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A classical theorem of Siegel asserts that the set of S-integral points of an algebraic
curve C over a number field is finite unless C' has genus 0 and at most two points at
infinity. In this paper we give necessary and sufficient conditions for C' to have infinitely
many S-integral points.
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1. Introduction

Let C' C A™ be an affine algebraic curve defined over a number field K. By z1,..., 2,
we denote the coordinate functions on the affine space A™ and their restrictions to C,
so that K(C) = K(x1,...,2Zp).

By the points at infinity of C we mean the infinite places of the field K (C) (that
is, places where at least one of the coordinate functions z1,...,x, admits a pole).
We denote the set of points at infinity by C.. By the genus g(C) we mean the
genus of the field K(C) of K-rational functions on C (or, equivalently, the genus of
any non-singular projective model of C).
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Let S be a finite set of places of K containing the set S of infinite places, and
let Og = Ok g be the set of S-integers of K. We denote by C(Og) the set of points
on C' with coordinates in Og:

C(0s) = C(K)NA™(Og).

The classical theorem of Siegel [[f] asserts that the set C(Os) is finite if g(C) > 0 or
if C has at least 3 points at infinity (see also [, Chapter 8] and [g, Chapter D.9]).
However, this set can be finite even if g(C) = 0 and |Coo| < 2. The purpose of this
note is to give a reasonable necessary and sufficient condition for infinitude of the
set C(Og).

Theorem 1.1. In the set-up above, the following two conditions are equivalent.

(1) The set C(Og) is infinite.
(2) The curve C is of genus 0, the set C(Og) contains a non-singular point and
the set Css has one of the following properties.
(a) We have |C| = 1.
(b) We have |Cwo| = 2, both the points at infinity are defined over K and |S| > 2.
(¢) We have |Cs| = 2, the points at infinity are conjugate over K, and at least
one v € S splits in the field of definition of the points at infinity (which is
quadratic over K ).

In the important special case, when S = S, is the set of infinite places and
Og = O is the ring of integers of the field K, we obtain the following statement.

Theorem 1.2. The following two conditions are equivalent.

(1) The set C(O) is infinite.
(2) The curve C is of genus 0, the set C(O) contains a non-singular point and the
set Coo has one of the following properties.
(a) We have |Cx| = 1.
(b) We have |Coo| =2, both points at infinity are defined over K and K is
neither Q nor an imaginary quadratic field.
(¢) We have |Co| = 2, the points at infinity are conjugate over K, and the field
of definition of the points at infinity is not a CM-extension of K.

Recall that a quadratic extension of number fields L/ K is called a CM-extension
if the field K is totally real and L is totally imaginary.

Theorem is an immediate consequence of Theorem [L1. Tndeed, |So| = 1 if
and only if K is either Q or an imaginary quadratic field. Also, if L is a quadratic
extension of K such that no infinite place of K splits in L, then every infinite
place of K is real and becomes complex in L, which exactly means that L/K is a
CM-extension.

When C is a line or a conic in A2, Theorem @ was proved by Beukers [ﬂ] For
the case K = Q and Og = Z see [, Theorem A], [ Theorem 5.2] and [{]. In [{]
the problem is also approached from the computational viewpoint.
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In [E] Silverman writes: Little of the material in this note will be new to the
“experts”, but we hope that an elementary exposition will be a useful addition to the
literature. We believe that the same statement is applicable to the present article.
While our Theorem DI will likely be unsurprising to the “experts”, it does not seem
to have ever appeared before in this generality, and we believe that having it in the
mathematical literature will be quite useful.

A sort of generalization of Theorem E to complements of hyperplanes on P™
has recently been obtained by Levin [[], Theorem 3].

2. Proof of Theorem [L.1

We start from the implication fil=f If C(Og) is infinite then the theorem of
Siegel implies that g(C) =0 and |Cs| < 2. Also, since there can be only finitely
many singular points, there exist infinitely many non-singular points in C(Og).
We have to show that one of the properties (f), () or () is satisfied. If |Cso| = 1
then we have (f]). Now assume that |Cs| = 2, and write Css = {4, B}. Two cases
are possible: either both A and B are defined over K, or they are conjugate over K.

Assume that A and B are defined over K. Since g(C) = 0, there exists
u € K(C) such that (u) = A — B (where (u) is the principal divisor of ). Both u
and ! are integral over the ring K[x] = K[z1,...,z,]. Hence there exists a posi-
tive integer N such that both Nu and Nu~! are integral over Og|x].

Now let P be a non-singular point from C(Og). Since it is non-singular, it
corresponds to a single place of K (C'). Hence the value u(P) is well-defined, and both
Nu(P) and Nu(P)~! are integral over Og[x(P)] = Os. But the ring Og is integrally
closed, whence Nu(P), Nu(P)™! € Og. It follows that we have only finitely many
possibilities for the fractional ideal (u(P)) in the ring Og. In other words, we have
u(P) = an, where o belongs to a finite set, and 7 is an S-unit. But if |S| = 1 then
the group of S-units is finite, which leaves only finitely many possibilities for u(P),
a contradiction. Hence |S| > 2, and we we have Property (H). This completes the
proof in the case when both A and B are defined over K.

