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APPLICATIONS
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Abstract

In this paper, a class of reflected generalized backward doubly stochastic differen-
tial equations (reflected GBDSDEs in short) driven by Teugels martingales associated
with Lévy process and the integral with respect to an adapted continuous increasing
process is investigated. We obtain the existence and uniqueness of solutions to these
equations. A probabilistic interpretation for solutions to a class of reflected stochas-
tic partial differential integral equations (PDIEs in short) with a nonlinear Neumann
boundary condition is given.
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1 Introduction

Backward stochastic differential equations (BSDEs, in short) have been first introduced
by Pardoux and Peng [13] in order to give a probabilistic interpretation (Feynman-Kac
formula) for the solutions of semilinear parabolic PDEs, one can see Peng [17], Pardoux and
Peng [14]. Recently, a new class of BSDEs, named backward doubly stochastic differential
equations (BDSDEs in short) has been introduced by Pardoux and Peng [15] in order to
give a probabilistic representation for a class of quasilinear stochastic partial differential
equations (SPDEs in short). Following it, Bally and Matoussi [1] gave the probabilistic
representation of the weak solutions to parabolic semilinear SPDEs in Sobolev spaces by
means of BDSDEs. Furthermore, Pardoux and Zhang [16] gave a probabilistic formula for
the viscosity solution of a system of PDEs with a nonlinear Neumann boundary condition
by introducing a generalized BSDEs (GBSDEs, in short) whichinvolved an integral with
respect to an adapted continuous increasing process. Its extension to an obstacle problem
for PDEs with a nonlinear Neumann boundary condition was given in Ren and Xia [20] by
reflected GBSDEs. Motivated by the above works, especially by [15] and [16], Boufoussi
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et al. [3] recommended a class of generalized BDSDEs (GBDSDEs in short) and gave the
probabilistic representation for stochastic viscosity solutions of semi-linear SPDEs with a
Neumann boundary condition. The main tool in the theory of BSDEs is the martingale
representation theorem, which is well known for martingalewhich adapted to the filtration
of the Brownian motion or that of Poisson point process (Pardoux and Peng [13], Tang
and Li [21]) or that of a Poisson random measure ( see Ouknine [12]). Recently, Nualart
and Schoutens [10] gave a martingale representation theorem associated to Lévy process.
Furthermore, they showed the existence and uniqueness of solutions to BSDEs driven by
Teugels martingales associated with Lévy process with moments of all orders in [11]. The
results were important from a pure mathematical point of view as well as in the world of
finance. It could be used for the purpose of option pricing in aLévy market and related
PDEs which provided an analogue of the famous Black-Scholesformula. Further, Hu and
Yong considered respectively BDSDEs and generalized BDSDEdriven by Lévy processes
and its applications in [8] and [19].

Motivated by the above works, especially by [19] the purposeof the present paper is to
consider reflected GBDSDEs driven by Lévy processes of the kind considered in Nualart
and Schoutens [10]. Our aim is to give a probabilistic interpretation for the solutions to a
class of reflected stochastic PDIEs with a nonlinear Neumannboundary condition.

The paper is organized as follows. In Section 2, we introducesome preliminaries and
notations. Section 3 is devoted to GBDSDEs driven by Lévy processes and the comparison
theorem related to it. In Section 4, we give existence and uniqueness result for the reflected
GBDSDE. Finally Section 5 point out a probabilistic interpretation of solutions to a class
of reflected stochastic PDIEs with a nonlinear Neumann boundary condition.

2 Preliminaries and Notations

The scalar product of the spaceR
d(d ≥ 2) will be denoted by< . > and the associated

Euclidian norm by‖.‖.
In what follows let us fix a positive real numberT > 0. Let (Ω,F ,P,F t ,Bt ,Lt : t ∈

[0,T]) be a complete Wiener-Lévy space inR×R\{0}, with Levy measureν, i.e. (Ω,F ,P)
is a complete probability space,{F t : t ∈ [0,T]} is a right-continuous increasing family of
complete subσ-algebras ofF , {Bt : t ∈ [0,T]} is a standard Wiener process inR with
respect to{F t : t ∈ [0,T]} and{Lt : t ∈ [0,T]} is aR-valued Lévy process independent of
{Bt : t ∈ [0,T]}, which has onlym jumps size and no continuous part and corresponding to
a standard Lévy measureν satisfying the following conditions:

R

R
(1∧y)ν(dy) < ∞,

LetN denote the totality ofP-null sets ofF . For eacht ∈ [0,T], we define that

F t = F L
t ∨F B

t,T

where for any process{ηt}, F η
s,t = σ(ηr −ηs,s≤ r ≤ t)∨N , F η

t = F η
0,t .

Let us remark that the collectionF = {F t , t ∈ [0,T]} is neither increasing nor decreasing
and it does not constitute a filtration.

We denote by(H(i))i≥1 the Teugels Martingale associated with the Lévy process{Lt :
t ∈ [0,T]}. More precisely

H(i) = ci,iY
(i) +ci,i−1Y

(i−1) + · · ·+ci,1Y
(1)
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whereY(i)
t = Li

t −E(Li
t) = Li

t − tE(L1
t ) for all i ≥ 1 andLi

t are power-jump processes. That
is L1

t = Lt and Li
t = ∑0<s<t(∆Ls)

i for all i ≥ 2, whereXt− = limsրt Xs and ∆Xt = Xt −
Xt− . It was shown in Nualart and Schoutens [10] that the coefficients ci,k correspond to
the orthonormalization of the polynomials 1,x,x2, ... with respect to the measureµ(dx) =
x2dν(x)+ σ2δ0(dx):

qi−1(x) = ci,ix
i−1 +ci,i−1xi−2 + · · ·+ci,1.

We set

pi(x) = xqi−1(x) = ci,ix
i +ci,i−1xi−1 + · · ·+ci,1x

1.

The martingale(H(i))i≥1 can be chosen to be pairwise strongly orthonormal martingale.

Remark2.1. 1. If µ only has mass at 1, we are in the Poisson case; hereH(i)
t = 0, i =

2, · · ·. This case is degenerate in this Lévy framework

2. Generally, if the Lévy processL has onlymdifferent jump sizes, then

(i)H(k) = 0,∀ k≥ m+1, if L has no continuous part;

(ii)H(k) = 0,∀ k≥ m+2, if L has continuous part.

