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Abstract

In this paper, a class of reflected generalized backwardlgastdichastic differen-
tial equations (reflected GBDSDEs in short) driven by Tesigehrtingales associated
with Lévy process and the integral with respect to an adhptatinuous increasing
process is investigated. We obtain the existence and umigseof solutions to these
equations. A probabilistic interpretation for solutionsa class of reflected stochas-
tic partial differential integral equations (PDIEs in st)awith a nonlinear Neumann
boundary condition is given.

AMS Subject Classification: 60H15; 60H20

Keywords: Reflected backward doubly SDEs, stochastic partial difféal integral equa-
tion; Lévy process; Teugels martingale; Neumann boundanglition.

1 Introduction

Backward stochastic differential equations (BSDESs, inrBHoave been first introduced
by Pardoux and Peng [13] in order to give a probabilistic ripetation (Feynman-Kac
formula) for the solutions of semilinear parabolic PDE< oan see Peng ]17], Pardoux and
Peng [14]. Recently, a new class of BSDEs, named backwardlylstochastic differential
equations (BDSDEs in short) has been introduced by PardodxPang [15] in order to
give a probabilistic representation for a class of quasilinstochastic partial differential
equations (SPDEs in short). Following it, Bally and Matayg} gave the probabilistic
representation of the weak solutions to parabolic senalirf®PDEs in Sobolev spaces by
means of BDSDEs. Furthermore, Pardoux and Zhfifg [16] gavebaiilistic formula for
the viscosity solution of a system of PDEs with a nonlineaufann boundary condition
by introducing a generalized BSDEs (GBSDEs, in short) wineblved an integral with
respect to an adapted continuous increasing process. téisséan to an obstacle problem
for PDEs with a nonlinear Neumann boundary condition wasrgin Ren and Xia[[20] by
reflected GBSDEs. Motivated by the above works, especiaflffflf] and [1], Boufoussi
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et al. [3] recommended a class of generalized BDSDEs (GBxSbEhort) and gave the
probabilistic representation for stochastic viscositiusons of semi-linear SPDEs with a
Neumann boundary condition. The main tool in the theory oDBS is the martingale

representation theorem, which is well known for martingakech adapted to the filtration

of the Brownian motion or that of Poisson point process (Baxdand Peng[[33], Tang

and Li [21]) or that of a Poisson random measure ( see Oukfidp.[ Recently, Nualart

and Schouteng [L0] gave a martingale representation timeassociated to Lévy process.
Furthermore, they showed the existence and uniquenessuibss to BSDES driven by

Teugels martingales associated with Lévy process with emsnof all orders in[[11]. The

results were important from a pure mathematical point ofnwées well as in the world of

finance. It could be used for the purpose of option pricing lcesy market and related

PDEs which provided an analogue of the famous Black-Scholesula. Further, Hu and

Yong considered respectively BDSDEs and generalized BD&en by Lévy processes
and its applications i8] and T1L9].

Motivated by the above works, especially hy][19] the purpaistae present paper is to
consider reflected GBDSDES driven by Lévy processes of ité ¢onsidered in Nualart
and Schoutend [[L0]. Our aim is to give a probabilistic intetgtion for the solutions to a
class of reflected stochastic PDIEs with a nonlinear Neunbaamdary condition.

The paper is organized as follows. In Section 2, we introddarae preliminaries and
notations. Section 3 is devoted to GBDSDEs driven by Léwgesses and the comparison
theorem related to it. In Section 4, we give existence andueriess result for the reflected
GBDSDE. Finally Section 5 point out a probabilistic interfation of solutions to a class
of reflected stochastic PDIEs with a nonlinear Neumann bagndondition.

2 Preliminaries and Notations

The scalar product of the spa&(d > 2) will be denoted by< . > and the associated
Euclidian norm byj|.||.

In what follows let us fix a positive real numb@&r> 0. Let (Q,# ,P,#,B;,Li:t €
[0,T]) be a complete Wiener-Lévy spaceink R\ {0}, with Levy measure, i.e. (Q, 7 ,P)
is a complete probability spacéy; :t € [0,T]} is a right-continuous increasing family of
complete sulp-algebras off, {B; :t € [0,T|} is a standard Wiener process with
respect to{ # :t € [0,T]} and{L; :t € [0,T]} is aR-valued Lévy process independent of
{B: :t € [0,T]}, which has onlymjumps size and no continuous part and corresponding to
a standard Lévy measuvesatisfying the following conditions: [ (1A y)v(dy) < co,

Let 20 denote the totality oP-null sets off . For eacht € [0, T], we define that

Fo=F"V AT

where for any procesf}, Fsi = 0(Nr —Ns,S< 1 <t)VA(, " = Fq}.

