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Homeomorphism of solutions to ba
kward doubly SDEsand appli
ations∗Auguste Aman†U.F.R.M.I, Université de Co
ody,22 BP 582 Abidjan 22, C�te d'Ivoire
Abstra
tIn this paper we study the homeomorphi
 properties of the solutions to one dimensionalba
kward doubly sto
hasti
 di�erential equations under suitable assumptions, where theterminal values depend on a real parameter. Then, we apply them to the solutions for a
lass of se
ond order quasilinear paraboli
 sto
hasti
 partial di�erential equations.MSC Subje
t Classi�
ation: 65C05; 60H07; 62G08Key Words: Ba
kward sto
hasti
 doubly di�erential equation; 
omparison theorem; homeo-morphism.1 Introdu
tion and Main resultsFor �x a positive real number T > 0, let {Wt, 0 ≤ t ≤ T} and {Bt, 0 ≤ t ≤ T} are two mutuallyindependent standard Brownian motions with values in IR, de�ned respe
tively on the twoprobability spa
es (Ω1,F1, IP1) and (Ω2,F2, IP2). Next we 
onsider (Ω,F , IP) the probabilityspa
e de�ned by

Ω = Ω1 × Ω2, F = F1 ⊗F2 and IP = IP1 ⊗ IP2,and N denote the 
lass of IP-null sets of F . For ea
h t ∈ [0, T ], we de�ne
Ft = FW

t ⊗ F
B
t,T

∗This works is partially support by Fellowship grant of AMMSI
†E-mail address: augusteaman5�yahoo.fr 1



where for any pro
ess {ηt}, F
η
s,t = σ{ηr − ηs, s ≤ r ≤ t} ∨ N , Fη

t = Fη
0,t.Let us remark that the 
olle
tion F = {Ft, t ∈ [0, T ]} is neither in
reasing nor de
reasingand it does not 
onstitute a �ltration. Further, we assume that, random variables, ζ(ω2), ω2 ∈

Ω2 are 
onsidered as random variables on Ω via the following identi�
ation:
ζ(ω1, ω2) = ζ(ω2).Now, let 
onsider the following one dimensional ba
kward doubly sto
hasti
 di�erentialequation (BDSDE):

Y ξ
t = ξ +

∫ T

t

f(s, Y ξ
s , Zξ

s ) ds +

∫ T

t

g(s, Y ξ
s , Zξ

s )d
←−
Bs −

∫ T

t

Zξ
sdWs, t ∈ [0, T ], (1.1)where the terminal 
ondition ξ ∈ L2(Ω,FT , IP), f(s, ω, y, z) : [0, T ] × Ω × IR × IR → IR and

g(s, ω2, y, z) : [0, T ]× Ω2 × IR× IR→ IR satisfy that
(H1

f) for all y, z ∈ IR, the pro
ess t 7→ (f(t, y, z), g(t, y, z)) is Ft-adapted,
∫ T

0

|f(s, 0, 0)|ds ∈ L2(Ω,FT , IP),for some Cf > 0 and all (s, ω1, ω2) ∈ [0, T ]× Ω1 × Ω2, y, y′, z, z′ ∈ IR,

|f(s, ω, y, z)− f(s′, ω, y′, z′)| ≤ Cf (|y − y′|+ |z − z′|) .

(H1
g) for all y, z ∈ IR, the pro
ess t 7→ g(t, y, z) is Ft-adapted,

∫ T

0

|g(s, 0, 0)|2ds ∈ L1(Ω2,FT ; IP),for some Cg > 0, 0 < αg < 1 and all (s, ω2) ∈ [0, T ]× Ω2, y, y′, z, z′ ∈ IR,
|g(s, ω2, y, z)− g(s, ω2, y

′, z′)|2 ≤ Cg|y − y′|2 + αg|z − z′|2.Solving su
h an equation is to �nd a pair of Ft-adapted pro
esses (Yt, Zt) su
h that Eq.(1.1)holds. Applying the extension of representation theorem of martingales with respe
t to Gt,denoting by Gt = FW
t ∨ F

B
T , the existen
e and uniqueness for Eq.(1.1) were �rst establishedby Pardoux-Peng [6℄. Sin
e then, the theory for BDSDEs a
hieved fruitful results, whi
h hasalso been proved to be an e�
ient tool su
h as probabilisti
 interpretation of sto
hasti
 partialdi�erential equations. We 
an 
ite the two remarkable works due to Bukdhan and Ma (
f.[1, 2℄), whi
h introdu
ed the very interest notion of sto
hasti
 vis
osity solution of SPDE.In this paper, we 
onsider the following problem: if the terminal 
ondition ξ is repla
edby a family of FT -measurable random variables ξ(x) depending on a parameter x ∈ IR andsu
h that x 7→ ξ(x, ω) a.s. are homeomorphisms on IR, 
ould the 
orresponding solutionto Eq.(1.1) x 7→ Y