In the sequel, let{At , 0≤ t ≤ T} be a continuous, increasing andF-adapted real valued
with bounded variation on[0,T] such thatA0 = 0.

For anyd ≥ 1, we consider the following spaces of processes:

1. M 2(Rd) denote the space of real valued, square integrable andF t-predictable pro-
cessesϕ = {ϕt ; t ∈ [0,T]} such that

‖ϕ‖2
M 2 = E

R T
0 ‖ϕt‖2dt < ∞.

2. S 2(R) is the subspace ofM 2(R) formed by theF t -adapted processesϕ = {ϕt ; t ∈
[0,T]} right continuous with left limit (rcll) such that

‖ϕ‖2
S 2 = E

(
sup

0≤t≤T
|ϕt |2 +

Z T

0
|ϕt |2dAt

)
< ∞.

3. A 2(R) is the set ofF t-measurable, continuous, real-valued, increasing process ϕ =
{ϕt ; t ∈ [0,T]} such thatK0 = 0, E|KT |2 < ∞

Finally we denote byE 2,m = S 2(R)×M 2(Rm)×A 2(R) endowed with the norm

‖(Y,Z,K)‖2
E = E

(
sup

0≤t≤T
|Yt |2 +

Z T

0
|Yt |2dAt +

Z T

0
‖Zt‖2dt+ |KT|2

)
.

Then, the couple(E 2,m,‖.‖E 2,m) is a Banach space.
To end this section, let us give following needed assumptions

(H1) ξ is a square integrable random variable which isFT -measurable such that for all
µ> 0

E
(
eµAT |ξ|2

)
< ∞.
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(H2) f : Ω× [0,T]×R×R
m→ R, g : Ω× [0,T]×R →R, andφ : Ω× [0,T]×R → R, are

three functions such that:

(a) There existF t-adapted processes{ ft , φt , gt : 0≤ t ≤ T} with values in[1,+∞)
and with the property that for any(t,y,z) ∈ [0,T]×R×R

d, andµ > 0, the
following hypotheses are satisfied for some strictly positive finite constantK:





f (t,y,z), φ(t,y), andg(t,y,z)areF t -measurable processes,

| f (t,y,z)| ≤ ft +K(|y|+‖z‖),

|φ(t,y)| ≤ φt +K|y|,

|g(t,y)| ≤ gt +K|y|,

E

(
Z T

0
eµAt f 2

t dt+
Z T

0
eµAt g2

t dt+
Z T

0
eµAt φ2

t dAt

)
< ∞.

(b) There exist constantsc> 0,β < 0 and 0< α < 1 such that for any(y1,z1), (y2,z2)∈
R×R

m,




(i) | f (t,y1,z1)− f (t,y2,z2)|2 ≤ c(|y1−y2|2 +‖z1−z2‖2),

(ii) |g(t,y1)−g(t,y2)|2 ≤ c|y1−y2|2,

(iii ) 〈y1−y2,φ(t,y1)−φ(t,y2)〉 ≤ β|y1−y2|2.

(H3) The obstacle{St ,0≤ t ≤ T}, is aF t -progressively measurable real-valued process
satisfying

E

(
sup

0≤t≤T

∣∣S+
t

∣∣2
)

< ∞.

We shall always assume thatST ≤ ξ a.s.

3 Generalized backward doubly stochastic differential equations
driven by L évy processes

In this section, we present existence and uniqueness results for GBDSDEs driven by Lévy
processes and we prove a comparison theorem which is an important tool in the proofs
for results of Sections 4. The existence and uniqueness result is a direct consequence of
Theorem 3.2 in [8].

Proposition 3.1. Given standard parameter(ξ, f ,φ,g), there exists(Y,Z)∈ S 2(R)×M 2(Rm)
to the following GBDSDEs driven by the Lévy processes

Yt = ξ+

Z T

t
f (s,Ys− ,Zs)ds+

Z T

t
φ(s,Ys−)dAs+

Z T

t
g(s,Ys−)dBs

−
m

∑
i=1

Z T

t
Z(i)

s dH(i)
s , 0≤ t ≤ T. (3.1)
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Here the integral with respect to{Bt} is the classical backward Itô integral (see Kunita

[7]) and the integral with respect to{H(i)
t } is a standard forward It̂o-type semimartingale

integral.

The comparison theorem is one of the principal tools in the theories of the BSDEs. But
it does not hold in general for solutions of BSDEs with jumps (see the counter-example in
Barles et al. [2]). In the following we prove, with the additional property of the jumps size,
the comparison theorem for solution of GBDSDEs driven by Lévy processes. Let note that
in the standard BSDE case i.eg = φ = 0, comparison theorem has already been established
by Qing Zhou [18] with this property of jumps size.

Theorem 3.2.Assume that L has only n different jump sizes and has no continuous part. Let
(ξ1, f 1,φ,g) and (ξ2, f 2,φ,g) be two standard parameters of BSDE(4.2) and let(Y1,Z1)
and(Y2,Z2) be the associated square-integrable solutions. Suppose that

1. ξ1 ≥ ξ2, P a.s.,

2. f1(t,y,z) ≥ f 2(t,y,z), P a.s. for all y∈ R, z∈ R
m,

3. βi
t =

f (t,Y2
t− , Z̃(i−1)

t )− f 2(t,Y2
t− , Z̃(i)

t )

Z1(i)
t −Z2(i)

t

1{Z1(i)
t −Z2(i)

t 6=0}

where

Z̃i =
(

Z2(1),Z2(2), · · ·,Z2(i),Z1(i+1), · · ·,Z1(n)
)

Z̃i−1 =
(

Z2(1),Z2(2), · · ·,Z2(i−1),Z1(i),Z1(i+1), · · ·,Z1(n)
)

,

satisfying that
m

∑
i=1

βi
t∆H i

t > −1, dt⊗dP a.s. Then we have that almost surely for any time

t, Y1
t ≥Y2

t and that ifP(ξ1 > ξ2) > 0 thenP(Y1
t > Y2

t ) > 0.