Let us remark that the collectidh= { #;, t € [0, T]} is neither increasing nor decreasing
and it does not constitute a filtration.

We denote byH 1)~ the Teugels Martingale associated with the Lévy prodéss
t € [0,T]}. More precisely

HO = ¢ YW YD 4o Y™
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wherey," = Li —E(L}) = L{ —tE(L{) for all i > 1 andL{ are power-jump processes. That
is Lf = Ly and L} = So.st(ALs) for all i > 2, whereX = limg 1 Xs and A% = X —
Xi-. It was shown in Nualart and Schouteiis] [10] that the coeffisig x correspond to
the orthonormalization of the polynomialsxix?, ... with respect to the measurgdx) =
X2dv(X) + 0280 (dx):
Gi1(X) = GiiX T GioiX 2+
We set
Pi(X) =XG-1(X) = CiiX +Cij_1X 1+ 4G axt.
The martingalgH ());~1 can be chosen to be pairwise strongly orthonormal martngal

Remark2.1 1. If ponly has mass at 1, we are in the Poisson case; Hi@r& 0,i =
2,---. This case is degenerate in this Lévy framework

2. Generally, if the Lévy procedshas onlymdifferent jump sizes, then

(YH® =0,¥ k> m+1, if L has no continuous part;
(iVH® =0,v k> m+2, if L has continuous part.

In the sequel, lefA;, 0<t < T} be a continuous, increasing aRehdapted real valued
with bounded variation of0, T| such thatAy = 0.
For anyd > 1, we consider the following spaces of processes:

1. o ?(RY) denote the space of real valued, square integrableraspdedictable pro-
cesse® = {¢;t € [0,T]} such that

191122 =E fg I¢c]?dt < oo,
2. $2(R) is the subspace afr 2(R) formed by ther;-adapted processes= {¢;;t €
[0,T]} right continuous with left limit (rcll) such that
2 2 T2
012 = sup o7+ [ IaPan ) <
o<t<T 0
3. ﬁlz(]R) is the set off;-measurable, continuous, real-valued, increasing psafes
{¢¢;t € [0, T]} such thaKg = 0, E|K7|? < o

Finally we denote bye 2™ = s2(R) x & 2(R™) x 42(R) endowed with the norm

T T
02012 =5 (sup P [ IvEan+ [z )
o<t<T 0 0
Then, the coupléz?™,||.||.2m) is @ Banach space.
To end this section, let us give following needed assumption

(H1) & is a square integrable random variable whichrismeasurable such that for all
u>0
E (€7 [€]%) < 0.



(H2) f:OX[0,T|xRxRM"-R,g:Qx[0,T|xR—R,and@: Qx[0,T] xR — R, are
three functions such that:

(a) There existri-adapted processés;, @, g : 0 <t < T} with values in[1, +)
and with the property that for anft,y,z) € [0,T] x R x RY, andp > 0, the
following hypotheses are satisfied for some strictly pesifinite constank:

( f(t,y,2), @(t,y), andg(t,y, z) areF;-measurable processes
[T(t,y.2)| < fe+K(lyl + 1|2]),
ot y)| < @ +Klyl,
9(t,y)] < g +Klyl,
T T T
E(/ g ftzdt+/ e“’*g?dt+/ e“’*qfdA> < oo,
0 0 0

(b) There exist constants> 0,3 < 0 and 0< a < 1 such that for anyyi,z1), (Yo, 22) €
R x RM

(I) ’ f(t7y17zl) - f(t7y2722)’2 < C(‘yl _y2’2+ HZ]_ - 22H2)7

(i) |g(t,y2) — 9(t,y2) |2 < cly1 — Y2/,

(iii ) (y1— Y2, @(t,y1) — @(t,y2)) < Blyr —y2|%.

(H3) The obstacle{S,0<t < T}, is a #-progressively measurable real-valued process
satisfying

E( sup |$+|2> < o,

o<t<T
We shall always assume that < € a.s.

3 Generalized backward doubly stochastic differential eqations
driven by L évy processes

In this section, we present existence and uniquenesssdsulGBDSDES driven by Lévy

processes and we prove a comparison theorem which is antampaool in the proofs

for results of Sections 4. The existence and uniquenes# issudirect consequence of
Theorem 3.2 in[[8].

Proposition 3.1. Given standard parametéE, f,@,g), there existgY,Z) € s2(R) x o 2(R™)
to the following GBDSDESs driven by théky processes

T T T
Yo &+ [ fsYe Zgdst [ s ¥ )dA+ [ glsYs )dBs

m T . .
_Z/ Z0dH) o<t<T. (3.1)
=7/t
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Here the integral with respect toB; } |s the classical backward @tintegral (see Kunita

[F) and the integral with respect t(@Ht } is a standard forward f&-type semimartingale
integral.