Finally, assume that A and B are conjugate over K. Then K(A) = K(B) =L
is a quadratic extension of K. We denote by T the set of places of the field L,
extending the places from .S, and by Or = O, 1 the ring of T-integers of the field L.
We select u as above, but now w € L(C). Multiplying u by a suitable integer, we
may assume that it is integral over the ring Og[x]. It follows that u(P) € Or for
every non-singular P € C(Or).

Let 7 be the non-trivial automorphism of L/K. Then 7 permutes A and B,
which implies u” = Au~! for some A\ € L*.

We want to show that we have Property (ﬂ) Thus, let us assume that nov € §
splits in L and derive a contradiction.

Let P € C(K) be anon-singular K-rational point. Fix v € S. By the assumption,
it has a unique extension to L; denote it by v as well. Then |a"|, = ||, for any
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a € L. We apply this with a = u(P). Since u™ = Au~! and P™ = P (because P is
defined over K), we have u(P)™ = Au(P)~!, and

[u(P)|, = [u(P)"], = Al [u(P)]; ",

which implies that [u(P)|y, = v/]\]s-

Thus, |u(P)l, is bounded for any v € T. Since u(P) is a T-integer, this leaves
only finitely many possibilities for u(P), a contradiction. This completes the proof
of the implication fl=f.

Now let us prove the implication Eé. Thus, assume that g(C) =0,
that C(Og) has a non-singular point (denoted by P) and that Cs has one of
the three properties above. Let us show that C(Og) is infinite.

Assume (H), and write Cs, = {A}. Since g(C) = 0, there exists u € K(C) with
(u) = P — A. This u generates the field K(C), and, since the coordinate functions
Z1,-..,Ty have no poles other than A, they all can be expressed as polynomials
in wu:

z; = Fi(u) (i=1,...,n),
wherd]] F;(U) € K[U]. Since u(P) = 0, we have

Let N be a positive integer such that NF;(U) € Og[U] for i =1,...,n. Then for
any 6 € Og, satisfying # =0 mod N, we have the congruence

NF;(0) = NF;(0)=0 mod N
in the ring Og. Hence F;(0) € Og, and (F1(0),..., F,(0)) is an S-integral point
on C. Since there are infinitely many choices of 6, the set C(Og) is infinite.

Now assume (M), and write Cs, = {A, B}. Then there exists u € K(C) with
) = A — B, and we normalize it to have u(P) = 1. This u again generates the field
(

(u
K(C), and, since the coordinate functions 1, ...,x, have no poles other than A

and B, they all can be expressed as Laurent polynomials in w:
x; = F;(u) (i=1,...,n), (2.1)
where F;(U) € K[U,U~1]. Since u(P) = 1, we have
F;(1) = z;(P) € Og (i=1,...,n).

Let N be a positive integer such that NF;(U) € Og[U, U~ fori =1,...,n. Let Us
be the group of S-units of the field K. This group is infinite because |S| > 2. Hence
the kernel of the mod N reduction map Us — (Os/NOg)* is infinite as well. In

IWe use the small letter u to denote a rational function, and the capital U for an independent
variable.
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other words, there exist infinitely many S-units § € Us such that 6 =1 mod N.
For any such 6 we have

NF;(#)=NF;(1)=0 mod N.

Hence F;(0) € Og, and (Fi(0),...,F,(0)) is an S-integral point on C. We again
proved that the set C'(Og) is infinite.

Finally, in case (f), we put L = K(A)= K(B) and define u € L(C) by
(u) = A — B and u(P) = 1. We again have (R.1]), but now the Laurent polynomials
F;(U) have coefficients in L.

Let 7 be the non-trivial automorphism of L /K. We claim that v = 1. Indeed,
since 7 permutes A and B, we have v = \u~! with some A € L*. In particular,
w(P)™ = Au(P)~t. Since u(P) = 1, we have A = 1.

Further, since z; € K(C), we have ] = x;, whence

Fi(u) = Fi(u)” = Ff (u) = F{ (u™").

This proves the Laurent polynomials F; are “skew-symmetric”, that is,
FT(U) = F(UY).

Let T be the set of places of L extending the places from S, and let O and Urp
be the ring of T-integers and the group of T-units of L, respectively. Since at least
one place from S splits in L, we have |T'| > |S|. Hence the rank of Uy is strictly
bigger than that of Us. It follows that the norm map N7,k : Ur — Us has infinite
kernel. We denote this kernel by U2. For any 6 € U we have 6 = §~'. Hence, for
such a 6 we have

Fy(0)" = F[(07) = F; (07)7") = Fi(0),
that is, F;(0) € K.

Now we complete the proof as in the previous case. Let N be a positive inte-
ger such that NF;(U) € Or[U,U~1] for i = 1,...,n. Since the group U is infinite,
so is the kernel of the mod N reduction map U — (Or/NOr)*; that is, in-
finitely many 6 € UY satisfy # =1 mod N. For any such 6 we have F;() € Og,

and (F1(0),...,F,(0)) is an integral point on C. Hence the set C(Og) is infinite.
This proves Theorem m
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