Proof. Denote

ξ̂ = ξ1−ξ2, Ŷt = Y1
t −Y2

t , V̂t = V1
t −V2

t , Ẑt = Z1
t −Z2

t

f̂t = f 1(t,Y2
t ,Z2

t )− f 2(t,Y2
t ,Z2

t ),

and

at = [ f 1(t,Y1
t ,Z1

t )− f 1(t,Y2
t ,Z1

t )]/(Y1
t −Y2

t )1{Y1
t 6=Y2

t },

bt = [φ(t,Y1
t )−φ(t,Y2

t ,)]/(Y1
t −Y2

t )1{Y1
t 6=Y2

t },

ct = [g(t,Y1
t )−g(t,Y2

t )]/(Y1
t −Y2

t )1{Y1
t 6=Y2

t }.

Then

Ŷt = ξ̂+

Z T

t
[asŶs− +

m

∑
i=1

βi
sẐ

(i)
s + f̂s]ds+

Z T

t
bsŶs−dAs+

Z T

t
csŶs−dBs−

m

∑
i=1

Z T

t
Ẑ(i)

s dH(i)
s

is a linear GBDSDE driven the Lévy processes.
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Let Γt = 1+
Z t

0
Γs−dXs, where

Xt =
Z t

0
asds+

Z t

0
bsdAs+

Z t

0
csdBs−

Z t

0
|cs|2ds+

m

∑
i=1

Z t

0
βi

sdH(i)
s .

Then we have∆Xt =
m

∑
i=1

βi
t∆H(i)

t > −1. Note that|at | ≤ C, |bt | ≤ C, |ct | ≤ C, |βi
t | ≤ C,

for all 0 ≤ t ≤ T, a.s., i = 1, · · ·,m. Then by the Doléans-Dade exponential formula
and the Gronwall inequality, we conclude thatΓt > 0 and sup0≤t≤T E[Γ2

t ] ≤ C1. Thus,
E[

R T
0 Γ2

s−ds] ≤ C1, whereC1 is a positive constant. Then applying Itô’s formula toΓsŶs

from s= t to s= T, it follows that

ΓT ξ̂−ΓtŶt =
Z T

t
Γs−Ŷs−dŶs+

Z T

t
Ŷs−Γs−dΓs+

Z T

t
d[Γ,Ŷ]s

= −
Z T

t
Γs− [asŶs− +

m

∑
i=1

βi
sẐ

(i)
s + f̂s]ds−

Z T

t
Γs−bsŶs−dAs−

Z T

t
Γs−Ŷs−csdBs

+
m

∑
i=1

Z T

t
Γs−Ẑ(i)

s dH(i)
s +

Z T

t
asŶs−Γs−ds+

Z T

t
Ŷs−Γs−bsdAs+

Z T

t
Ŷs−Γs−csdBs

+
m

∑
i=1

Z T

t
Ŷs−Γs−βi

sdH(i)
s +

m

∑
i=1

m

∑
j=1

Z T

t
Γs−βi

sẐ
( j)
s d[H(i),H( j)]s

= −
Z T

t
Γs− [

m

∑
i=1

βi
sẐ

(i)
s + f̂s]ds+

m

∑
i=1

Z T

t
Γs−Ẑ(i)

s dH(i)
s +

m

∑
i=1

Z T

t
Ŷs−Γs−βi

sdH(i)
s

+
m

∑
i=1

m

∑
j=1

Z T

t
Γs−βi

sẐ
( j)
s d[H(i),H( j)]s. (3.2)

By Davis’s inequality, we know that
m

∑
i=1

Z T

t
Γs−Ẑ(i)

s dH(i)
s and

m

∑
i=1

Z T

t
Ŷs−Γs−βi

sdH(i)
s are mar-

tingales. Since
m

∑
i=1

Z T

t
Ẑ(i)

s dH(i)
s and

m

∑
i=1

Z T

t
Γs−βi

sdH(i)
s are square integrable martingales,

we have

E

[
m

∑
i=1

m

∑
j=1

Z T

t
Γs−βi

sẐ
( j)
s d[H(i),H( j)]s|F t

]
= E

[
m

∑
i=1

m

∑
j=1

Z T

t
Γs−βi

sẐ
( j)
s d〈H(i),H( j)〉s|F t

]

= E

[
m

∑
i=1

Z T

t
Γs−βi

sẐ
(i)
s ds|F t

]
.

Thus, from(3.2), and taking conditional expectation w.r.t.F t , we conclude that

ΓtŶt = E

[
ΓT ξ̂+

Z T

t
Γs− f̂sds|F t

]
≥ 0.

It is clear thatŶt ≥ 0 and that ifP(ξ̂ > 0) > 0 thenP(Ŷt > 0) > 0. The proof of the theorem
is complete.
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4 Reflected generalized backward doubly stochastic differential
equation driven by Lévy processes

This section is devoted to the study of reflected GBDSDEs driven by the Lévy processes
(4.1), one of our main goal in this paper. First of all let us give a definition to the solution
of this reflected GBDSDEs driven by Lévy processes.

Definition 4.1. By a solution of the reflected GBDSDE(ξ, f ,φ,g,S) driven by Lévy pro-
cesses we mean a triplet of processes(Y,Z,K) ∈ E , which satisfied

Yt = ξ+
Z T

t
f (s,Ys− ,Zs)ds+

Z T

t
φ(s,Ys−)dAs+

Z T

t
g(s,Ys−)dBs

−
∞

∑
i=1

Z T

t
Z(i)

s dH(i)
s +KT −Kt, 0≤ t ≤ T. (4.1)

such that the following holdsP-a.s

(i) Yt ≥ St , 0≤ t ≤ T,

(ii)
Z T

0
(Yt− −St)dKt = 0.

In the sequel,C denotes a finite constant which may take different values from line to
line and usually is strictly positive.

Theorem 4.2. Under the hypotheses(H1), (H2) and (H3), there exists a unique solution
for the reflected generalized BDSDE(ξ, f ,φ,g,S) driven by Ĺevy processes.