The comparison theorem is one of the principal tools in tkeeties of the BSDEs. But
it does not hold in general for solutions of BSDESs with jumgsg the counter-example in
Barles et al. [[2]). In the following we prove, with the addital property of the jumps size,
the comparison theorem for solution of GBDSDES driven byyLgrocesses. Let note that
in the standard BSDE case ge= ¢ = 0, comparison theorem has already been established
by Qing Zhou [1B] with this property of jumps size.

Theorem 3.2. Assume that L has only n different jump sizes and has no cantinpart. Let
(&1, f1,0,0) and (€2, f2,¢,g) be two standard parameters of BSI¥EZ) and let(Y?!,Z1)
and (Y?,Z?) be the associated square-integrable solutions. Suppasge th

1. 81 >¢2 P as.,
2. fli(t,y,2) > f(t,y,2), P a.s. forallyc R, zc R™

_ f(taYtgazt(i_l)) - fz(t>Ytg>2t(i))

3. P= 720 _ 720 Lz 220 40)
where
yi. (zz<1>7 72 ... Z720) Zi+1) Zl(n))
yAR (zzm, 722) ... Z720-1) Z10) ZAi+1) zl(n)) ,

satisfying thatZlBtAHt > —1, dt®@dP a.s. Then we have that almost surely for any time
t, ;! > Y2 and that ifP(&! > &2) > 0 thenP (Y > ¥;2) > 0.

Proof. Denote

E = 28 %=Y-¥ G=W-V 2=7-2Z
ﬂ = fl(taYtzath)—fz(t>Yt2>th)a
and
& = [fl(t7Ytl Ztl) - fl(t Yt27ztl)]/(Ytl_Yt2)1{Ytl¢Y3}7
b = [0t %) — ot ¥2))/ (% =Y Liyaavey
a = [9tYH) -9t Y]/ (% —Y) Ly ey
Then

S S R AU "oy Ty S [ 20 gH0)

% = E+/ sl + 3 B +fs]ds+/ bsstdAer/ chsst—Zl/ 20 dH
t i= t t =/t

is a linear GBDSDE driven the Lévy processes.
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t
Letl; = 1+/ Is-dXs, where
0

t t t t m t . .
x[:/ asds+/ bsdAer/csst—/ o Pds+ 21/ BLdH.
0 0 0 0 4 Jo

m . )
Then we havelX; = ZIB{AHt(') > —1. Note thatja| <C, |x| <C, |a| <C, |B] <C,
i_

forall 0<t<T, as.,i= 1,---,m. Then by the Doléans-Dade exponential formula
and the Gronwall inequality, we conclude tHat> 0 and suggthE[rtz] < C;. Thus,

E[ j’OT I'g,ds] < C1, whereC; is a positive constant. Then applying 1td’s formulaltgYs
froms=ttos=T, it follows that

N n T R R T . T "
Me&—ri, = /t ststdYs—i—/t Ygrsfdrs—i—/t dir,Yls
T R mo T . T
- - ry[asvyfzglszgufs]ds_ | robsda— [ 1o Y B,
=
m T N7 . T T . T .
+3 [ re2dant s [Caforodst [ Yoo b [ VT odB
i=
+i/&J&@@+ig/%ﬁ%%WQW%
i=1/t i=1j=1"1
_ _/T oS B2 1 fldst 3 /T ro 20aH0 + 3 /T\?TrgB‘SngD
t i; iZl t iZl t
+i§/ww%%mﬂw% (3.2)
i=1j=1 t
L . A N N0 ALRELINS i)
By Davis’s inequality, we knowthaEi/t s Zs’dHs andXi/t Ys s BsdHs’ are mar-
i= =

moT m T
tingales. Sincezl/ 72{dHd" and ZI/ s pidH are square integrable martingales,
=17/t = A

we have

m m T .
E ZZ/ rs B2ZVdHO HO 7| = E
[i— P s Bs S [ ]S‘ t

= E

m m AT i5(0) ' .
53 [ Mo 2RO HO )
i=1j=1 t

§ [rsit]

Thus, from(@), and taking conditional expectation w.r#., we conclude that

~ ~ T ~
N, =E [FTE-F/t s fsdqft] > 0.

Itis clear that% > 0 and that ifP(§ > 0) > 0 thenP(%; > 0) > 0. The proof of the theorem
is complete. O



4 Reflected generalized backward doubly stochastic differgial
equation driven by Lévy processes

This section is devoted to the study of reflected GBDSDEsedrivy the Lévy processes
(B-2), one of our main goal in this paper. First of all let us give firdéon to the solution
of this reflected GBDSDESs driven by Lévy processes.

