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Properties of periodic solutions near their oscillation threshold for

a class of hyperbolic partial differential equations with localized

nonlinearity

B. Ricaud

December 6, 2009

Abstract

The periodic solutions of a type of nonlinear hyperbolic partial differential equations with a

localized nonlinearity are investigated. For instance, these equations are known to describe several

acoustical systems with fluid-structure interaction. It also encompasses particular types of delay

differential equations. These systems undergo a bifurcation with the appearance of a small amplitude

periodic regime. Assuming a certain regularity of the oscillating solution, several of its properties

around the bifurcation are given: bifurcation point, dependence of both the amplitude and period

with respect to the bifurcation parameter, and law of decrease of the Fourier series components. All

the properties of the standard Hopf bifurcation in the non-hyperbolic case are retrieved. In addition,

this study is based on a Fourier domain analysis and the harmonic balance method has been extended

to the class of infinite dimensional problems hereby considered. Estimates on the errors made if the

Fourier series is truncated are provided.

1 Introduction

1.1 Physical motivations

The starting point of the present work is due to physical motivations. The first objective is to justify
a thirty-year-old conjecture assumed in order to obtain information on the bifurcations encountered in
woodwind musical instruments. It is now established

FR,KC
[1, 2] that woodwind instruments are nonlinear

systems having a transition between a steady state and an oscillating regime, for a certain value of the
pressure in the mouth of the musician. These instruments possess a fluid-structure interaction which
implies the presence of partial differential equation (PDE) along with a nonlinearity. Analytical calcu-
lations have been done for small oscillations around the bifurcation, giving valuable information on the
oscillation with respect to the parameters of the instrument. But these calculations are possible only if a
conjecture, first presented by Worman

W
[3], is assumed. Suppose the instrument emits a periodic sound of

small amplitude, and the acoustic pressure p0 inside the mouthpiece is oscillating with period τ . Let pa

be the atmospheric pressure (or any other suitable pressure scale) and define the dimensionless quantity
p = p0/pa. Let P (ωq) be the Fourier component of p associated with the angular frequency ωq = 2qπ/τ .
Worman’s conjecture states:

|P (ωq)| ≤ |P (ω1)||q|, for all q ∈ Z∗,

where, since it is of small amplitude, |P (ω1)| < 1. This key hypothesis is not obvious and arguments
to justify it have been given in the theoretical work of Grand et al

GGL
[4]. However, the Fourier series

has been truncated in the calculations of this latter work and the control of the remaining tail was
not investigated. The first aim of the present study is to show that the weaker assumption of a twice
continuously differentiable solution for the model of woodwind instruments implies Worman’s conjecture.
This former regularity assumption, allowing to control the tail of the Fourier series, is quite natural from
a physical point of view.

In addition to this first motivation, the hypotheses on the equations are weak enough to hold for
a broader class of physical systems. The present approach is especially suitable for vibrating systems
described by equations in the frequency domain with the formalism of transfer functions. This study
proposes an extension of the harmonic balance method, widespread in engineering

MC,AL
[5, 6], and of the
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underlying Galerkin procedure, to infinite dimensional systems governed by partial differential equations
with a localized nonlinearity. This generalization holds for the case of small amplitude solutions which
are twice continuously differentiable with respect to time. The present study justifies in a mathematical
way the frequency domain expression, the truncation of the Fourier series, and the analysis around the
bifurcation threshold.

1.2 Mathematical framework

Properties of the solutions of a nonlinear system around a bifurcation point can be obtained by general
techniques and theorems such as the reduction to the center manifold and normal forms

HI
[9],

DFKM
[10] or

the Hopf bifurcation theorem
CR
[11]. Nevertheless, in the case of PDEs involving the wave equation,

which makes them hyperbolic, the hypotheses required for the use of these powerful theorems may
not be satisfied. In such systems, the norm of the resolvent associated to the linearized operator in a
neighbourhood of a bifurcation may not decrease when the spectral parameter goes to infinity. This
is the case for woodwind musical instruments. The present study shows that although the hypotheses
of the Hopf theorem are not satisfied, several of the results given by this theorem can be retrieved,
provided the periodic solution is of small amplitude and twice continuously differentiable. The existence
of such a solution is an hypothesis of the present work. Notice however that several studies show that
nonlinear systems with PDEs possess such regular solutions, for example the case of the wave equation
with nonlinear terms and damping, see e.g.

GS,CLT,Co
[12, 13, 14].

After having settled the hypotheses satisfied by the systems under study, a correspondence between
expressions of the model in the time and the frequency domain is established in lemma

lemmetflemmetf
3.1. Then theo-

rems
ThbifThbif
4.1 gives required conditions for an oscillation to appear and theorems

ThbifThbif
4.1 and

ThP1ThP1
6.1, with corollary

corolomegacorolomega
6.2

give the dependence of both the Fourier harmonics and the frequency on the bifurcation parameter, near
its birth point. As expected, it is similar to the finite dimensional case and what is given by the finite
dimensional Hopf bifurcation theorem. In addition, this study gives also a valuable estimation of the law
of decrease of the harmonics of the solution with respect to the multiple of the fundamental frequency in
theorem

Th1Th1
5.1. This justifies the process of truncation used in the harmonic balance method and gives an

error term on it. The last section comes back to the physical motivations and is devoted to an application
in the field of musical acoustics. It introduces the equations modeling a reed woodwind instrument and
shows how the mathematical results can be applied to this example.

2 The system
system

Let t ∈ T ⊂ R denote the time and X ⊂ Rn the space of configurations, for n ∈ N. Let X = L2(T ×X)
be the separable Hilbert space of square integrable real-valued functions on the domain T × X . Only
time periodic solutions are investigated and T ×X is supposed to be a compact domain of Rn+1. The
nonlinearity takes place at a particular location x0 ∈ X in space and the infinite dimensional dynamical
system under study is described formally by

Ap = δ(x − x0)BG(γ, p), (1) eqdep

where p ∈ X is the state of the system, the real number γ is to be called the bifurcation parameter, A
is a linear partial differential operator. The right hand side of (

eqdepeqdep
1) models the localized nonlinearity with

G being a nonlinear function of p, B a linear operator acting on G and the symbol δ being the Dirac
distribution. As a consequence, (

eqdepeqdep
1) must be understood in the distribution sense. In addition, since T×X

is compact, some linear boundary conditions are associated to (
eqdepeqdep
1). In a woodwind musical instrument,

for instance a clarinet, the function p represents the air pressure inside the bore (resonator) and Ap is
the wave equation (which may contain dissipative terms) in this domain of finite length. The position
x0 is the top of the instrument, where the tip of the reed is located. This flexible part oscillates when
the musician plays and influence the air flow entering the instrument. The parameter γ is proportional
to the pressure inside the mouth. The function G is the air flow through the clarinet, it depends in a
nonlinear manner on the pressure difference between the player’s mouth (γ) and the resonator (p). Here,
B is the time derivative operator. It is necessary to blow hard enough in order to obtain a sound, in other
words the dynamical system encounters a bifurcation for some particular value of γ. It is important to
understand how the oscillating frequency of the sound depends on the parameters of the instrument and
the instrumentalist. Form example, obtaining this frequency will help understand how a beginner should
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act to avoid a high frequency squealing oscillation. Since A is a differential operator one can always find a
solution p, well defined as a distribution (see e.g. Schwartz

Sch
[15] section VII-10 and the examples therein).

Let p̃ be the Green function (distribution), solution of Ap̃ = δ(x − ξ)δ(t) and the boundary conditions.
Thus p is given by the convolution p = p̃ ∗ δ(x − x0)BG(γ, p). Let p0 ∈ L2(T ) be the value of p at x0.
Let us assume that B and G are decoupled from the space variable i.e. they are such that:

∫

X

δ(x− x0)BG(γ, p)dx = BG(γ, p0).

It is the case for the clarinet where the air flow G at x0 depends only on the pressure in the player’s
mouth (γ), the internal pressure p at x0 and on the size of the opening at this point. Let us further
assume that A and G possess the properties allowing to write:

p(x, t) =

∫

X×T

p̃(x, t− τ ; ξ)δ(ξ − x0) BG(γ, p)|ξ,τ dξdτ

=

∫

T

p̃(x, t− τ ;x0) BG(γ, p0)|τ dτ. (2)

As a consequence of the above equation, there exists an operator Z̃ : L2(T ) → X such that:

p = Z̃G(γ, p0). (3) eqPZG

Notice that the action of Z̃ implies a convolution with respect to time, which becomes a multiplication
by Fourier transform. Expressing (

eqPZGeqPZG
3) at x = x0, one can introduce the operator Z = Z̃|x0

, where
Z : L2(T ) → L2(T ), and the study is hence reduced to the investigation of the oscillating solutions
belonging to L2(T ) of:

p0 = ZG(γ, p0). (4) eqreel

Equation (
eqdepeqdep
1) is a formal expression whereas (

eqreeleqreel
4) is rigorously defined in the following and is the starting

point of the study. The woodwind instruments have been modelled by physicists in the framework of
control theory where the equations are written in term of transfer functions. These latter quantities are
the Laplace transform of some differential equations, and differential operators become multiplication
operators under this transformation. The Fourier transform of the operator Z in (

eqreeleqreel
4) is a multiplicative

operator and (
eqreeleqreel
4) follows the control theory formalism. Thus, the present study is oriented toward con-

trol theory, however, with appropiate assumptions, it also applies to the usual description with partial
differential equations.