Our proof is based on a penalization method from El Karoui et al [6].
For eachn∈ N

∗ we set

fn(s,y,z) = f (s,y,z)+n(y−Ss)
− (4.2)

and let(Yn,Zn) be theF t -progressively measurable process with values inR×R
m unique

solution of the GBDSDE with(ξ, fn,g) driven by the Lévy processes. It exists according to
Proposition 3.1. So

E

(
sup

0≤t≤T
|Yn

t |2 +
Z T

0
‖Zn

s‖2ds

)
< ∞,

and

Yn
t = ξ+

Z T

t
f (s,Yn

s− ,Zn
s)ds+

Z T

t
(Yn

s− −Ss)
−ds+

Z T

t
φ(s,Yn

s−)dAs

+
Z T

t
g(s,Yn

s−)dBs−
m

∑
i=1

Z T

t
(Zn

s)
(i)dH(i)

s . (4.3)

Set

Kn
t = n

Z t

0
(Yn

s− −Ss)
−ds, 0≤ t ≤ T. (4.4)

In order to prove Theorem 4.2, we state the following lemma that will be useful.
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Lemma 4.3. Let us consider(Yn,Zn)∈ S 2(R)×M 2(Rm) solution of GBDSDE(4.3). Then
there exists C> 0 such that,

sup
n∈N∗

E

(
sup

0≤t≤T
|Yn

t |2 +
Z T

t
|Yn

s |2 dAs+
Z T

t
‖Zn

s‖2ds+ |Kn
T |2
)

< C

Proof. From Itô’s formula, we have

|Yn
t |2 = |ξ|2 +2

Z T

t
Yn

s− f (s,Yn
s− ,Zn

s)ds+2
Z T

t
Yn

s−φ(s,Yn
s−)dAs

+

Z T

t
|g(s,Yn

s−)|2ds+2
Z T

t
Yn

s−dKn
s +2

Z T

t
Yn

s−g(s,Yn
s−)dBs

−2
m

∑
i=1

Z T

t
Yn

s−(Zn
s)

(i)dH(i)
s −

m

∑
i, j=1

Z T

t
(Zn

s)
(i)(Zn

s)
( j)d[H(i)

s ,H( j)
s ]. (4.5)

Note that
R T

t Yn
s−g(s,Yn

s−)dBs,
R T

t Yn
s−(Zn

s)
(i)dH(i)

s , for i ≥ 1 and
R T

t (Zn
s)

(i)(Zn
s)

( j)d[H(i)
s ,H( j)

s ]
for i 6= j are uniformly integrable martingales. Taking the expectation, we get

E |Yn
t |2 +

Z T

t
‖Zn

s‖2ds

≤ |ξ|2 +2E

Z T

t
Yn

s− f (s,Yn
s− ,Zn

s)ds+2E

Z T

t
Yn

s−φ(s,Yn
s−)dAs

+E

Z T

t
|g(s,Yn

s−)|2ds+2E

Z T

t
Yn

s−dKn
s ,

where we have used
Z T

t
(Yn

s− −Ss)dKn
s ≤ 0 and the fact that

Z T

t
Yn

s dKn
s =

Z T

t
(Yn

s− −Ss)dKn
s +

Z T

t
SsdKn

s ≤
Z T

t
SsdKn

s .

Using(H2) and the elementary inequality 2ab≤ γa2 + 1
γ b2, ∀γ > 0,

2Yn
s f (s,Yn

s ,Zn
s) ≤ (cγ1 +

1
γ1

)|Yn
s |2 +2cγ1‖Zn

s‖2 +2γ1 f 2
s ,

2Yn
s φ(s,Yn

s ) ≤ (γ2−2|β|)|Yn
s |2 +

1
γ2

φ2
s,

|g(s,Yn
s )|2 ≤ 2c|Yn

s |2 +2g2
s.

Taking expectation in both sides of the inequality (4.5) andchoosingγ1 =
1
4c

, γ2 = |β|, we

obtain for allε > 0

E |Yn
t |2 + |β|E

Z T

t
|Yn

s |2dAs+
1
2

E

Z T

t
‖Zn

s‖2ds

≤CE

{
|ξ|2 +

Z t

0
|Yn

s |2ds+
Z t

0
f 2
s ds+

Z t

0
φ2

sdAs+

Z t

0
g2

sds

}

+
1
ε
E

(
sup

0≤s≤t
(S+

s )2
)

+ εE(Kn
T −Kn

t )2 . (4.6)
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On the other hand, we get from (4.3) that for all 0≤ t ≤ T,

Kn
t = Yn

t −ξ−
Z t

0
f (s,Yn

s− ,Zn
s)ds−

Z t

0
φ(s,Yn

s−)dAs−
Z t

0
g(s,Yn

s−)dBs+
m

∑
i=1

Z t

0
(Zn

s)
(i)dH(i)

s .

(4.7)
So by used standard computations, we get

E(Kn
T −Kn

t )2 ≤CE

{
|ξ|2 +

Z t

0
f 2
s ds+

Z t

0
φ2

sdAs+
Z t

0
g2

sds+
Z t

0
|Yn

s |2ds

+E

(
sup

0≤s≤t
(S+

s )2
)

+

Z t

0
|Yn

s |2 dAs+

Z t

0
‖Zn

s‖2ds

}
. (4.8)

Substituting Equation(4.8) to Equation(4.6) and choosingε small enough such thatεC <
min(1/2, |β|), yields

E

{
|Yn

t |2 +

Z T

t
|Yn

s |2dAs+

Z T

t
‖Zn

s‖2ds+ |Kn
T |2
}

≤CE

{
|ξ|2 +

Z T

0
f 2
s ds+

Z T

0
φ2

sdAs+

Z T

0
g2

sds+ sup
0≤t≤T

(S+
t )2
}

.

From this, Gronwall’s inequality and the Burkholder-Davis-Gundy inequality [4], we get

E

{
sup

0≤t≤T
|Yn

t |2 +

Z T

t
‖Zn

s‖2ds+ |Kn
T|2
}

≤ CE

{
|ξ|2 +

Z T

0
f 2
s ds+

Z T

0
φ2

sdAs

+
Z T

0
g2

sds+ sup
0≤t≤T

(S+
t )2
}

,

which end the proof of this Lemma.