Definition 4.1. By a solution of the reflected GBDSDE, f,®,g,S) driven by Lévy pro-
cesses we mean a triplet of procesgé¥,K) € £, which satisfied

T T T
Yo= t+ [ f(sYe Zgdst [ es Y )dA+ [ glsYs)de:
o] T . .
—ZI/ ZVdHY Ky — Ky, 0<t<T. 4.1)
=7/t

such that the following holdB-a.s
(H%=>8, 0<t<T,

(ii)/OT(Yt—s)th:o.

In the sequelC denotes a finite constant which may take different values fiine to
line and usually is strictly positive.

Theorem 4.2. Under the hypothesg$11), (H2) and (H3), there exists a unique solution
for the reflected generalized BDSDE f,@,g,S) driven by levy processes.

Our proof is based on a penalization method from EI Karoul f]a
For eachn € N* we set

fn(S, Y, Z) - f(S, Ys Z) + n(y_ %)7 (42)

and let(Y",Z") be the#;-progressively measurable process with valueR inR™ unique
solution of the GBDSDE with&, f,,g) driven by the Lévy processes. It exists according to
Proposition 3. So

i
i ( sup N+ [ 1280 s) <o
o<t<T 0

and
T T T
Y= €+/t f(s,YS’l,ZQ)der/t (Ys’l—ss)‘der/t oYM )dA
T m T .
n _ 7 (0) Hs(l)- 4.
+[ gsvyde- s [0 @3)
Set
t
K{‘:n/ (Yo =) ds 0<t<T. (4.4)
0

In order to prove Theorein 4.2, we state the following lemnaa will be useful.
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Lemma 4.3. Let us considefY",Z") € s2(R) x ¢ 2(RM) solution of GBDSDE.J). Then
there exists C> 0 such that,

T T
supk ( sup 1+ [ P aA [ [2217ds KPR <c
neN*  \0<t<T t t

Proof. From 1t0’s formula, we have
\AEEEH +2/ Y2 (s YL,Z9) ds+2/ @(s, Y2 )d
+/ lg(s,YQ)| 2ds+2/ Y2 dKe +2/ 2g(s, Y2 )dBs
t
< [' D) < i ORI
—2ZI/t Y2 (Z20)DdHY) — > /t Dz D d[Hs", He"). (4.5)
i= i,]=1

Note thatf;" ¥/ g(s, Y )dBs, ;7Y (Z0)DdH, fori > 1 and ;T (Z0)® (z0)Dd[HS H]

S

fori # j are uniformly integrable martingales. Taking the expéatatwe get

B2+ [ [Z0)Pds

< \E\2+2E/tTYS” (s,Y",ZD) ds+2E/ Y2 (s YD )dAs

+E/tT 9(s,Y™)|2ds+ ZIE/t yn

T

where we have use}{ (Y2 — S)dKS < 0 and the fact that

T T T T

[ ek = [0 -s)dkd+ [ sk < [ Sk,

Using (H2) and the elementary inequalitgB < ya? + 1b2, vy >0,

Y0 f(s Y, 28) < (cvl+ )\Y”\2+2cvl\\Z”H2+2vl

IN

2stq)(vasn) (Vz - Z‘BD ’st’2 + %(pi
(s YOPP < 20Y*+ 268

Taking expectation in both sides of the inequalfty](4.5) endosingy; = %: Y2 = |B|, we
obtain for alle > 0

n2 T ni2 1 T np2
ENCP+BE [ VPdA+E [ 20 ds

t 1 t {
gcn«:{yzyz+/o yvs“yzds+/0 fszds+/0<p§dAs+/Og§ds}

+ g  SUp(S)2) + 8B (0 - K. (4.6)

0<s<t



On the other hand, we get frorh (4.3) that for akk@ < T,

t t m t . .
=Y &~ / (8.Ysh, Zg)ds~ / O(s Y& )dA — /0 9(s Y2 )dBs + Zi/o (20 DdH.
. (4.7)
So by used standard computations, we get

t t t t
E(K$—Kt”)2SCE{!E!2+/O f§dS+/o <p§dAs+/o 95d8+/0 ¥s|*ds

t t
+E<sup($)2> +/ \Ys”\szer/ HZQHst}. (4.8)
0<s<t 0 0

Substituting Equatiori.§) to Equation(#.6) and choosing small enough such tha€ <
min(1/2,|B|), yields