ξ(x)
t be homeomorphisms on IR? When all the things are non-random,2



this problem is of 
ourse a�rmative. In the 
ase of forward sto
hasti
 di�erential equations,sto
hasti
 homeomorphisms �ows are well known and were studied in [4, 5, 8, 9℄, et
. Inparti
ular, in his book [5℄, Protter studied the more general sto
hasti
 �ows of SDEs drivenby semimartingales. The situation for BSDEs have been investigated re
ently by Huijie andZhang [7℄. The proof is based on given extended 
omparison theorem for BSDE, whi
h isused to 
ompare the solutions of the BSDE with the ba
kward ordinary di�erential equation,and on Yamada-Ogura's argument [8℄. The aim of this paper is to adapted the same step tothe BDSDE in order to answer the above question positively. Here, we use the new versionof 
omparison theorem for BDSDE to 
ompare the solutions of the above BDSDE with theba
kward sto
hasti
 di�erential equation.We are mainly devoted to proving the following two results.Theorem 1.1 In addition to (H1
f) and (H1

g), we also assume that
(H2

f) the random variable ∫ T

0
|f(s, 0, 0)|ds is bounded by C0;

(H2
g) the fun
tion g is linear in y and independent of z i.e there exist a fun
tions a : [0, T ]×

Ω2 → IR su
h that g(s, ω2, y) = a(s, ω2)y verifying |a(s, ω2)| < Cg/2 a.s. for all
s ∈ [0, T ]

(H1
ξ) for almost all ω, x 7→ ξ(ω, x) is in
reasing (or de
reasing) and a homeomorphism on IR;

(H2
ξ) for any R > 0, there are δR, CR > 0 su
h that IE|ξ(x)− ξ(y)|2 ≤ CR|x− y|1+δR for all
|x|, |y| ≤ R;

(H3
ξ) for some R0 > 0 and ε > 0, inf |x|≥R0

ξ(x, ω)/h(x) > ε a.s., where h(x) is a real 
ontinuousfun
tion on IR satisfying limx→±∞ h(x) = ±∞ (or limx→±∞ h(x) = ∓∞).Then, for almost all ω ∈ Ω, the map IR ∋ x → Y
ξ(x)
t (ω) ∈ IR is a homeomorphism for every

t ∈ [0, T ].The proof of this theorem is based on an extended 
omparison theorem for BDSDE given inSe
tion 2, whi
h is used to 
ompare the solutions of the BDSDE with the ba
kward sto
hasti
di�erential equationTheorem 1.2 In addition to (H1
f), (H2

g), (H1
ξ) and (H2

ξ), we assume that
(H2′

f ) for some C1 > 0, and ε1 > 0, it holds that
y.f(s, ω, y, z) ≥ −C1|z|2, for all (s, ω) ∈ [0, T ]× Ω and |y| ≤ ε1, z ∈ IR;3



(H3′

ξ ) for some β < 1−2C1
2
∧ 0, lim inf |x|→∞ IE|ξ(x)|4β = 0.Then, for almost all ω ∈ Ω, the map IR ∋ x → Y

ξ(x)
t (ω) ∈ IR is a homeomorphism for every

t ∈ [0, T ].The proof of this theorem is based on Yamada-Ogura's argument [10℄. An elementaryfun
tion satisfying (H1
f) and (H2′

f ) is f(y, z) = y + arctan y.(1 + sin z). Moreover, it is 
learthat (H2
g) and (H3

ξ) implies respe
tively (H1
g) and (H3′

ξ ). These two theorems will be proved inSe
tion 2.A simple �nan
ial meaning for these results is explained as follows: if one investor wantsto get su�
iently high return at a future time, then he or she must invest enough money atthe present time.In Se
tion 3, we apply Theorem 1.2 to the following ba
kward doubly sto
hasti
 di�erentialequation 
oupled with a forward sto
hasti
 di�erential equation:






























X t,x
s = x +

∫ s

t

b(X t,x
r )dr +

∫ s

t

σ(X t,x
r )dWr

Ys = h(X t,x
T ) +

∫ T

s

f(r, X t,x
r , Y t,x

r , Zt,x
r ) dr +

∫ T

s

a(r, X t,x
r )Y t,x

r d
←−
Br

−

∫ T

s

Zt,x
r dWr, s ∈ [t, T ],

(1.2)where b, σ, h : IR → IR, f : [0, T ] × IR × IR × IR → IR and a, c : [0, T ] × IR → IR are Borelmeasurable fun
tions. This type equation in general 
ase was proved in Pardoux-Peng [6℄ to berelated to some se
ond order quasilinear paraboli
 sto
hasti
 partial di�erential equations undersome regularity assumptions on the above fun
tions. Our another aim in the present paper isto obtain the homeomorphi
 property for x 7→ Y t,x
s , and furthermore, get the homeomorphi
property for the solutions to some se
ond order paraboli
 partial di�erential equations.Throughout the paper, C with or without indi
es will denote di�erent positive 
onstants(depending on the indi
es) whose values are not important.2 Proofs of Main resultsBefore proving our main results, let us �rst prove a other version for the 
omparison theoremof BDSDEs whi
h need a slight 
onstraint on the 
oe�
ient g, that is g no dependent of z .Here the method is borrowed from El Karoui et al. [3℄ .Theorem 2.1 (i) f 2 satis�es (H1