Proof of Theorem 4.2.ExistenceThe proof of existence will be divided in two steps.
Step1. g does not dependent on(Y,Z). More precisely, we consider the following equation

Yt = ξ+

Z T

t
f (s,Ys− ,Zs)ds+

Z T

t
φ(s,Ys−)dAs+

Z T

t
g(s)dBs

−
m

∑
i=1

Z T

t
Z(i)

s dH(i)
s +KT −Kt, 0≤ t ≤ T. (4.9)

The penalized equation is given by

Yn
t = ξ+

Z T

t
f (s,Yn

s− ,Zn
s)ds+n

Z T

t
(Yn

s− −Ss)
−ds+

Z T

t
φ(s,Yn

s−)dAs

+

Z T

t
g(s)dBs−

m

∑
i=1

Z T

t
(Zn

s)
(i)
s dH(i)

s , 0≤ t ≤ T. (4.10)

Since the sequence of functions(y 7→ n(y−St)
−)n≥1 is nondecreasing, then thanks to the

comparison theorem 3.2, the sequence(Yn)n>0 is non-decreasing. Hence, Lemma 4.3 im-
plies that there exists aF t - progressively measurable processY such thatYn

t րYt a.s. Recall

9



thatYn
t րYt a.s. Then, Fatou’s lemma and Lemma 4.3 ensure

E

(
sup

0≤t≤T
|Yt |2

)
< +∞,

It then follows from Lemma 4.3 and Lebegue’s dominated convergence theorem that

E

(
Z T

0
|Yn

s −Ys|2ds

)
−→ 0, as n→ ∞. (4.11)

Next, forn≥ p≥ 1, by Itô’s formula and together with assumptions(H2), yields

E

{∣∣Yn
t −Yp

t

∣∣2 +

Z T

t
|Yn

s −Yp
s |2dAs+

Z T

t
‖Zn

s −Zp
s‖2ds

}

≤ CE

{
Z T

t
|Yn

s −Yp
s |2ds+ sup

0≤s≤T
(Yn

s −Ss)
−Kp

T + sup
0≤s≤T

(Yp
s −Ss)

−Kn
T

}
,

which, by Gronwall lemma, Hölder inequality and Lemma 4.3 respectively, implies

E

{∣∣Yn
t −Yp

t

∣∣2 +

Z T

t
‖Zn

s −Zp
s‖2ds

}
≤ C

{
E

(
sup

0≤s≤T
|(Yn

s −Ss)
− |2
)}1/2

+C

{
E

(
sup

0≤s≤T
|(Yp

s −Ss)
− |2
)}1/2

.(4.12)

Let us admit for the moment the following result.

Lemma 4.4. If g does not dependent on(Y,Z), then for each n∈ N
∗,

E

(
sup

0≤t≤T

∣∣(Yn
t −St)

−∣∣2
)
−→ 0, as n−→ ∞.

We can now conclude. Indeed, it follows from Lemma 4.4 that,

E

{
|Yn

s −Yp
s |2 +

Z T

t
‖Zn

s −Zp
s‖2ds

}
−→ 0, as n, p−→ ∞.

Finally, from Burkhölder-Davis-Gundy’s inequality, we obtain

E

(
sup

0≤s≤T
|Yn

s −Yp
s |2 +

Z T

t
‖Zn

s −Zp
s‖2ds

)
−→ 0, asn, p−→ ∞,

and from (4.7) we can deduce

E

{
sup

0≤s≤T
|Kn

s −Kp
s |2
)
−→ 0, asn, p→ ∞,

which provides that the sequence of processes(Yn,Zn,Kn) is Cauchy in the Banach space
E 2,m. Consequently, there exists a triplet(Y,Z,K) ∈ E 2,m such that

E

{
sup

0≤s≤T
|Yn

s −Ys|2 +

Z T

t
‖Zn

s −Zs‖2ds+ sup
0≤s≤T

|Kn
s −Ks|2

)
→ 0, asn→ ∞.

10



It remains to show that(Y,Z,K) solves the reflected GBDSDE driven by Lévy processes
(ξ, f ,φ,g,S). In this fact, since(Yn

t ,Kn
t )0≤t≤T tends to(Yt ,Kt)0≤t≤T uniformly in t in prob-

ability, the measuredKn converges todK weakly in probability, so that
R T

t (Yn
s− −Ss)dKn

s →
R T

t (Ys− −Ss)dKs in probability asn→ ∞. Obviously,
R T

t (Ys− −Ss)dKs ≥ 0, while, on the
other hand, for alln≥ 0,

R T
t (Yn

s− −Ss)dKn
s ≤ 0.

Hence
Z T

t
(Ys− −Ss)dKs = 0, a.s

Finally, passing to the limit in(4.10) we proved that(Y,Z,K) verifies (4.9) and is the solu-
tion of the reflected GBDSDE(ξ, f ,g,S) driven by the Lévy processes. We finally return to
the proof of Lemma 2.2.

Proof of Lemma 4.4.SinceYn
t ≥ Y0

t , we can w.l.o.g. replaceSt by St ∨Y0
t , i.e. we may

assume thatE(sup0≤t≤T S2
t ) < ∞. We want to compare a.s.Yt andSt for all t ∈ [0,T]. In

this, let us introduce the following processes




ξ := ξ+

Z T

t
g(s)dBs

St := St +

Z T

t
g(s)dBs

Y
n
t := Yn

t +
Z T

t
g(s)dBs.

Hence,

Y
n
t = ξ+

Z T

t
f (s,Yn

s− ,Zn
s)ds+n

Z T

t

(
Y

n
s− −Ss

)−
ds+

Z T

t
φ(s,Yn

s−)dAs−
m

∑
i=1

Z T

t
(Zn

s)
(i)dH(i)

s .

(4.13)
and we define Yt := sup

n
Y

n
t .

From Theorem 3.2, we have that a.s.,Y
n
t ≥ Ỹn

t , 0≤ t ≤T, n∈N
∗, where

{
(Ỹt

n
, Z̃n

t ), 0≤ t ≤ T
}

is the unique solution of the GBDSDE driven by the Lévy processes

Ỹn
t = ST +

Z T

t
f (s,Yn

s− ,Zn
s)ds+n

Z T

t
(Ss−Ỹn

s−)ds+
Z T

t
φ(s,Yn

s−)dAs−
m

∑
i=1

Z T

t
(Z̃n

s)
(i)dH(i)

s .

Now let G = (G t)0≤t≤T be a filtration defined byG t = F L
t ∨F B

T andν a G-stopping time
such that 0≤ ν ≤ T. Then, applying It formula tõYn

t e−n(t−ν), we have

Ỹn
ν = E

{
e−n(T−ν)ST +

Z T

ν
e−n(ν−s) f (s,Yn

s− ,Zn
s)ds+n

Z T

ν
e−n(ν−s)Ssds

+

Z T

ν
e−n(ν−s)φ(s,Yn

s−)dAs | Gν

}
.