T T
B{pees [ veranc [ 12as+ ke
T T T
gCE{]E!ZJr/ fszds+/ cpgdAs+/ s+ sup(s+)2}.
0 0 0 0<t<T
From this, Gronwall’s inequality and the Burkholder-Da@sindy inequality [[4], we get
T T T
B{ sup P+ [ 12ds s kah < cr{iP | dss [ an
o<t<T t
+ [ s sup (5177,
o<t<T

which end the proof of this Lemma. O

Proof of Theorerh 4} 2ExistenceThe proof of existence will be divided in two steps.
Stepl. g does not dependent @i, Z). More precisely, we consider the following equation

T T T
Y%= &+ [ f(sYs Zgdst [ esYe )dA+ [ o(s)dBs
m T . .
—Z/ ZVdH 1Ky — K, 0<t < T. (4.9)
=t
The penalized equation is given by
T
Y = E+/ f(sYl,Zd) ds+n/ (YSQ—SS)*der/ (s, Y2 )dA
t
+/ g(s)st—Z/ ZHdHd, o<t <T. (4.10)
t =17/t

Since the sequence of functiofs— n(y— S)~ )n>1 is nondecreasing, then thanks to the
comparison theorerh 8.2, the seque¢®),,_, is non-decreasing. Hence, Lemfng 4.3 im-
plies that there existsa - progressively measurable proc&ssuch that" ,Y; a.s. Recall

9



thaty" Y a.s. Then, Fatou's lemma and Leminal4.3 ensure
i ( sup M) < o
0<t<T

It then follows from Lemmé 4]3 and Lebegue’s dominated cayeece theorem that
T
E(/ \Ys”—Ys\zds> — 0, asn— oo. (4.11)
0
Next, forn> p > 1, by 1td’s formula and together with assumptidit?), yields
n p|2 T n p|2 T n p|(2
E ‘Yt —Yt | + A |Ys _Ys | dAS"’ " ||Zs_ZsH ds
T
< CE {/ ‘st _Ysp‘zds"i‘ sup (st - SS)_ K1F')+ sup (Ysp - Ss)_ K?} )
t 0<s<T 0<s<T
which, by Gronwall lemma, Holder inequality and Lemfng 48pectively, implies

. 1/2
e{pe-wf+ [ 1z-22tes) < cfe( swior-s)p))

0<s<T

+C{E ( sup |(YP-S)~ ’2> }1/2(4.12)

0<s<T
Let us admit for the moment the following result.
Lemma 4.4. If g does not dependent @i, Z), then for each re N*,
E< sup \(Yt”—S)\z> — 0, as n— o,
0<t<T

We can now conclude. Indeed, it follows from Lemmd 4.4 that,
T
E { YD —YP|2 4 / 128 — ZEHst} — 0, asn,p— .
t
Finally, from Burkholder-Davis-Gundy’s inequality, wétain

.
i ( sup NP+ [ 20~ 28]7ds) — 0. asnp— e
0<s<T t
and from [4.J7) we can deduce
IE{ sup |KQ—KSP|2> —0, asn,p — o,

0<s<T

which provides that the sequence of proceg¥®sz", K") is Cauchy in the Banach space
£2M, Consequently, there exists a trip(#t Z,K) € £2™ such that

;
IE{ sup |Ys”—YS|2+/ 120 — Z¢|?ds+ sup |K;‘—Ks|2> — 0, asn — .
t 0<s<T

0<s<T

10



It remains to show thatY,Z,K) solves the reflected GBDSDE driven by Lévy processes
&, f,9,0,9). In this fact, sincegY;", K{")o<t<T tends to(Y;, Kt)o<t<t uniformly in t in prob-
ability, the measurdK" converges talK weakly in probability, so thaf;T (Y2 - S)dKS —
ft (Ys —S)dKs in probablllty asn — oo, Obwously,ft (Ys- — S5)dKs > 0, while, on the
other hand, for alh > 0, ft (Y2 - S)dKg <0.

Hence

)
/( _S)dKs=0, as
t

Finally, passing to the limit irfd.10) we proved thaty, Z,K) verifies [4.p) and is the solu-
tion of the reflected GBDSDE, f,g,S) driven by the Lévy processes. We finally return to
the proof of Lemma 2.2.

Proof of Lemma 4]4SinceY;" > Y, we can w.l.o.g. replac& by S VvY?, i.e. we may
assume tha (sug<1 §) < . We want to compare a.&; and§ for all t € [0,T]. In
this, let us introduce the following processes

—z+/ g(s
S:= s+/g s)dB
Yi=Y" +/ g(s)dBs.
Hence,
V{‘:E+/tT f (s,Ys“,ZQ)dstn/tT (Y2 —?s)_ds+/tT q)(s,Ys”)dAs—_ZmJtT(ZQ)(”st(”-

(4.13)
and we define Y, := sup;.
n

From Theoren 3]2, we have thata¥§. > Y;", 0<t <T,ne N*, Where{ ".ZM, 0<t< T}
is the unigue solution of the GBDSDE driven by the Lévy prsas