The nonlinear vector valued function G : (R × L2(T )) → L2(T ) has the particular shape:

G(γ, p0) = Lp0 +

∞∑

n=2

Rn(γ, p0), (5) eqdep2

where the linear operator L depends on γ and each Rn corresponds to a monomial of degree n in p0.
More precisely, for each n ≥ 2, let Zn,1, Zn,2, · · · Zn,n be bounded linear operators from L2(T ) to itself.
Each operator may depend on γ. It is assumed that the nonlinear terms can be written as

Rn(γ, p0) = (Zn,1p0)(Zn,2p0) · · · (Zn,np0). (6)

This expression of the nonlinearity allows to cover the case of woodwind musical instruments as it will
be shown in section

woodwindwoodwind
7 as well as different types of delay differential equations.

Remark 2.1. Let some dynamical system be described by the standard notation:

dp0

dt
= L2p0 + g(γ, p0) (7) eqstd

where L2 is the linear part and g the nonlinear mapping. See
GH
[20] for examples of assumptions on

theses objects,
HI
[9] for the infinite dimensional case, or

CR
[11] for the case of the Hopf bifurcation. The

connection with this study is made by writing formally Z−1(1−ZL) = L2 − d/dt. By Fourier transform
the time derivative operator becomes the product by some complex number iω, ω ∈ R. Looking for a
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pure imaginary eigenvalue of L2 is the same problem as searching for a zero eigenvalue of Z−1(1 − ZL).
In order to prove the existence of a Hopf bifurcation, the norm of the resolvent (L2 ± iω)−1 must be
bounded by some constant/|ω| when the spectral parameter ±iω tends to complex infinity (see

HI
[9]), a

property which does not arise in hyperbolic PDEs. Here the inverse of Z−1(1 − ZL) is only required to
be bounded for each γ in a neighborhood of the bifurcation point, except at this critical point. However,
this decrease of the norm of the resolvent is replaced here by the assumption of a twice continuously
differentiable periodic solution.

Let L∞(T ) be the space of bounded functions on T and let Bε ⊂ L∞(T ) be the ball of radius ε > 0
centered at zero. Let C2(T ) be the set of functions twice continuously differentiable with respect to t ∈ T
and define

Λ = Bε ∩ C2(T ).

The solution of (
eqreeleqreel
4) under investigation satisfies the following hypothesis:

H1 For all ε ∈ (0, 1) there exists a non-empty, open, simply connected set Ω1 ⊂ R, where for all γ ∈ Ω1

the system has a unique non trivial real-valued periodic solution belonging to Λ, continuous with
respect to γ. Its period will be denoted by τ = τ(γ). There exists a γ0 ∈ R, with γ0 ∈ Ω the closure
of Ω1, such that the periodic solution tends to zero when γ tends to γ0. The point γ0 will be called
the critical point or the bifurcation point.

As said in the introduction, and stated in H1, the regularity of the solution is an hypothesis. Nev-
ertheless, several publications have shown regularity properties of the solutions of nonlinear hyperbolic
PDEs. For instance

GS
[12] shows that a twice continuously differentiable solution with respect to time exists

for a model of the wave equation with damping and source term, this solution being a distribution with
respect to the space variable. In

CLT
[13], for a slightly different model, the solution is twice continuously

differentiable with respect to time and, for all time fixed in a bounded interval, it belongs to a Sobolev
space. The periodic solutions of the nonlinear wave equation are even more regular for some class of
nonlinear terms as shown in

Co
[14] and references therein. To the knowledge of the author, no such results

have been settled in the case of a nonlinear function localized at one point in space. However, the model
described by (

eqdepeqdep
1), where A represents the wave equation in a tube with damping, has been investigated

theoretically
SKVG,RGKSV
[16, 17] and numerically

GKN,CV
[18, 19] by physicists, giving results compatible with this regularity

hypothesis, and motivating the present approach.
Let us introduce the notation

Jγ = Z−1(1 − ZL),

and assume:

H2 1) Jγ is a closed operator acting in L2(T ). It is diagonalizable and its eigenvectors consist of the
vectors of the Fourier basis of L2(T ).

2) Let Qe, Q−e be the orthogonal projections associated to the vectors ψe, ψ−e, respectively, of
the Fourier basis. Jγ is such that

QeJγQe = βe(γ)Qe, Q−eJγQ−e = β−e(γ)Q−e

where βe(γ), β−e(γ) are two complex conjugate eigenvalues of Jγ such that βe(γ0) = 0. More-
over, for all γ ∈ Ω, the operator QJγQ, where Q = (1 − (Qe + Q−e)), possesses a bounded
inverse.

On the nonlinear part, the hypotheses are:

H3 For all γ ∈ Ω and n,m ∈ N, n ≥ 2, m ∈ [1, n], Zn,m(γ) : L2(T ) → L2(T ) is a bounded linear
operator. Moreover, as for Jγ , the Fourier basis is its eigenbasis. For all n ≥ 2, γ ∈ Ω and p ∈ Λ,
by the Hölder inequality, the quantity Rn(γ, p0) belongs to L2(T ), since the {Zn,m} are bounded
and ‖p0‖∞ ≤ ε, where ‖ · ‖∞ denotes the norm associated to L∞(T ). Eventually, it is supposed
that for all γ ∈ Ω and p0 ∈ Λ, the series of nonlinear terms is convergent :

lim
M→∞

M∑

n=2

Rn(γ, p0) = R(γ, p0) ∈ L2(T ).
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Remark 2.2. If for all γ ∈ Ω, G is an analytic function in its second variable, then it satisfies the above
hypothesis: all the Zn,m are identity operators except when m = 1, where Zn,1 is the term of the Taylor
expansion Zn,1 = G(n)(γ, 0)/n!, with G(n) denoting the nth derivative.

Since the solution is periodic in time, it is natural to work in the Fourier space. Let Sτ be the circle of
perimeter τ , then T = Sτ . Let us define ℓ2, the Hilbert space of sequences which are square summable.
Let F denotes the Fourier transform operator from L2(T ) to ℓ2. The Fourier transform of p0 will be
denoted p̂0 = Fp0 ∈ ℓ2 or, using the physicists’s convention, by a capital letter P = p̂0. For all q ∈ Z

and ωq = 2πq
τ , the Fourier transform is defined by :

Pq = p̂(ωq) = (Fp0)(ωq) =
1

τ

∫

Sτ

p0(t)e
−iωqtdt,

and the inverse transform at time t ∈ Sτ is:

(F−1P )(t) =
∑

q∈Z

Pqe
iωqt.

Using integration by part in the expression of the Fourier transform, the hypothesis of twice continuously
differentiable solutions of H1 implies the existence of a0 > 0 such that:

∀q 6= 0, |Pq| ≤
a0

|q|2 . (8) Pdecr

Moreover, from H1 and the definition of the Fourier transform, the small amplitude condition gives for
all γ ∈ Ω0:

sup
q∈Z

|Pq| ≤ ε. (9) boundPq1

3 Expression in the frequency domain

Many physical systems having an oscillating behavior, for instance in mechanics, acoustics or electrical
engineering are described by relations taking place in the frequency domain. This is the formalism of
transfer functions. Moreover, investigating oscillations turns out to be extremely efficient when using a
frequency domain approach. In finite dimension, the harmonic balance method or the describing function
method are such techniques. In infinite dimension, these techniques have not been proved to hold. This
section, with lemma

lemmetflemmetf
3.1, shows how the infinite dimensional system under study can be written in the

frequency domain. It is the first step toward its analysis using frequency domain techniques.
The key point is to express the nonlinear relationship in the Fourier basis. It will become a combination

of convolutions. Let ĝ, ĥ ∈ ℓ2 be such that their harmonics decrease like in (
PdecrPdecr
8), in consequence they belong

to ℓ1, the space of summable sequences. Thus, the convolution ĝ ∗ ĥ defined at q ∈ Z by :

(ĝ ∗ ĥ)(q) =
∑

n∈Z

ĥq−nĝn,

is an ℓ1 function by Young’s inequality, see e.g.
RS2
[21, Sec. IX.4]. For each Zn,m defined in H3, let us

introduce the notation:
Ẑn,m = FZn,mF−1.