It is easily seen that

e−n(T−ν)ST +n
Z T

ν
e−n(s−ν)Ssds→ Sν1{ν<T} +ST1{ν=T} a.s., and inL2(Ω)asn→ ∞,

11



and the conditional expectation converges also inL2(Ω). Moreover, we get

E

(
Z T

ν
e−n(s−ν) f (s,Yn

s− ,Zn
s)ds

)2

≤ C
2n

E

(
Z T

0
( f 2

s + |Yn
s |2 +‖Zn

s‖2)ds

)
,

and

E

(
Z T

ν
e−n(s−ν)φ(s,Yn

s )dAs

)2

≤ E

[
|AT |

(
Z T

0
(φ2

s +K2|Yn
s |2)dAs

)]
< C,

which provide

E

(
Z T

ν
e−n(ν−s) f (s,Yn

s− ,Zn
s)ds+

Z T

ν
e−n(s−ν)φ(s,Yn

s )dAs|Gν

)
−→ 0

in L2(Ω) asn→ ∞.
Consequently,

Ỹn
ν −→ Sν1{ν<T} +ST1{ν=T} inL2(Ω), asn→ ∞.

ThereforeYν ≥ Sν a.s. From this and the section theorem [4], we deduce thatYt ≥ St for
all t ∈ [0,T] and then

(Yn
t −St)

− ց 0, 0≤ t ≤ T, a.s.

Since(Yn
t −St)

− ≤ (St −Y0
t )+ ≤ |St |+

∣∣Y0
t

∣∣and the result follows from the dominated con-
vergence theorem.

Step2. The general case. In light of the above step, and for any(Ȳ, Z̄) ∈ S 2(R)×M 2(Rm),
the reflected GBDSDE driven by Lévy processes

Yt = ξ+

Z T

t
f (s,Ys,Zs)ds+

Z T

t
φ(s,Ys)dAs+

Z T

t
g(s,Ȳs)dBs−

m

∑
i=1

Z T

t
Z(i)

s dH(i)
s +KT −Kt

has a unique solution(Y,Z,K). So, we can define the mapping

Ψ : S 2(R)×M 2(Rm) −→ S 2(R)×M 2(Rm)
(Ȳ, Z̄) 7−→ (Y,Z) = Ψ(Ȳ, Z̄).

Now, let (Y,Z), (Y′,Z′) in S 2(R)×M 2(Rm) and(Ȳ, Z̄),(Ȳ′, Z̄′) in S 2(R)×M 2(Rm) such
that(Y,Z) = Ψ(Ȳ, Z̄) and(Y′,Z′) = Ψ(Ȳ′, Z̄′). Putting∆η = η−η′ for any processη, and
by virtue of Itô’s formula, we have

Ee−µt|∆Yt |2 +E

Z T

t
e−µs‖∆Zs‖2ds

= 2E

Z T

t
e−µs∆Ys

{
f (s,Ys− ,Zs)− f (s,Y′

s− ,Z′
s)
}

ds+2E

Z T

t
e−µs∆Ys

{
φ(s,Ys−)−φ(s,Y′

s−)
}

dAs

+2E

Z T

t
e−µs∆Ysd(∆Ks)+

Z T

t
e−µs

∣∣g(s,Ȳs−)−g(s,Ȳ′
s−)
∣∣2ds−µE

Z T

t
e−µs|∆Ys|2 ds.
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But sinceE

Z T

t
e−µs∆Ysd(Ks−K′

s) ≤ 0, then from(H2) there exists constantγ such that,

(µ− γ)E
Z T

t
e−µs|∆Ys|2 ds+

1
2

E

Z T

t
e−µs‖∆Zs‖2ds

≤ cE

(
Z T

t
e−µs|∆Ȳs|2 ds

)

Now chooseµ= γ+2c and define ¯c = 2c, we obtain

c̄E
Z t

0
e−µs|∆Ys|2 ds+

1
2

E

Z t

0
e−µs‖∆Zs‖2ds

≤ 1
2

(
c̄E

Z t

0
e−µs|∆Ȳs|2ds+

1
2

E

Z t

0
e−µs|∆Z̄s|2ds

)
.

Consequently,Ψ is a strict contraction onS 2(R)×M 2(Rm) equipped with the norm

‖Y,Z)‖2 = c̄E

Z t

0
e−µs|Ys|2ds+

1
2

E

Z t

0
e−µs‖Zs‖2ds

and it has a unique fixed point, which is the unique solution our BDSDE.
UniquenessAssume(Yt ,Zt ,Kt)0≤t≤T and(Y′

t ,Z
′
t ,K

′
t )0≤t≤T are two solutions of the re-

flected GBDSDE(ξ, f ,g,φ,S) driven by Lévy processes. Set∆Yt = Yt −Y′
t , ∆Zt = Zt −Z′

t
and∆Kt = Kt −K′

t . Applying It’s formula to(∆Y)2 on the interval[t,T] and taking expec-
tation on both sides, it follows that

E |∆Yt |2 +E

Z T

t
‖∆Zs‖2ds

= 2E

Z T

t
∆Ys( f (s,Ys− ,Zs)− f (s,Y′

s− ,Z′
s))ds+2E

Z T

t
|g(s,Ys−)−g(s,Y′

s−)|2ds

+2E

Z T

t
∆Ys(φ(s,Ys−)−φ(s,Y′

s−))dAs+2E

Z T

t
∆Ysd(∆Ks)

≤ 4c2
E

Z T

t
|∆Ys|2ds+

1
4c2E

Z T

t
| f (s,Ys− ,Zs)− f (s,Y′

s− ,Z′
s)|2ds

+βE

Z T

t
|∆Ys|2ds+cE

Z T

t
|∆Ys|2ds

≤ 4c2
E

Z T

t
|∆Ys|2ds+

2c2

4c2E

Z T

t
|∆Ys|2ds+

2c2

4c2E

Z T

t
‖∆Zs‖2ds

+βE

Z T

t
|∆Ys|2ds+cE

Z T

t
|∆Ys|2ds

≤ (4c2 +c+
1
2
)E

Z T

t
|∆Ys|2ds+

1
2

E

Z T

t
‖∆Zs‖2ds,

here we have used the assumption(H2), the inequality 2ab≤ a2

γ + γb2 (∀ γ > 0) and the
fact that

Z T

0
∆Ysd(∆Ks) ≤ 0.
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So, we have

E|∆Yt |2 ≤ (4c2 +c+
1
2
)E

Z T

t
|∆Ys|2ds.