. _ . T m T _ . .
Y= sT+/ f(s,Y",zZ0 ds+n/ (Ss—Ysﬂ)ds+/ cp(s,YsD)dAs—Z/ ZDDdH.
t =/t

Now let G = (Gt)o<t<T be a filtration defined by = 7.t v 78 andv a G-stopping time
such that 0< v < T. Then, applying It formula t&;"e "*-V), we have

YP = { n(T—v) ST+/ f(sY! Z”)ds+n/ e "V-95ds
i [eme S<p<s,Y”>dAsrgv}
It is easily seen that

T
e NT-Vg 4 n/ e "5 VSds— § 1.1y + Srlp_1) s, and inL3(Q)asn — o,

\
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and the conditional expectation converges alsc?iif2). Moreover, we get

T 2 T
E(/ e-”<S—V>f(s,Y§,zQ)ds> < %E(/ (f§+yvs”\2+uzguz)ds>,
Y 0

and

E( [ e vgsndA 2 < el ([ @+ kavepon)] <c
/ J

which provide
T T
E ( / e "VIf(s YN, Z0)ds+ / e”(s")m(s,Ys”)dAs]gv> —0
\Y) \Y)

in L?(Q) asn — oo,
Consequently,

an — S}l{v<T} —i—érl{\,:-r} in LZ(Q), asn — oo,

ThereforeY, > S, a.s. From this and the section theor¢in [4], we deducerthas§ for
allt € [0,T] and then

%"'—=8)"\.0, 0<t<T, as

Since(\"-S)” < (S -Y)* <|S|+|¥?|and the result follows from the dominated con-
vergence theorem. O

Step2. The general case. In light of the above step, and for(8r¥) € 52(R) x ar 2(R™),
the reflected GBDSDE driven by Lévy processes

T T T _ m T . .
YtZEJr/t f(s,Ys,Zs)dSJr/t <p(s,Ys)dAs+/t g(s,Ys)st—Z/t ZVdHY + Ky — K
=

has a unique solutiofY,Z,K). So, we can define the mapping

W: $2(R)x M2(R™M) — $2(R) x M 2(R™M)

,2) — (Y,2)=W¥(Y,2).
Now, let (Y,Z), (Y',Z) in s2(R) x a 2(R™) and (Y, Z), (Y’,Z’) in s2(R) x ar 2(R™) such

that(Y,Z) = W(Y,Z) and(Y’,Z") = W(Y’,Z’). PuttingAn = n —n’ for any process), and
by virtue of Ité’s formula, we have

.
Ee*“‘|AYt|2+E/ e 19|AZg||%ds
t
T T
=2E / e N {f(sYs,Z) ~ f(s V', Zs) fdst 28 / e M AYs {@(s.Ys) —@(sY's) } dAs
t t
T T _ _ T
+2E/ e‘“SAYSd(AKS)Jr/ e‘“5|g(s,st)—g(s,Y’§)|2ds—pE/ e *S|AYy[ds
t t t
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T
But sinceE / e MAYsd(Ks — K{) <0, then from(H2) there exists constantsuch that,
t

T 1 T
(H—Y)E / e 5(aY, s+ S / e 9|AZ4)2ds
t t

T 72
<cE </ e HS|AYy| ds)
t

Now choosai = y+ 2c and definec = 2c, we obtain

ot 1.t
ek / & S|AYy P ds+ SF / e 5)|AZ4)2ds
0 0

1/ _ 1t _
<z CIE/ e—“SyAYsyzds+—E/ e 1|aZ,2ds) .
2 0 2 Jo

ConsequenthiV is a strict contraction og?(R) x » ?(R™) equipped with the norm

ot 1t
V,2)|2= €8 [ e ¥¥eP st SE [ e zs|ds

and it has a unique fixed point, which is the unique solutionBIDSDE.
UniquenessAssume(t, Z;, Ki)op<1 and(Y/,Z{,K{)o<t<T are two solutions of the re-
flected GBDSDHEZE, f,g,,S) driven by Lévy processes. S&Y; =Y, — Y/, AZ = Z — Z/

andAK; =

K¢ — K{. Applying It's formula to(AY)? on the intervalt, T] and taking expec-

tation on both sides, it follows that

IN

IN

<

IE|AYt|2+IE/tTHAZsH2dS

2 [ AVt .20~ f(s%, Z)ds+ 28 [ fg(s¥s ) (s ¥, )P ds
+2E /t " AYU(@(s Yo ) — @S Y ))dA + 2E /t " Avd(aKe)