From H3, since each Zn,m is diagonal in the Fourier domain, one has for the value of P associated to the
vector ψq of the Fourier basis:

(FZn,mp)(q) = Ẑn,m(q)Pq

where Ẑn,m(q) is a complex number.
More generally, let p, u1, u2, · · · , uN−1 be N ≥ 2 real periodic functions depending on time t ∈ Sτ .

Let these functions describe the state of some physical system under study. Let P,U (1), U (2), · · · , U (N−1)

be the Fourier transforms of p, u1, u2, · · · , uN−1 respectively. Suppose they are related together through
N − 1 linear relations, in the frequency domain, involving transfer functions:

U (m) = ẐmP, (10) UZP1
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where the {Ẑm} are bounded operators. All may depend on the bifurcation parameter. Let us suppose
there is also one nonlinear relation, often expressed in the time domain:

N (γ, p, u1, u2, · · · , uN−1) = 0. (11) nonlinex

If this relationship involves polynomial terms between the variables, such as p2, pu1 or u2
1u2, the following

lemma can be used to express this relation in the frequency domain, with convolution products. For
example, a cubic term involving three functions p, u1 = Z1p, u2 = Z2p, with p satisfying H1 and Z1, Z2

satisfying H3 would give :
p̂u1u2 = p̂ ∗ û1 ∗ û2 = p̂ ∗ (Ẑ1p̂) ∗ (Ẑ2p̂).

And for all q ∈ Z:
{
p̂ ∗ (Ẑ1p̂) ∗ (Ẑ2p̂)

}
(ωq) =

∑

k1∈Z

∑

k2∈Z

Ẑ1(ωk1
− ωk2

)Ẑ2(ωk2
)Pq−k1

Pk1−k2
Pk2

.

The whole relation (
nonlinexnonlinex
11) can be stated under a set of harmonic balance equations, in the frequency domain,

given by (
eqfreqeqfreq
13).

lemmetf Lemma 3.1. Suppose p0 ∈ Λ and P denotes its Fourier transform. Under the hypotheses H2, H3, for
all γ ∈ Ω, all n ∈ N, n ≥ 2,

FRn(γ, p0) = S(gn, n, P ),

where S(gn, n, P ) ∈ ℓ1. For all q ∈ Z the elements of S(gn, n, P ) are defined by :

Sq(gn, n, P ) =
∑

k1∈Z

∑

k2∈Z

· · ·
∑

kn−1∈Z

gn(q, k1, · · · , kn−1)Pq−k1
Pk1−k2

· · ·Pkn−1
, (12) defS

where for all n, gn is a complex-valued function of n variables depending on combinations of Zn,m:

gn(q, k1, · · · , kn−1) = Ẑn,1(q − k1)Ẑn,2(k1 − k2) · · · Ẑn,n(kn−1).

Moreover, the infinite sum gives:

F
∞∑

n=2

Rn(γ, p0) =

∞∑

n=2

S(gn, n, P ) ∈ ℓ2.

In consequence, solving the system described by (
eqreeleqreel
4) is equivalent to solving:

ĴγP =

∞∑

n=2

S(gn, n, P ). (13) eqfreq

Notice that although not specified, the convolution S depends on γ.

Proof of lemma
lemmetflemmetf
3.1. Let G(1), G(2), · · · , G(n+1) ∈ ℓ1, n ∈ N, n ≥ 1, then the n-product of convolution

G(1) ∗ G(2) ∗ · · · ∗ G(n+1) is an ℓ1 function, by Young inequality. Suppose g, h ∈ L2(T ) such that their
respective Fourier transform G,H are ℓ1 functions. Then Fubini’s theorem can be used to get:

∑

q∈Z

∑

k∈Z

Hq−kGke
iωqt =

∑

q∈Z

∑

k∈Z

Hq−ke
iωq−ktGke

iωkt =
∑

k∈Z

∑

q∈Z

Hq−ke
iωq−ktGke

iωkt

=
∑

k∈Z

h(t)Gke
iωkt = h(t)g(t). (14) mulconv

Notice that the functions h, g are continuous by the Riemann-Lebesgue lemma. Reciprocally, for h,
g ∈ L2(T ) twice continuously differentiable, H and G are ℓ1 functions (see explanation of (

PdecrPdecr
8)) and this

equality holds. In consequence, Eq. (
mulconvmulconv
14) shows the correspondence between multiplication in the time

domain and convolution in the frequency domain of a finite number of products, in the case of twice
continuously differentiable functions on the compact domain T . Since H3 holds, all the {Zn,m} are
bounded and for all n ≥ 2, gn is bounded. The bound may depend on n. Using Hölder inequality, one
gets:

‖Rn(γ, p)‖L2(T ) ≤ ‖Zn,1 · · ·Zn,n‖ · (‖p‖∞)n−1 · ‖p‖L2(T ),

6



which shows that Rn(γ, p) belongs to L2(T ). The symbol ‖ · ‖ denotes the operator norm. Suppose
S(1, n, P ) ∈ ℓ1, then

S(1, n+ 1, P ) = P ∗ S(1, n, P ) ∈ ℓ1

and since S(1, 2, P ) ∈ ℓ1, by induction, for all n ≥ 2, S(1, n, P ) ∈ ℓ1. Then, one has:

‖S(gn, n, P )‖ℓ1 ≤ sup |gn| · ‖S(1, n, P )‖ℓ1.

In consequence, (
mulconvmulconv
14) shows that for n ≥ 2 fixed, S(gn, n, P ) is the Fourier transform of Rn(γ, p). Let us

study the limit n→ ∞. Since the Fourier transform is bounded, and even unitary one has

S(P ) = FR(γ, p) ∈ ℓ2,

and the quantity: ∥∥∥∥∥S(P ) −
M∑

n=2

S(gn, n, P )

∥∥∥∥∥
ℓ2

≤
∥∥∥∥∥R(γ, p) −

M∑

n=2

Rn(γ, p)

∥∥∥∥∥
L2(T )

tends to zero as M tends to infinity from H3.

4 Preliminary results and properties at threshold
threshold

This section demonstrates how the method based on the frequency domain approach can be used to
investigate a bifurcation in a nonlinear system. It shows how to handle the hypothesis and the Fourier
harmonics in order to control infinite sums and convolutions. The first result stated in the following
theorem concerns the determination of the birth point of the oscillation and the need of a zero eigenvalue
for the linear part. Notice that it could have been directly given by means of the Hartman-Grobman
theorem, however, it was not the case so as to demonstrate how the frequency approach works. The
second result of the theorem gives an estimation of the harmonics and shows the importance of the first
harmonic. This serves as an introduction to Th.

Th1Th1
5.1 of section

decreasedecrease
5 which will go further in this estimation.

Finally, this section settles many important intermediate results which will be used in the other parts of
the study.

Thbif Theorem 4.1. Suppose H1, H2 and H3 hold. Then the bifurcation point γ0 where the oscillating
solution starts and the frequency ωe of oscillation at this point are given by the characteristic equation:

βe(γ0) = 0.

Moreover, for all γ ∈ Ω where ε is small enough, |Pe| = ε and there exists c0 > 0 such that for all
q ∈ Z\ {e,−e} , |Pq| ≤ c0ε

2.

Remark 4.2. The quantities e, ε and γ are dependent of each other and this dependence will be made
explicit in the section

stablestable
6.

Remark 4.3. In the case of the Hopf bifurcation, the condition of two purely imaginary eigenvalues of
the Jacobian operator at the bifurcation determines γ0 and the oscillating frequency ωe at this point. In
the present case, the result is equivalent with the condition on two complex conjugate eigenvalues of Jγ

to be zero.

Before stating the proof of this theorem, several lemmas giving bounds on the different convolution
products encountered are presented. Let us start by showing a property of the convolution which will be
crucial in the following.

lemmeS1 Lemma 4.4. Let a1, a2 be positive constants, λ ∈ (0, 1) and θ1, θ2, α1, α2 be strictly positive parameters.
Let f, g : Z → C be two bounded decreasing functions such that

∀q ∈ Z, |f(q)| ≤ λθ1 , |g(q)| ≤ λθ2 ,

and ∀q ∈ Z∗,

|f(q)| ≤ a1

|q|1+α1

, |g(q)| ≤ a2

|q|1+α2

.

Then,

7



i) there exists a positive continuous function c1 : (0, 1] → R+ such that

∀q ∈ Z, |(f ∗ g)(q)| ≤ min{a2c1(α2) · λr1 , a1c1(α1) · λr2},

with

r1 = θ1 +
θ2
2

α2

1 + α2
, r2 = θ2 +

θ1
2

α1

1 + α1
,

ii) there exists a small α > 0 and c2 = c2(α, α1, α2) > 0 such that for λ small enough, ∀q ∈ Z∗

|(f ∗ g)(q)| ≤ c2 · a1λ
θ1αa2λ

θ2α · 1

|q|r ,

with r = 1+α1+α2

2 − α(2 + α1 + α2).