Henceforth, from Gronwall’s inequality, it follows thatE|∆Yt |2 = E|Yt −Y′
t |2 = 0,0≤ t ≤T,

that is,Yt = Y′
t a.s. Then, we also haveE

R T
t ‖∆Zs‖2ds= E

R T
t ‖Zs−Z′‖2ds= 0 andZt =

Z′
t , Kt = K′

t follows. The proof is complete now.

5 Connection to reflected stochastic PDIEs with nonlinear Neu-
mann boundary condition

In this section, we study the link between reflected GBDSDEs driven by Lévy processes and
the solution of a class of reflected stochastic PDIEs with a nonlinear Neumann boundary
condition. Suppose that our Lévy processesL has bounded jump and has the following
Lévy decomposition:

Lt = bt+
Z

|z|≤1
z(Nt(.,dz)− tν(dz))

whereNt(ω,dz) denotes the random measure such that
R

Λ Nt(.,dz) is a Poisson process with
parameterν(Λ) for all setΛ (0 /∈ Λ).

Let Θ = (−θ,θ) ande : [−θ,θ] → R such thate(−θ) = 1 ande(θ) = −1. Consider the
following reflected SDE:

Xt = x+

Z T

t
σ(Xs−)dLs+ ηt, (5.1)

and

ηt =

Z t

0
e(Xs)d|η|s, with |η|t =

Z t

0
1{Xs∈∂Θ}d|η|s. (5.2)

Under adequate conditions (see [5] or [9]), there exists a unique pair of progressively mea-
surable processes(X,η) that satisfies(5.1) and(5.2), and for any progressively measurable
processV which is right continuous having left-hand limits and take its values inΘ̄, we
have

Z T

0
(Xs−Vs)d|η|s ≥ 0.

In order to attain our main result in this section, we give a Lemma appeared in [11].

Lemma 5.1. let c : Ω× [0,T]×R → R be a measurable function such that

|c(s,y)| ≤ as(y
2∧ |y|) a.s.,

where{as,s∈ [0,T]} is a non-negative predictable process such that E
R T

0 a2
sds< ∞. Then,

for each0≤ t ≤ T, we have

∑
t≤s≤T

c(s,∆Ls) =
m

∑
i=1

Z T

t
〈c(s, .), pi 〉L2(ν)dH(i)

s +

Z T

t

Z

R

c(s,y)dν(y)ds

14



Let l : R → R, h : [0,T]×R → R be continuous functions such that

(i) E
(
|l(XT)|2 +sup0≤t≤T |h(t,Xt)|2

)
< ∞,

(ii) l(x) ≥ h(T,x), for all x∈ R.

Next, consider the following reflected GBDSDE:

Yt = l(XT)+
Z T

t
f (s,Xs−Ys− ,Zs)ds+

Z T

t
φ(s,Xs− ,Ys−)d|η|s+

Z T

t
g(s,Xs− ,Ys−)dBs

−
∞

∑
i=1

Z T

t
Z(i)

s dH(i)
s +KT −Kt, 0≤ t ≤ T, (5.3)

such that the following holdsP-a.s

(i) Yt ≥ h(t,Xt), 0≤ t ≤ T,

(ii)
Z T

0
(Yt− −h(t,Xt))dKt = 0.

Define

u1(t,x,y) = u(t,x+y)−u(t,x)− ∂u
∂x(t,x)y,

whereu is the solution of the following reflected stochastic PDIE with a nonlinear Neu-
mann boundary condition:





min

{
u(t,x)−h(t,x),

∂u
∂t

(t,x)+a′σ(x)
∂u
∂x

(t,x)+ f (t,x,u(t,x),(ui (t,x))m
i )

+
R

R
u1(t,x,y)dν(y)+g(t,x,u(t,x))dBt

}
= 0, (t,x) ∈ [0,T]×Θ

e(x)
∂u
∂x

(t,x)+ φ(t,x,u(t,x)) = 0, (t,x) ∈ [0,T]×{−θ,θ},

u(T,x) = l(x), x∈ Θ,

(5.4)

wherea′ = a+
R

{|y|≥1} yν(dy), dBt = Ḃt denotes a white noise and

u(1)(t,x) =
R

R
u1(t,x,y)p1(y)ν(dy)+ ∂u

∂x(t,x)(
R

R
y2ν(dy))1/2

and for 2≤ i ≤ m, u(i)(t,x) =
R

R
u1(t,x,y)pi(y)ν(dy).

Suppose thatu is C 1,2 function such that∂u
∂t and ∂2u

∂x2 is bounded by polynomial function
of x, uniformly in t. Then we have the following

Theorem 5.2. The unique adapted solution of(5.9) is given by

Yt = u(t,Xt),

Z(1)
t =

Z

R

u1(t,Xt− ,y)p1(y)ν(dy)+
∂u
∂x

σ(Xt−)

(
Z

R

y2ν(dy)

)1/2

Z(i)
t =

Z

R

u1(t,Xt− ,y)pi(y)ν(dy), 2≤ i ≤ m,
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Proof. For eachn≥ 1, let{nYs,
nZs, 0≤ s≤ T} denote the solution of the GBDSDE

nYs = l(XT)+

Z T

s
f (r,Xr− ,nYr−,nZr)dr +n

Z T

s
(nYr− −h(r,Xr))

−dr

+
Z T

s
φ(r,Xr− ,nYr−)d|η|r

Z T

s
g(r,Xr− ,nYr−)dBr −

m

∑
i=1

Z T

s

nZ(i)
r dH(i)

r .