4c2E/tT IAY,2ds+ %E/t”f(s,Yy,Zs)— f(sY.,Z))|%ds

+BE/tT |AY,|*ds+ cIE/tT |AY|?ds

4(:2E/tT IAY.2ds+ %’21@[ IAYs2ds+ i—gE/tT 1Z4| %ds

+BE /t " Ay 2ds+ R /t " 1avy2ds

2 1 T 2 1 T 2
(4c +c+§)E/t IAY.2ds+ EE/t 1AZ4)|2ds

here we have used the assumpt{dt®), the inequality 2b < a724—yb2 (Vy>0) and the

fact that

)
/ AYd(AKs) < O,
0

13



So, we have

1 T
E|AY 2 < (4c2+c+—)E/ |AYs|?ds

Henceforth, from Gronwall’s inequality, it follows thEi1A\(t|2 ElY, -Y/[?=0,0<t<T,
that is,Y; =Y/ a.s. Then, we also ha ;' |AZs|2ds=E [;" ||Zs— Z||?ds= 0 andz; =
Z{, Ky = K{ follows. The proof is complete now. O

5 Connection to reflected stochastic PDIEs with nonlinear Ne
mann boundary condition

In this section, we study the link between reflected GBDSDied by Lévy processes and

the solution of a class of reflected stochastic PDIEs with@inear Neumann boundary

condition. Suppose that our Lévy processebBas bounded jump and has the following
Lévy decomposition:

L =bt+ Z(N¢(.,d2) —tv(d2))

l4<1
whereN; (w, dz) denotes the random measure such fR&t (., dz) is a Poisson process with
parametep(A) for all setA (0 ¢ A).
Let© = (—6,0) ande: [—6,8] — R such thate(—06) = 1 ande(8) = —1. Consider the
following reflected SDE:
_x+/ o )dLe+ N, (5.1)

and

t t
mzﬁd&MMMWMWZAH&mMMS (5.2)

Under adequate conditions (s¢k [5][dr [9]), there existsiquenpair of progressively mea-
surable processéX,n) that satisfiegp.1) and(b.2), and for any progressively measurable
processV which is right continuous having left-hand limits and take values in®, we
have

T
|| (x=Voydins >0
In order to attain our main result in this section, we give anbea appeared iff [[L1].

Lemmab5.1. letc: Q x [0,T] x R — R be a measurable function such that

Ic(sy)| < as(YPAly]) as,

where{as,s € [0,T]} is a non-negative predictable process such thg§ B2ds < . Then,
foreach0<t < T, we have

c(s,ALs) = Z/ ), P2 st +// (s,y)dv(y
tgg

14



Letl :R— R, h:[0,T] x R — R be continuous functions such that
(1) E (|1 (%7) 2 + Supy<y< [(t, %) 7) < o,
(i) 1(x) > h(T,x), forall xeR.

Next, consider the following reflected GBDSDE:

T T T
Yy = I(XT)"'/t f(S?XYYTaZS)dS_F/t ¢(S,X§,Ys*)d|n|s+/t o(s, Xs-,Ys-)dBs
e [0
—Zl/ ZVAHY £ K — Ky, 0<t<T, (5.3)
=/t

such that the following holdB-a.s
()Y >h(t,X), 0<t<T,

@) [ (% it x)dk =0
Define

Ul(t,X7y) = U(t,X+ y) - U(t,X) - %(Lx)yv

whereu is the solution of the following reflected stochastic PDIEhaé& nonlinear Neu-
mann boundary condition:

Ju

ou ou
0X

3t (t,%) + f(txu(t, %), (U (t, %))

min{u(t,x)—h(t,x) (t,x) +ao(x)

+ [r UMt X, y)dv(y) +9(t,x u(t,x))dB } =0, (t,x) €[0,T]x© 60
5.4
ou

E(X)&(t,X)—F(p(t,X,U(t,X)) =0, (t,X) € [O’T] X {_e’e}a

L u(T,x) =1(x), xe0,
wherea’ = a+ [(~1y W(dy), dB = B; denotes a white noise and

B (t,%) = fp uh(t,x,y) P(y)V(dy) + 5t X) (JaYPv(dy))Y?

and for 2<i <m, ul(t,x) = f ul(t,x,y)pi (y)v(dy).
Suppose that is ¢ 12 function such tha% and% is bounded by polynomial function
of x, uniformly int. Then we have the following