As a consequence, for any number M ≥ 2 of functions f1, f2 · · · , fM satisfying the hypothesis for
some {θi}i and {αi}i, i ∈ [1,M ], the multiple convolution f1 ∗ f2 ∗ · · · ∗ fM is a bounded function with
bound depending on a positive power of λ.

Proof. Let us introduce the notation fq = f(q) for f : Z → C. Let f, g be two functions satisfying the
hypothesis. Let σ1, σ2 ∈ (0, 1] such that (1 + α1)(1 − σ1) + (1 + α2)(1 − σ2) > 1. For all q ∈ Z,

|
∑

k∈Z

fq−kgk| ≤ 2λ(θ1+θ2) + sup
k∈Z∗,k 6=q

|fq−k|σ1 |gk|σ2

∑

k∈Z∗,k 6=q

|fq−k|1−σ1 |gk|1−σ2

≤ 2λ(θ1+θ2) + λθ1σ1+θ2σ2a1−σ1

1 a1−σ2

2

∑

k∈Z∗,k 6=q

1

|q − k|(1+α1)(1−σ1)|k|(1+α2)(1−σ2)

≤ a1−σ1

1 a1−σ2

2 c(σ1, σ2, α1, α2)λ
θ1σ1+θ2σ2 ,

where c(σ1, σ2, α1, α2) > 0 tends to infinity when σ1, σ2, α1, α2 are such that [(1 + α1)(1 − σ1) + (1 +
α2)(1− σ2)] tends to unity. The last step in the above calculus is obtained using Hölder’s inequality. Fix
σ1 = 1, then the convergence criterion implies σ2 <

α2

1+α2
. If σ2 is fixed to the particular value

σ2 =
1

2

α2

1 + α2
, (15) fixsigma

then the constant c depends only on α2 and there exists a constant c1(α2) > 0 such that the convolution
is bounded by:

|
∑

k∈Z

fq−kgk| ≤ a2c1(α2)λ
r1 , r1 = θ1 + θ2

1

2

α2

1 + α2
.

And similarly for σ2 = 1, one obtains the constant a1c1(α1) and the value r2 = θ2 + θ1
1
2

α1

1+α1

.

For ii), for q ∈ Z∗, α ∈ (0, α1+α2

1+α1+α2
) the following estimate can be written:

|
∑

k∈Z

fq−kgk| ≤
a2λ

θ1

|q|1+α2

+
a1λ

θ2

|q|1+α1

+ λ(θ1+θ2)α
∑

k∈Z∗,k 6=q

(a1a2)
1−α

|q − k|δ1 |k|δ2

,

where
δi = (1 + αi)(1 − α), i = 1, 2.

Fix β = min{δ1, δ2}, for any σ ∈ (0, δ1+δ2−1
2β ) one has the bound:

∑

k∈Z∗,k 6=q

1

|q − k|δ1 |k|δ2

≤ sup
k∈Z∗,k 6=q

1

(|q − k||k|)βσ

∑

k∈Z∗,k 6=q

1

|q − k|δ1−β |k|δ2−β

1

(|q − k||k|)β(1−σ)

≤ c̃(σ, α, α1, α2) sup
k∈Z∗,k 6=q

1

(|q − k||k|)βσ
, with c̃(σ, α, α1, α2) > 0.
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The calculation of the minimum over k of hq(k) = |q − k||k| will finish the setting of a bound for the
above quantity. For k 6= 0, k 6= q, the derivative h′q is h′q(k) = −sgn(q − k)|k| + sgn(k)|q − k|. It has the
following sign for q > 0:

k −∞ 0 q/2 q ∞
h′q − | + 0 − | +

If q < 0, taking (−k) instead of k leads to the same result. The function hq has a minimum at k = 0 and
k = q (where it reaches zero) and a maximum at k = q/2. Hence, for k, q ∈ Z, k 6= 0, k 6= q and |q| > 1,
the minimum of the function hq is:

min
k∈Z∗,k 6=q

hq(k) = ||q| − 1|.

Remark that for q = 0 or ±1, the minimum is 1 as k 6= q and k 6= 0. Moreover, for all q such that |q| > 1,
one has |q|/2 ≤ ||q| − 1| and

∑

k∈Z∗,k 6=q

1

|q − k|δ1 |k|δ2

≤ 2βσ c̃(σ, α, α1, α2)

|q|βσ
.

For the case q = ±1, the bound is simply c̃(σ, α, α1, α2). Let δ = δ1+δ2−1
2 = 1+α1+α2

2 − α2+α1+α2

2 , there
exists a small η > 0 and a positive value c̃2(η, α, α1, α2) such that taking βσ = δ − η gives

|
∑

k∈Z∗,k 6=q

fq−kgk| ≤
1

|q|δ−η

(
(a1a2)

1−αλ(θ1+θ2)αc̃2(η, α, α1, α2) +
a1λ

θ1

|q|(1+α1−α2)/2+η
+

a2λ
θ2

|q|(1+α2−α1)/2+η

)
.

This holds for the case q = ±1 as well. Since α is small, (a1a2)
1−α ≤ 2a1a2 and λθ1 ≤ λθ1α. The parame-

ters α and η are arbitrary small so one can choose α(2+α1 +α2)/2 = η. Let d12 = max{a1λ
θ1α, a2λ

θ2α}.
For λ small enough, the first term of the above estimate is the largest one and there exists c2(α, α1, α2) > 0
such that

|
∑

k∈Z∗,k 6=q

fq−kgk| ≤
d12c2(α, α1, α2)

|q|(1+α1+α2)/2−α(2+α1+α2)
.

The next lemma states upper bounds on the value of the function S defined in (
defSdefS
12).

lemmeSn1 Lemma 4.5. Suppose there exists a0 > 0, and ε > 0 such that for all q ∈ Z,

i) |Pq| ≤ ε,

ii) for all q ∈ Z∗, |Pq| ≤ a0

|q|2 .

Then there exists a small α > 0 such that for all n ∈ N, n ≥ 2, q ∈ Z and ε small enough:

|Sq(1, n, P )| ≤ ε1+(n−1)( 1

4
−α). (16)

Proof. Let us first investigate the case n = 2. The hypotheses i) and ii) allow to apply lemma
lemmeS1lemmeS1
4.4 with

θ1 = θ2 = 1, α1 = 1, α2 = 1, a1 = a2 = a0, λ = ε. This gives:

∀q ∈ Z, |Sq(1, 2, P )| = |(P ∗ P )(q)| ≤ a0C1 · ε5/4,

∀q ∈ Z∗, |Sq(1, 2, P )| ≤ C2(α)a2
0ε

α · 1

|q| 32−4α
,

where C1 > 0, α > 0 is small and C2(α) > 0. For ε small enough, the quantity C2(α)a2
0ε

α is lower than
one and a0C1ε

α ≤ 1. So that the previous relations become:

∀q ∈ Z, |Sq(1, 2, P )| = |(P ∗ P )(q)| ≤ ε5/4−α, (17) estimS

∀q ∈ Z∗, |Sq(1, 2, P )| ≤ 1

|q| 12+1−4α
, (18) estimSSS
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Let us remind that the functions S(1, i, P ), i ≥ 3, can be written for all q ∈ Z

S(1, i, P ) = P ∗ S (1, i− 1, P ) . (19) Srecur

Using lemma
lemmeS1lemmeS1
4.4 with this formula and (

estimSestimS
17), (

estimSSSestimSSS
18), this yields the following bounds for S(1, 3, P ):

∀q ∈ Z, |Sq(1, 3, P )| ≤ a0C1 · ε5/4−α+1/4 ≤ ε1+2(1/4−α),

∀q ∈ Z∗, |Sq(1, 3, P )| ≤ C2(α)a0ε
α · 1

|q|u3

≤ 1

|q|u3

,

where u3 = 1 + 1/4 − α(5 + 1/2) + 4α2. Similarly, by induction, each quantity S(1, n, P ) is bounded by:

∀q ∈ Z, |Sq(1, n, P )| ≤ εvn , (20) estimSn

∀q ∈ Z∗, |Sq(1, n, P )| ≤ 1

|q|un
, (21) estimSnq

with vn = 1 + (n− 1)(1/4−α) and un = 1/2 + un−1/2−α(2 + un−1). Remark that for all n ∈ N un > 0
and

lim
n→∞

un = 1 − 2α

1 − 2α
.

