebra satisfying the hypothe-
sis of Proposition 30, the morphism Φ : HH∗(A, A) →֒ EndHH∗(A, A)
of Theorem 54 is injective and can be identified with the morphism Ψ
of Theorem 53 for the Batalin-Vilkovisky algebra HH∗(A, A).
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