It is know from Hu and Yong [8] that

nYt = un(t,Xt),

nZ(1)
t =

Z

R

u1
n(t,Xt− ,y)p1(y)ν(dy)+

∂un

∂x
σ(Xt−)

(
Z

R

y2ν(dy)

)1/2

nZ(i)
t =

Z

R

u1
n(t,Xt− ,y)pi(y)ν(dy), 2≤ i ≤ m,

whereun is the classical solution of stochastic PDIE:




∂un

∂t
(t,x)+a′σ(x)

∂un

∂x
(t,x)+ fn(t,x,un(t,x),(u

i
n(t,x))

m
i )

+
R

R
u1

n(t,x,y)dν(y)+g(t,x,un(t,x))dBt = 0, (t,x) ∈ [0,T]×Θ

e(x)
∂un

∂x
(t,x)+ φ(t,x,un(t,x)) = 0, (t,x) ∈ [0,T]×{−θ,θ},

un(T,x) = l(x), x∈ Θ,

(5.5)

where fn(t,x,y,z) = f (t,x,y,z)+n(y−h(t,x))− .
Applying Itô’s formula toun(s,Xs), we obtain

un(T,XT)−un(t,Xt) =
Z T

t

∂un

∂s
(s,Xs−)ds+

Z T

t
e(Xs)

∂un

∂x
(s,Xs)d|η|s

+

Z T

t
σ(Xs−)

∂un

∂x
(s,Xs−)dLs

+ ∑
t≤s≤T

[un(s,Xs)−un(s,Xs−)− ∂un

∂x
(s,Xs−)∆Xs]. (5.6)

Lemma 4.1 applied toun(s,Xs− +y)−un(s,Xs−)− ∂un
∂x (s,Xs−)y shows

∑
t≤s≤T

[un(s,Xs)−un(s,Xs−)− ∂un

∂x
(s,Xs−)∆Xs] =

m

∑
i=1

Z T

t

(
Z

R

u1
n(s,Xs− ,y)pi(y)ν(dy)

)
dH(i)

+

Z T

t

(
Z

R

u1
n(s,Xs− ,y)ν(dy)

)
ds. (5.7)

Note that

Lt = Y(1)
t + tEL1 =

(
Z

R

y2ν(dy)

)1/2

H(1) + tEL1, (5.8)
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whereEL1 = a+
R

{|y|≥1} yν(dy). Hence, substituting(5.2), (5.7) and(5.8) into (5.6) to-
gether with(5.5) yields

l(XT)−un(t,Xt)

=
Z T

t

[
∂un

∂s
(s,Xs−)+ (a+

Z

|y|≥1
yν(dy))σ(Xs−)

∂un

∂x
(s,Xs−)+

Z

R

u1
n(s,Xs− ,y)ν(dy)

]
ds

+
Z T

t
e(Xs)

∂un

∂x
(s,Xs)1{Xs∈∂Θ}d|η|s

+

Z T

t

[
Z

R

u1
n(s,Xs− ,y)p1(y)ν(dy)+ σ(Xs−)

∂un

∂x
(s,Xs−)

(
Z

R

y2ν(dy)

)1/2
]

dH(1)
s

+
m

∑
i=2

Z T

t

(
Z

R

u1
n(s,Xs− ,y)pi(y)ν(dy)

)
dH(i)

s .

= −
Z T

t
f (s,Xs− ,un(s,Xs),(un(s,Xs))

m
i=1)ds+n

Z T

t
(un(s,Xs)−h(s,Xs))

−ds

−
Z T

t
g(s,Xs− ,un(s,Xs))dBs−

Z T

t
ϕ(s,Xs− ,un(s,Xs))d|η|s

+

Z T

t

[
Z

R

u1
n(s,Xs− ,y)p1(y)ν(dy)+ σ(Xs−)

∂un

∂x
(s,Xs−)

(
Z

R

y2ν(dy)

)1/2
]

dH(1)
s

+
m

∑
i=2

Z T

t

(
Z

R

u1
n(s,Xs− ,y)pi(y)ν(dy)

)
dH(i)

s .

From which passing in the limit onn, and using the previous section we get the desired
result of the Theorem.

Next, we give a example of reflected stochastic PDIEs with a nonlinear Neumann
boundary condition.

Example 5.3.Suppose the Lévy processL has the form ofLt = at+∑∞
i=1(N

(i)−αit), where
(N(i))∞

i=0 is a sequence of independent Poisson processes with parameters(αi)∞
i=0,(αi > 0).

Its Lévy measure isν(dx) = ∑∞
i=1αiδβi (dx), whereδβi denotes the positive point mass mea-

sure atβi ∈R of size 1. Furthermore, we assume that∑∞
i=1αi |βi |2 < ∞. Recall that this Lévy

process has only one jumps size and no continuous parts so that H(1)
t = ∑∞

i=1
βi√
αi

(N(i)
t −αit)

andH(i)
t = 0, i ≥ 2 (see [11]). Let(Y,Z,K) be the unique solution of the following reflected

GBDSDEs

Yt = l(XT)+

Z T

t
f (s,Xs−Ys− ,Zs)ds+

Z T

t
φ(s,Xs− ,Ys−)d|η|s+

Z T

t
g(s,Xs− ,Ys−)dBs

−
∞

∑
i=1

Z T

t
Z(i)

s d(N(i)
s −αis)+KT −Kt, 0≤ t ≤ T

such that the following holdsP-a.s

(i) Yt ≥ h(t,Xt), 0≤ t ≤ T,

(ii)
Z T

0
(Yt− −h(t,Xt))dKt = 0.
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Then

Yt = u(t,Xt),

Z(1)
t = α1u1(t,Xt− ,β1)p1(β1)+ σ(Xt−)

∂u
∂x

(t,Xt−)

(
∞

∑
i=1

αi |βi |2
)1/2

Z(i)
t = αiu

1(t,Xt− ,βi)pi(β), i ≥ 2,

whereu is the solution of the following reflected stochastic PDIEs with a nonlinear Neu-
mann boundary condition:





min

{
u(t,x)−h(t,x),

∂u
∂t

(t,x)+a′σ(x)
∂u
∂x

(t,x)+ f (t,x,u(t,x),
∂u
∂x

(t,x))

+∑∞
i=1 αiu1(t,x,βi)+g(t,x,u(t,x))dBt

}
= 0, (t,x) ∈ [0,T]×Θ

e(x)
∂u
∂x

(t,x)+ φ(t,x,u(t,x)) = 0, (t,x) ∈ [0,T]×{−θ,θ},

u(T,x) = l(x), x∈ Θ.
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