One can now give a first estimate on the harmonics Pq of the solution of (
eqfreqeqfreq
13):

lemmeosc Lemma 4.6. Suppose H1, H3 hold. For ε small enough, relation (
eqfreqeqfreq
13) implies the following properties:

i) if hypothesis 1) of H2 holds and the operator Jγ is invertible for all γ ∈ Ω1, Jγ must not be
invertible at γ0.

ii) if H2 holds, then for e ∈ Z∗ defined in this hypothesis, Pe 6= 0 and ε can be chosen to be ε = |Pe|.
Moreover, there exists a constant c0 > 0 such that, for all q ∈ Z, q 6= e, |Pq| ≤ c0ε

2.

iii) if H2 holds, for all β ∈ Z such that β /∈ {me}m∈Z
, Pβ = 0.

Proof. Suppose Jγ has a bounded inverse for all γ ∈ Ω, then the complex-valued function Ĵγ

−1
is bounded.

Since H3 holds, the functions {gn} are bounded. Let us write g̃n for the supremum of |gn|. Equation (
eqfreqeqfreq
13)

gives for all q ∈ Z, M ≥ 2:

|Pq| ≤ sup
k

|Ĵγ

−1
(k)| × sup

n∈[2,M ]

g̃n × |
M∑

n=2

Sq(1, n, P )|+

+ sup
k

|Ĵγ

−1
(k)| × |

∞∑

n=M

Sq(gn, n, P )|. (22)

From H3 and lemma
lemmetflemmetf
3.1, the second term of the previous expression tends to zero as M tends to infinity.

Let us choose M large enough such that

|
∞∑

n=M

Sq(gn, n, P )| ≤ sup
n∈[2,M ]

g̃n × |
M∑

n=2

Sq(1, n, P )|,

then there exists a constant A > 0 such that

|Pq| ≤A× |
M∑

n=2

Sq(1, n, P )|. (23) estimJP

Since H1 holds, the hypotheses of lemma
lemmeSn1lemmeSn1
4.5 are satisfied and for ε small enough:

∀n ≥ 2, q ∈ Z, |Sq(1, n, P )| ≤ ε1+(n−1)(1/4−α), (24) 1boundS
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where α is small. Thus for all q ∈ Z:

|Pq| ≤Aε
M∑

n=2

ε(n−1)(1/4−α) = Aε1+1/4−α
M−2∑

m=0

εm(1/4−α), (25)

and for ε small enough such that Aεα
∑M−2

m=0 ε
m(1/4−α) ≤ 1:

|Pq| ≤ ε1+θ, θ = (1/4 − 2α). (26) boundP

For i), using this new bound as hypothesis for lemma
lemmeSn1lemmeSn1
4.5 (replacing ε by ε1+θ), gives for all q ∈ Z a new,

stronger, bound on Pq, i.e.:

|Pq| ≤ε(1+θ)2. (27) boundP2

Since θ > 0, doing this reasoning again, an infinite number of times, will lead to Pq = 0, for all q.
For ii), let s be the set s = {e,−e, q − e, q + e}, where e is the integer defined in H2 and q ∈ Z. Here

Jγ is not invertible for all γ ∈ Ω. One can replace J−1
γ by (QJγQ)−1 which is bounded and estimates (

estimJPestimJP
23)

and (
boundPboundP
26) hold here, for all q 6= ±e:

|Pq| ≤ε1+θ. (28) boundP22

The function S(1, 2, P ) at q ∈ Z can be written as:

Sq(1, 2, P ) =2Pq−ePe + 2Pq+eP−e +
∑

i∈Z

i/∈s

Pq−iPi. (29) devS

Using (
boundP22boundP22
28), the first two terms are bounded by a quantity proportional to ε2+θ in the case where q 6= ±2e

and q 6= 0 and ε2 otherwise. The sum over n contains only terms bounded by ε1+θ so has a bound
proportional to ε to the power (1 + θ)2, consequence of lemma

lemmeSn1lemmeSn1
4.5. Similarly, for q ∈ Z and n ≥ 3:

Sq(1, n, P ) = (P ∗ S(1, n− 1, P ))(q) =PeSq−e(1, n− 1, P ) + P−eSq+e(1, n− 1, P )+

+ Pq−eSe(1, n− 1, P ) + Pq+eS−e(1, n− 1, P )+

+
∑

i∈Z

i/∈s

Pq−iSi(1, n− 1, P ). (30) devS2

This is just (
devSdevS
29) where the Pi have been replaced by Si(1, n− 1, P ). So, similarly, using lemma (

lemmeSn1lemmeSn1
4.5), for

ε small enough, it implies:

∀n ≥ 2, q ∈ Z, |Sq(1, n, P )| ≤ ε(1+θ)2 . (31) boundSall

The quantity QJQ is invertible, from H2, then for all q 6= ±e one has the estimate (
estimJPestimJP
23) and for ε small

enough, (
boundSallboundSall
31) gives:

|Pq| ≤ε(1+θ)2. (32) boundPq

Similarly to the proof of i), this procedure can be repeated several times and gives each time a larger
power of ε, until the first two terms of (

devSdevS
29) and four terms of (

devS2devS2
30) become the largest terms. This implies

that for all q ∈ Z, q 6= ±e, |Pq| ≤ |Pe|. If Pe = 0, then no oscillation exists. If Pe 6= 0, the largest term
Pe can be chosen to be |Pe| = ε and there exists c0 > 0 such that for all q ∈ Z, q 6= ±e

|Pq| ≤c0ε2. (33)

The above estimate is given and limited by the case q = ±2e.
For iii), let us define the set se = {me}m∈Z∗ . If β /∈ se, then for each n ∈ Z fixed, at least one of the

quantities (β − n) or n does not belong to se. Suppose for all n /∈ se,

|Pn| ≤ εa, a ≥ 1. (34) step1P
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The first two terms of (
devSdevS
29) are bounded by εa+1 and from i) of lemma

lemmeS1lemmeS1
4.4, one can write:

|
∑

i∈Z

i/∈s

Pβ−iPi| ≤ εm, m = a+
1

4
− α,

with α > 0 small. It is similar for (
devS2devS2
30). Following the procedure used in the proof of ii), one will find

that a is increasing at each step. Eventually, a tends to infinity and implies for ε small enough:

Pβ = 0.

Proof of Theorem
ThbifThbif
4.1. The proof is a direct application of the results given in lemma

lemmeosclemmeosc
4.6. Notice first that

in order to have a solution satisfying H1, the point i) of this lemma requires that Jγ possesses at least
one zero eigenvalue at γ0 ∈ Ω, showing the necessity of a hypothesis such as H2. As a consequence, the
bifurcation point is the point for which an eigenvalue of Jγ reaches zero. The point ii) of the same lemma
states that the Fourier series of the appearing oscillation must include a non zero value for Pe, where e is
given in H2. The point iii) implies that Pe is the term of the Fourier series associated to the frequency
of oscillation, since only harmonics associated with frequencies multiple of e can be different from zero.
Eventually, the bound on the Fourier components given in ii) of lemma

lemmeosclemmeosc
4.6 finishes the proof.

5 Decrease of the harmonics
decrease

This section concerns the estimation of the amplitude of the Fourier components of the solution. It is
dedicated to theorem

Th1Th1
5.1 and its proof.

Before stating the result, notice that the index e of H2 can be chosen to be e = 1 without loss of
generality. This is justified by ii) and iii) of lemma

lemmeosclemmeosc
4.6 which asserts that the fundamental frequency is

given by ωe and there exists only harmonics associated to multiple of this frequency.

Th1 Theorem 5.1. Under the hypothesis of Theorem
ThbifThbif
4.1, for all γ ∈ Ω where |P1| is small enough, there

exists k = k(|P1|) ≥ 2 such that the oscillating solution of the system (
eqfreqeqfreq
13) possesses the following

properties: for all q ∈ Z∗,

|Pq| ≤ cq|P1||q|, for all |q| ≤ k

|Pq| ≤ ck|P1|k, for all |q| ≥ k, (35) estimPk

where cq, ck are positive constants. The rank k increases when |P1| decreases and tends to infinity when
|P1| tends to zero.

Remark 5.2. If some of the transfer functions {Ẑi,j} change sign or decrease fast enough when their
variable tends to infinity, the decrease of the harmonics amplitude with frequency may be faster than the
estimation given in the above theorem.

Proof of theorem
Th1Th1
5.1. The reasoning of the proof is similar to the one used in the proof of lemma

lemmeosclemmeosc
4.6.

The operator Q = (1 −Q1 −Q−1) commute with the Fourier transform since Q1, Q−1 are associated to

vectors of the Fourier basis. Then the operator QĴγQ has a bounded inverse for all γ ∈ Ω. Since H3

holds, the functions {gn} are bounded. Let us write g̃n for the supremum of |gn|. Equation (
eqfreqeqfreq
13) gives for

all q ∈ Z\{1,−1}, M ≥ 2:

|Pq| ≤ sup
k

|(QĴγQ)−1(k)| × sup
n∈[2,M ]

g̃n × |
M∑

n=2

Sq(1, n, P )|+

+ sup
k

|(QĴγQ)−1(k)| × |
∞∑

n=M

Sq(gn, n, P )|. (36)

From H3 and lemma
lemmetflemmetf
3.1, the second term of the previous expression tends to zero as M tends to infinity.