Theorem 5.2. The unique adapted solution (8.9) is given by
Yo = u(t,X),

12
20 =[x yptvy + Sk ([ yviey)

zV = /Rul(t,&,y)pi(y)V(dy),2§i§m,

15



Proof. For eacm > 1, let{"Ys,"Zs, 0 < s< T} denote the solution of the GBDSDE

T T
, — |(xT)+/ f(r,er,”er,”Zr)dr+n/ (™, —h(r, %)) dr

T T m T
+ [ o™il [ g(r,xr,”\(r)da—z/ nZ0dH)
S S i=1vS

It is know from Hu and Yong([]8] that

o= un(t,X),

1/2
7 =[x vy + Goo) [ vuiay)
7 = [ WX ypyvEy, 2<i<m

whereu,, is the classical solution of stochastic PDIE:

ran

- (6,X)+ Folt, X Un(t, ), (U ()"

—(t,x) +a a(x )aa—
+ Jr Un(t, X, Y)dv(y) +9(t, X, U (t,X))dB = 0, (t,x) € [0,T] x©
(5.5)

e(x )aau” (t,X) + @(t,X, un(t,x)) =0, (t,x) € [0, T]x {—6,6},

un(T,x) =1(x), x€0,

where fo(t,x,y,2) = f(t,X,y,2) + n(y—h(t,x)) .
Applying Itd’s formula tou,(s, Xs), we obtain

T
Un(T, X7) —un(t,X) = aun(sxs d5+/ Xs (st)d|r]|s

t
+/ X )dLe

vy [un<s,xs>—un<s,xs>—%<s,xs)Axs]. 5

t<s<T
Lemma 4.1 applied ton(s,Xs- +Y) — Un(S, Xs- ) — "”" (s, Xs- )y shows

Odun

tSSZST[Un(S,Xs)_Un(S,Xy)_ oy (5% O] Z/ </ Sxy,y)pl(y)v(dy)> dHO

+/ (/ (8 Xs-,y)v (dy)>ds (5.7)

Note that

1/2
L =YY +tEL, = < / yzv(dy)> H® 4 tELy, (5.8)
R
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whereEL; = a+ [;,>1; yv(dy). Hence, substitutingp.2), (51) and (B.8) into (E.8) to-
gether with(5.8) yields

1067~ tn(t %)
- [ [a””<s,xs> @

‘|‘ Xs (8, Xs) 1{Xsea@}dm ls

+/
+%/ (/ SXT’y)pI(Y)V(dy)>st(i)'

_ /fs,Xy,un(s,Xs) (Un(s, X)) )ds+n/T(un(s,Xs)—h(s,Xs))‘ds

o0 )T X )+ [ vbisxe vidy| ds

1/2
/ SXsr,y)pl(Y)V(dY)+0(X§)%(S,Xs)</Ry2\)(dy)> ]sta)

_/ 9(S, Xs-, Un(s, Xs))dBs — / (S, Xs-, Un(S, Xs))d|N]s
o
+%/ (/ SXT’y)pI(Y)V(dy)>st(i)'

From which passing in the limit on, and using the previous section we get the desired
result of the Theorem. O

1/2
[ vhisxe ypayviey + 00 ) G ) ( [ Puiay) ] aHLY

Next, we give a example of reflected stochastic PDIEs with @limear Neumann
boundary condition.

Example 5.3. Suppose the Lévy proceksas the form oty =at+ 3> 1(ND —qjt), where
(NM)= is a sequence of independent Poisson processes with paramé)io, (aj > 0).

Its Lévy measure i8(dx) = ¥ ; a;dp (dX), wheredg, denotes the positive point mass mea-
sure aB; € R of size 1. Furthermore, we assume thifit, a;|B;|? < . Recall that this Lévy

process has only one jumps size and no continuous partst&dtflﬁa: Sie \/_(Nt(i) —ait)

and Ht() =0,i > 2 (see[[d]). LetY,Z,K) be the unique solution of the following reflected
GBDSDEs

T T T
Yo = 1(%) +/ fs,xyvg,zs>ds+/ m(s,xy,vs»dm\ﬁ/t 9(s X ,Ys ) dBs
_ZL/ Zs —0ais)+Kr =K, 0<t<T

such that the following holdB-a.s
()Y >h(t,X), 0<t<T,

@) [ (% it X))k =0
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Then

Yo = ut,X),

N 12
Y = C(lUl(t,xtaBl)pl(Bl)+0(>(t)%(taxt)(Zlq”B”z)

Z" = aui(t, % ,B)p(B), i>2,

whereu is the solution of the following reflected stochastic PDIEthva nonlinear Neu-
mann boundary condition:

du

, ou Ju
3 (t,x) +a0(x)&(t,x) + f(t,xu(t,x), &(t,x))

min{u(t,x)—h(t,x),

+ 37 oiut(t,x, B) +g(t,x,ut,x))dB } =0, (t,x) €[0,T]x©

e(x)%(t,x) +@(t,x u(t,x)) =0, (t,x)€[0,T]x{-6,6},

u(T,x) =1(x), xe0.
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