Let us choose M large enough such that

|
∞∑

n=M

Sq(gn, n, P )| ≤ sup
n∈[2,M ]

g̃n × |
M∑

n=2

Sq(1, n, P )|,
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then there exists a constant A > 0 such that

|Pq | ≤A× |
M∑

n=2

Sq(1, n, P )| ∀q 6= ±1. (37) estimJP2

Let s be the set s = {0, 1,−1, 2,−2, q− 1, q + 1, q − 2, q + 2}. The function S(1, 2, P ) at q ∈ Z can be
written as:

Sq(1, 2, P ) =2Pq−1P1 + 2Pq+1P−1 + 2Pq−2P2 + 2Pq+2P−2 +
∑

n∈Z

n/∈s

Pq−nPn. (38) devSp

From Th.
ThbifThbif
4.1, for all |q| ≥ 3 the first four terms of (

devSpdevSp
38) are bounded by a quantity proportional to ε3.

Likewise, but for all q ∈ Z, each term of the sum over n contains two quantities, each one is bounded by
c0ε

2 for some c0 > 0, then lemma
lemmeS1lemmeS1
4.4 gives the estimate:

∑

n∈Z

n/∈s

|Pq−nPn| ≤ (
√
c0ε)

2+1/2−α, (39)

with α > 0 small. As a consequence, for |q| ≥ 3, and for ε small enough, |Sq(1, 2, P )| ≤ ε2+θ where
θ = 1/2 − 2α. In the case where q = 0, q = ±1 and q = ±2, some of the first terms of (

devSpdevSp
38) are bounded

by ε2, so for q ∈ {0,±1,±2}, there exists c2,2 > 0 such that |Sq(1, 2, P )| ≤ c2,2ε
2. Let us now give a

bound on the S(1, n, P ) by induction. Assume that at rank n− 1 ≥ 2 the following statements are true:

• for q ∈ {0,±1,±2}, |Sq(1, n− 1, P )| ≤ C1ε
2,

• for q, |q| ≥ 3, |Sq(1, n− 1, P )| ≤ ε2+θ,

for some C1 > 0 and θ = 1/2 − 2α. Then at rank n, for q ∈ Z :

Sq(1, n, P ) = (P ∗ S(1, n− 1, P ))(q) =Un−1
q +

∑

i∈Z

i/∈s

Pq−iSi(1, n− 1, P ). (40) devSS

where, for s2 = {0,±1,±2},

Un−1
q =

∑

k∈s2

PkSq−k(1, n− 1, P ) + Pq−kSk(1, n− 1, P ).

Firstly, this latter expression is bounded by a quantity proportional to ε3 for all q. Secondly, for all q ∈ Z

the sum over i of (
devSSdevSS
40) is bounded, from lemma

lemmeS1lemmeS1
4.4, by:

∑

i∈Z

i/∈s

∣∣∣∣
Pq−i

c0
Si(1, n− 1, P )

∣∣∣∣ ≤ ε2+θ+1/2−α,

Then for ε small enough, at rank n:

∀q ∈ Z, |Sq(1, n, P )| ≤ ε2+2θ ≤ ε2+θ,

and by induction this relation holds for all n ≥ 2. In consequence (
estimJP2estimJP2
37) implies that there exists a constant

D > 0, such that for all |q| ≥ 3:

|Pq| ≤Dε2+θ. (41) boundPq3

Similarly to the proof of ii) of lemma
lemmeosclemmeosc
4.6, this procedure can be repeated several times and gives each

time a larger power of ε, until the first terms of (
devSpdevSp
38) and some of the terms of Un

q become the largest
terms. The bound on these latter terms is here proportional to ε3. In conclusion, there exist D2, D3 > 0
such that one has:

for q ∈ s2, |Pq| ≤D2ε
2,

for q /∈ s2, |Pq| ≤D3ε
3. (42)

For the general case, suppose there exists a rank r ≥ 3 and a function f : Z → R+ such that :
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• for all q, |q| ≤ r, |Pq| ≤ f(|q|)ε|q|,

• for all q, |q| ≥ r, |Pq| ≤ f(r)εr.

Let us show it is true at rank r+ 1 under appropriate conditions. The steps are the same as for the case
r = 3 treated above. In the following, only the case q positive is treated as the case q negative will lead
to the same estimates. For q ∈ [2, r + 1], let us introduce the set sq = Z ∩ [1, q − 1] and the function f̃
defined by :

∀q ≥ 2, f̃(q) =
∑

i∈sq

f(q − i)f(i), f̃(1) = 1. (43)

Notice that the function f̃ is monotone increasing on N. Let us introduce for q ≥ 2 and n ≥ 3

U2
q =

∑

i∈sq

Pq−iPi, Un
q =

∑

i∈sq

Pq−iSi(1, n− 1, P ).

Instead of (
devSpdevSp
38), one has to estimate the quantity:

Sq(1, 2, P ) = U2
q +

∑

i/∈sq

Pq−iPi. (44) Usumi

For q ≤ r, the quantity U2
q is bounded by:

|U2
q | ≤ εq

∑

i∈sq

f(q − i)f(i) = f̃(q)εq,

and the sum over i of (
UsumiUsumi
44) is bounded by εq+1/4−α, for some small α > 0, from lemma

lemmeS1lemmeS1
4.4. Hence, for ε

small enough, there exists d2,1 > 0 such that:

∀q ≤ r, |Sq(1, 2, P )| ≤ d2,1f̃(q)εq. (45) qinfr

For q ≥ r + 1, let us introduce the set tr = Z ∩ [−r, r] and for n ≥ 3

V 2
q =

∑

i∈tr

Pq−iPi, V n
q =

∑

i∈tr

Pq−iSi(1, n− 1, P ).

Instead of (
devSpdevSp
38), one has to estimate the quantity:

Sq(1, 2, P ) = V 2
q +

∑

i/∈tr

Pq−iPi. (46) SVsum

The quantity V 2
q contains a small number of terms bounded by εr+1, this number is independent of q,

and the others are bounded by εr+2 or lower bounds. So for ε small enough, there exists a d0 > 0 such
that:

|V 2
q | ≤ d0f(r)εr+1.

For the sum over i of (
SVsumSVsum
46), each term contains two quantities where at least one is bounded by f(r)εr.

Lemma
lemmeS1lemmeS1
4.4 gives:

|
∑

i/∈tq

Pq−iPi| ≤ c1f(r)2εr+1/4−η,

where η > 0 is small. Let us introduce

fm(r + 1) = max{f2(r), f̃ (r + 1)},

then there exits d2,2 > 0 such that for all q ≥ r + 1:

|Sq(1, 2, P )| ≤ d2,2fm(r + 1)εr+1/4−η. (47) qsupr

Next, one has to treat the case of multiple convolutions. Similarly to the case r = 3, suppose at rank
n− 1 ≥ 2 there exist a function hn−1 : Z → R+ such that:
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• for q ∈ [−r, r], |Sq(1, n− 1, P )| ≤ dn−1,1hn−1(|q|)ε|q|,

• for q, |q| ≥ r + 1, |Sq(1, n− 1, P )| ≤ dn−1,2hn−1(r + 1)εr+θ,

for some dn−1,1, dn−1,2 > 0 and θ ∈ (0, 1/4). Then, at rank n, for |q| ≤ r :

Sq(1, n, P ) = (P ∗ S(1, n− 1, P ))(q) =Un−1
q +

∑

i∈Z

i/∈sq

Pq−iSi(1, n− 1, P ), (48) devSSg

and for |q| ≥ r + 1 :

Sq(1, n, P ) = (P ∗ S(1, n− 1, P ))(q) =V n−1
q +

∑

i∈Z

i/∈tr

Pq−iSi(1, n− 1, P ). (49) devSSg2

It is similar to the previous case, where n = 2, provided ε is small enough. More precisely, it is required
that for all n ∈ [3,M + 1], one has ε such that

hn−1(r + 1)ε < 1.

Then the quantity Un
q is bounded by

|Un
q | ≤ hn(q)εq, where hn(q) =

∑

i∈sq

f(q − i)hn−1(i),

The term V n
q is bounded by a quantity proportional to h(r)εr+1 for ε small enough, the sum over i of (

devSSgdevSSg
48)

(resp. (
devSSg2devSSg2
49)) can be shown to be bounded by a quantity proportional to ε|q|+θ (resp. εr+θ). This finishes

the estimates on the multiple convolutions. The last step of the proof is to use (
estimJP2estimJP2
37) and process like in

the case r = 2 treated in the beginning of the proof. Then the function f will have to satisfy

f(q) ≥ d2fm(min{q, r}) +

M∑

i=3

dihi(min{q, r}),

with some di > 0 for all i ≥ 2. Eventually, ε must be small enough such that f(q)ε < 1. But f
is increasing with q and for ε fixed, there exists a rank k = k(ε) where the above requirement is not
satisfied. Eventually, Th.

ThbifThbif
4.1 gives |P1| = ε and this concludes the proof.

6 Bifurcation point and stability
stable

In this section, the regime of the system around the bifurcation point is investigated. The direction of
the bifurcation, the amplitude of the first Fourier component and the influence of γ on the oscillation
frequency are given. The results are similar to the ones arising in the finite dimensional Hopf bifurcation.
As for the Hopf theorem, an additional hypothesis on the system is required, i.e. the transversality
condition stated in H4.

Without loss of generality, as explained in the previous part, the index e of H2 is assumed to be e = 1
in the following. Suppose H2 holds, then for γ ∈ Ω, β2(γ), the eigenvalue of Jγ associated to ω2, is not
null. Assume H3 and let us introduce the notation:

D1(γ) = [β2(γ)]
−1g2(2, 1) (g2(1, 2) + g2(1,−1)) − (g3(1, 0, 1) + g3(1, 0,−1) + g3(1, 2, 1)) . (50) defD

Let us denote by Re[z] the real part and Im[z] the imaginary part of the complex number z. In this
section, the following additional hypothesis is assumed:

H4 There exists an open set Γ with γ0 ∈ Γ such that the complex-valued functions D1 and β1 are
respectively continuously differentiable and twice continuously differentiable with respect to γ on
Γ. Moreover, D1(γ0) 6= 0 and

Re[ 1

D1(γ0)

dβ1

dγ
(γ0)] 6= 0.
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ThP1 Theorem 6.1. Suppose H1, H2, H3, H4 hold. Then,

i) The quantity

α =
1

D1(γ0)

dβ1

dγ
(γ0), (51) defalpha

is a real number, different from zero. If its sign is positive (resp. negative) the bifurcation is direct
(resp. inverse), i.e. the oscillating solution described in H1 exists for γ > γ0 (resp. γ < γ0).

ii) for all γ ∈ Γ such that |γ − γ0| is small enough, the modulus of the first Fourier component of the
oscillating solution is given by:

|P1| =
√
|α|

√
|γ − γ0| + O(|γ − γ0|3/2). (52)

Proof. For ε small enough, from Th.
Th1Th1
5.1 and lemma

lemmeS1lemmeS1
4.4, one can write:

S(g2, 2, 1) = (g2(1, 2) + g2(1,−1))P−1P2 + O(ε4),

S(g3, 3, 1) = (g3(1, 0, 1) + g3(1, 0,−1) + g3(1, 2, 1)) |P1|2P1 + O(ε4),

∀n ≥ 4, |S(gn, n, 1)| ≤ c1ε
4, with c1 > 0.

One has also:

S(g2, 2, 2) = g2(2, 1)P−1P1 + O(ε4),

∀n ≥ 3, |S(gn, n, 2)| ≤ c2ε
4,

∀n ≥ 2, q ≥ 3, |S(gn, n, q)| ≤ c3ε
4.

Then it yields for P2:

JγP2 = β2(γ)P2 =

∞∑

i=2

S(gi, i, 2) = g2(2, 1)P−1P1 + O(ε4)

P2 = [β2(γ)]
−1g2(2, 1)P−1P1 + O(ε4),

For P1:

JγP1 =

∞∑

i=2

S(gi, i, 1)

= (g2(1, 2) + g2(1,−1))P−1P2 + (g3(1, 0, 1) + g3(1, 0,−1) + g3(1, 2, 1)) |P1|2P1 + O(ε4),

which yields

P1

{
β1(γ) −D1(γ)|P1|2

}
+ O(ε4) = 0,

where D1 is the differentiable function defined in (
defDdefD
50). For the oscillating solution, where P1 6= 0, one

can write

|P1|2D1(γ) = β1(γ) + O(ε4),

From the hypotheses of H4 and H2, one has around γ0 the following Taylor expansions:

D1(γ) = D1(γ0) + O(|γ − γ0|), β1(γ) = β′
1(γ0)(γ − γ0) + O(γ − γ0)

2.

and

|P1|2 =
β′

1(γ0)

D1(γ0)
(γ − γ0) + O(γ − γ0)

2 + O(ε4). (53) eqP1

For ε small enough, one has |P1| = ε from Th
ThbifThbif
4.1 and since the numerator is not null from H4, equa-

tion (
eqP1eqP1
53) shows that (γ − γ0) is proportional to ε2. Moreover, the left hand side of (

eqP1eqP1
53) is a positive

quantity, implying:
{

Re[α](γ − γ0) > 0
Im[α] = 0

. (54)

Hence the sign of Re[α] determines the direction of the bifurcation (direct or inverse).
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The last result of this section concerns the influence of γ on the oscillation frequency, ω1, around
the threshold. It requires two further hypotheses, one on the linear part of the system and one on the
coefficients in front of the quadratic and cubic terms, contained in the function D1. The proof is in fact
an application of the implicit function theorem. For the next result, β1, D1 shall be written as functions
of two variables: β(ω1, γ) = β1(γ), D(ω1, γ) = D1(γ).

corolomega Corollary 6.2. Under the hypotheses of Th. (
ThP1ThP1
6.1), suppose the function Im[Dβ] is twice continuously

differentiable with respect to its variable ω1 and γ in an open set around the point (ω1, γ0), and

∂

∂ω1
Im[Dβ1]

∣∣∣∣
(ω1,γ0)

6= 0,
∂2

∂ω2
1

Im[Dβ1]

∣∣∣∣
(ω1,γ0)

6= 0.

Suppose further that β is differentiable with respect to both variables ω1 and γ at (ω1, γ0). Then the
expression of the angular frequency ω1 for γ in a neighbourhood of γ0 is given by:

ω1(γ) = ω1(γ0) + ω′
1(γ0) · (γ − γ0) + O(γ − γ0)

2, (55) omegaT

where ω1(γ0) is the solution of Im[β(ω1(γ0), γ0)] = 0 and

ω′
1(γ0) = −

Im
[
D ∂β

∂γ

]
(ω1(γ0), γ0)

Im
[
D ∂β

∂ω

]
(ω1(γ0), γ0)

.

Proof. The Taylor expansion in Eq. (
omegaTomegaT
55) is a consequence of the implicit function theorem applied to the

twice differentiable function Im[Dβ] around γ0. The value of ω1(γ0) is given by Th.
ThbifThbif
4.1. The hypothesis

H2 2) and the point i) of Th.
ThP1ThP1
6.1, imply that

Im[
dD1β1

dγ
](γ0) = Im

[
D1(γ0)

dβ1

dγ
(γ0)

]
= 0. (56) condI0

The implicit function theorem and the hypotheses of differentiability allow to write

Im
[
D
dβ1

dγ

]
(γ0) =

dω

dγ
(γ0) · Im

[
D
∂β

∂ω

]
(ω1(γ0), γ0) + Im

[
D
∂β

∂γ

]
(ω1(γ0), γ0).

Putting this latter expression in Eq. (
condI0condI0
56) concludes the proof.

7 Example of the woodwind musical instruments
woodwind

A reed woodwind musical instrument, such as a clarinet or a saxophone, is an example of a system which
can be described by an hyperbolic PDE and a localized polynomial nonlinearity. In acoustics, the major
challenge is to understand the influence on the produced sound of physical parameters such as the pressure
in the mouth of the musician, the stiffness of the reed, the shape of the mouthpiece and of the resonator.
Assuming it can be done, a first order calculation by linearizing the system gives the bifurcation point and
the frequency of oscillation at this point. But the investigation of these systems requires to go further
and to obtain the shape of the Fourier harmonics with respect to the bifurcation parameter. That is
why the frequency domain approach is perfectly appropriate here. For small oscillations, one can obtain
analytical formulae giving information on the solution of the system, but, as said in the introduction this
requires until now a hypothesis on the Fourier series of the solution. Let p0 ∈ L2(T ) be the acoustic
pressure inside the mouthpiece of the wind instrument under study and let us suppose it is oscillating.
The hypothesis made by acousticians, see e.g.

GGL
[4],

KOG
[22],

SKVG
[16],

RGKSV
[17], is that the q-th harmonic of this pressure

obeys:

|Pq| ≤ |P1||q|, q 6= 0. (57) eqWorman

This hypothesis is now going to be proved in the framework of the mathematical results obtained in the
previous sections.

The equations describing this system are detailed in e.g.
FR
[1],

KC
[2]. Although the instrument possesses

a three dimensional shape, the model is one dimensional and X = [0, ℓ] where ℓ is the length of the
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instrument. The dimensionless variables associated to the system are the acoustic pressure, p, and the
volume flow, u, inside the instrument, both belonging to X , and h ∈ L2(T ) the reed tip opening localized
x = 0. The pressure inside the mouth of the instrumentalist γ is the bifurcation parameter. Let us call
p0 and u0 the pressure and volume flow at x = 0. The acoustic pressure depends on the volume flow
entering the mouthpiece through the relation:

Ap = δ(x)Bu, (58)

where B = ∂/∂t and A is the differential operator associated to the wave equation inside the instrument,
with losses at the boundaries and along the resonator (visco-thermal losses). By using the Green functions
formalism, it can be written as

p(t, x) =

∫

T×X

g(t− τ, x− y)Bu(τ, y)δ(y)dydτ =

∫

T

g(t− τ, x)Bu(τ, 0)dτ, (59)

where g is the Green function solution of Ap = δ(x)δ(t). An example of this Green function for a model
of clarinet is given in

KC
[2], Chapter II.5, section 5.2: the model considered is the wave equation with

visco-thermal losses on X , Neumann boundary condition at one end and Dirichlet boundary condition
at the other end. This gives for the time Fourier transform ĝ of g:

ĝ(x, ω;xs) = c
∑

n>0

cos(knx) cos(knxs)

ω2
n + iωωnqn − ω2

, (60)

where c is a constant, kn = (2n− 1)π/(2ℓ) and ωn is proportional to kn. The term qn is proportional to√
kn in order to model visco-thermal losses. This choice of qn is motivated by physical arguments but

leads to a fractional derivative in the expression of A. This is partly why the present study start with
Eq. (

eqreeleqreel
4), where Z is much more convenient to define than A. Let U = Fu0, the above equation expressed

in the Fourier space, and at x = 0, yields:

P = ẐU, (61)

where Ẑ is called a transfer function. This is the equation (
eqreeleqreel
4) in the case of wind instruments, in the

frequency domain. Indeed, U is expressed in terms of P through a nonlinear relation in the following.
Notice that the quantity Ẑ is called by acousticians the input impedance of the bore and can be measured
thanks to physical experiments. It is bounded, provided losses are taken into account in the model. See

KC
[2],

chapter II.7, for examples of impedances of various wind instruments. The Fourier basis is the eigenbasis
of this operator, thus in the Fourier space, Ẑ is a multiplication operator. For all q ∈ Z,

Pq = Ẑ(ωq)Uq, (62) PZU2

where the complex-valued function Ẑ(·) is never null except maybe at ω0 = 0.
The nonlinear relationship is localized at the tip of the mouthpiece and relates u0, p0 and h. Under

some physical hypotheses, the Bernoulli law at the entry of the instrument gives the nonlinear relationship
at time t ∈ R:

u2
0(t) = ζ2 (1 − γ + h(t))2 (γ − p0(t)) , (63) eqnlt2

where ζ is a positive constant, 0 < γ < 1. At rest, when there is no action from the instrumentalist,
γ = 0, and the equilibrium position of the instrument yields u0 = 0, p0 = 0 and h = 0. It is supposed that
for all t, p0(t) and h(t) are small enough such that γ− p0(t) ≥ 0 and 1− γ+ h(t) ≥ 0 (small oscillations).

Let H denote the Fourier transform of h. The reed opening is related to p0 via a linear relation
expressed in the frequency domain:

Hq = D̂(q)Pq, for all q ∈ Z. (64) EDP

The complex-valued function D̂ is bounded. Let us introduce Q0 the orthogonal projection associated to
the constant part of the Fourier decomposition. From (

PZU2PZU2
62), one has

Uq = Ŷ (q)(1 −Q0)Pq + U0Q0, for all q ∈ Z. (65) PZU
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In the physical system under study, the function Ŷ (1−Q0) : Z → C is bounded. Nevertheless, the value

Ŷ (0) is not defined as it is assumed that P0 = 0 and U0 > 0. It gives a good opportunity to show how
to cope with this problem and satisfy the hypothesis of boundedness of the operators despite it: in this
case the system will be written as a set of two equations, with a specific one for U0, see below how to
obtain (

eqNLP2eqNLP2
68a) and (

eqNLP20eqNLP20
68b). Behind the function Ŷ is hidden the hyperbolicity given by the wave equation

inside the resonator and the contribution of B. It reveals itself when looking at the limit of |Ŷ (q)| when
q tends to infinity: it tends to a strictly positive constant.

Let us assume the pressure p0 satisfies hypothesis H1. Let us recall that since D̂ is bounded, one has
for example, for all q ∈ Z,

ĥp(q) = (H ∗ P )(q) =
(
(D̂P ) ∗ P

)
(q) =

∑

n∈Z

D̂q−nPq−nPn,

as shown by lemma
lemmetflemmetf
3.1. If, like in

RGKSV
[17], the following notations are introduced:

u00 = ζ2γ(1 − γ)2, Aq = 2ζ2γ(1 − γ)D̂(q) − ζ2(1 − γ)2,

Bq,n = ζ2γD̂(q − n)D̂(n) − 2ζ2(1 − γ)D̂(q − n),

Cq,n,m = −ζ2D̂(q − n)D̂(n−m), (66)

and for n 6= 0, n 6= q,

Hq,n = Bq,n − Ŷ (q − n)Ŷ (n), (67)

then the relation (
eqnlt2eqnlt2
63), together with (

EDPEDP
64), (

PZUPZU
65) gives (see

RGKSV
[17] for more details):eqNLP2T

(2U0Ŷ (q) −Aq)Pq =
∑

n∈Z

Hq,nPq−nPn +
∑

n∈Z

∑

m∈Z

Cq,n,mPq−nPn−mPm, for q 6= 0 (68a) eqNLP2

U2
0 = u00 +

∑

n∈Z

H0,n|Pn|2 +
∑

n∈Z

∑

m∈Z

C0,n,mP−nPn−mPm, for q = 0. (68b) eqNLP20

Lemma
lemmetflemmetf
3.1 justifies this expression as Ŷ (1−Q0) and D̂ are bounded and satisfy H3. As said previously,

Eq.(
eqNLP20eqNLP20
68b) appears because Ŷ is not defined at 0. In order to obtain an expression similar to (

eqfreqeqfreq
13), one has

to replace U0 in (
eqNLP2eqNLP2
68a) by its value given in (

eqNLP20eqNLP20
68b). For this purpose it is assumed that U0 has a positive

value, allowing to express it as a square root. It is assumed that the system encounters a bifurcation
for γ0 > 0 which implies u00 > 0. Thus, for a small enough acoustic pressure, this square root can be
expanded as a Taylor series. Replacing U0 by this expression in (

eqNLP2eqNLP2
68a) leads to a nonlinearity of the form

presented in lemma
lemmetflemmetf
3.1. As a consequence, theorems

ThbifThbif
4.1 and

Th1Th1
5.1 can be used. The above relations are

complex to write in the canonical form given in (
eqfreqeqfreq
13), however, for instance one has for the linear part:

Ĵγ(q) = (2
√
u00Ŷ (q) −Aq). (69) eqJcar

This linear part satisfies H2, provided (2
√
u00Ŷ (q) − Aq) = 0 for only two values q = ±s. Notice that

the stationary solutions U0 = ±√
u00, where for all n ∈ Z, Pn = 0, exist for all γ ∈ (0, 1). Consequently,

from (
eqJcareqJcar
69), the bifurcation parameter and the frequency of oscillation at the bifurcation will be given,

according to Th.
ThbifThbif
4.1, by the characteristic equation:

2
√
u00Ŷ (s) −As = 0.

The main objective is now attained: hypotheses H2 and H3 hold and if one supposes a solution of
the type described in H1, the hypothesis (

eqWormaneqWorman
57) can be justified in the framework of the present study by

applying Th.
Th1Th1
5.1. The results presented in the publications cited in this section, which required at first the

assumption (
eqWormaneqWorman
57), can be obtained by assuming the weaker assumption of twice continuous differentiability

of the solution. Let us notice a slight difference between the result of theorem
Th1Th1
5.1 and the relation (

eqWormaneqWorman
57).

The fact that there exists a value k in Th.
Th1Th1
5.1 where (

eqWormaneqWorman
57) stops to be valid does not change the results of

the previously cited publications. Indeed, these results can be retrieved by knowing estimates on the first
harmonics and involve only a limited number of harmonics in calculus. Moreover, k can be taken as large
as needed by limiting the range of amplitude for which the results are valid. Eventually, the hypotheses
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required in section
stablestable
6 are satisfied, see

RGKSV
[17], and the quantity D1(γ0) defined in this latter section can be

deduced from equations (
eqNLP2TeqNLP2T
68). This leads to

|P1| =
√
|α|√γ − γ0 + O(|γ − γ0|3/2),

where

α =
β′(γ0)

D1(γ0)
,

confirming the results of
RGKSV
[17].
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