f1) with Lips
hitz 
onstant Cf1, and f 1(s, ω, y, z) ≥ f 2(s, ω, y, z)for all (s, ω) ∈ [0, T ]× Ω and y, z,∈ IR; 4



(ii), V 1
t and V 2

t are Ft-adapted and �nite variation pro
esses with d(V 1−V 2)+
t ≤ dβt for somedetermined and in
reasing fun
tion βt, where d(V 1−V 2)+

t denotes the positive variational;
(iii) ξ1, ξ2, V 1

T , V 2
T ∈ L2(Ω,FT , IP), (ξ1 − ξ2 + V 1

T − V 2
T ) > ε a.s. for some ε > 0. Let Y 1

t and
Y 2

t be the solutions to the following BDSDEs:
Y 1

t = ξ1 + V 1
t +

∫ T

t

f 1(s, Y 1
s , Z1

s )ds +

∫ T

t

g(s, Y 1
s )d
←−
B s −

∫ T

t

Z1
sdWs, t ∈ [0, T ],

Y 1
t = ξ2 + V 2

t +

∫ T

t

f 2(s, Y 2
s , Z2

s )ds +

∫ T

t

g(s, Y 2
s )d
←−
B s −

∫ T

t

Z2
s dWs, t ∈ [0, T ].Then we have for any t ∈ [0, T ]

Y 1
t − Y 2

t > e−(C
f1+Cg)T ε− e(C

f1+Cg)T , a.s.In parti
ular, if V 1
t = V 2

t and ξ1 > ξ2 a.s., then for all t ∈ [0, T ]

Y 1
t > Y 2

t , a.s.Proof. Put
ξ̂ = ξ1 − ξ2, Ŷt = Y 1

t − Y 2
t , V̂t = V 1

t − V 2
t , Ẑt = Z1

t − Z2
t

f̂t = f 1(t, Y 2
t , Z2

t )− f 2(t, Y 2
t , Z2

t ),and
at = [f 1(t, Y 1

t , Z1
t )− f 1(t, Y 2

t , Z1
t )]/(Y 1

t − Y 2
t )1{Y 1

t 6=Y 2
t },

bt = [f 1(t, Y 2
t , Z1

t )− f 1(t, Y 2
t , Z2

t )]/(Z1
t − Z2

t )1{Z1

t 6=Z2

t }
,

ct = [g(t, Y 1
t )− g(t, Y 2

t )]/(Y 1
t − Y 2

t )1{Y 1
t 6=Y 2

t }.Then for �xed r ∈ [0, t]

Ŷt = ξ̂ + V̂t +

∫ T

t

[asŶs + bsẐs + f̂s]ds +

∫ T

t

csŶsdBs −

∫ T

t

ẐsdWs

= Ŷr + V̂t − V̂r −

∫ t

r

[asŶs + bsẐs + f̂s]ds−

∫ t

r

csŶsdBs +

∫ t

r

ẐsdWs,is a linear BDSDE. It is well not that this equation has an expli
it solution given by:
Ŷt = Qt

T ŶT −

∫ T

t

Qt
sdV̂s +

∫ T

t

Qt
sf̂sds−

∫ T

t

Qt
s(bsŶs + bsẐs + Ẑs)dWs, (2.1)where for �xed t ∈ [0, T ] we de�ne

Qt
s = exp

(
∫ s

t

brdWr −
1

2

∫ s

t

|br|
2dr +

∫ s

t

crdBr −
1

2

∫ s

t

|cr|
2dr +

∫ s

t

asds

)

,

t ≤ s ≤ T.5



Noting that
|at| ≤ Cf1 , |bt| ≤ Cf1, |ct| ≤ Cg,

Qt
s is well de�ned. Moreover it is 
lear that for any 0 ≤ t ≤ s ≤ T , we have

e−(C
f1+Cg)(s−t) ≤ IE[Qt

s|Ft] ≤ e(C
f1+Cg)(s−t)Taking expe
tation with respe
t to Ft in (2.1), we obtain

Ŷt = IE[Qt
T ŶT |Ft]−

∫ T

t

IE[Qt
s|Ft]dV̂s +

∫ T

t

IE[Qt
sf̂s|Ft]ds.Therefore, by (i), (ii) and (iii) we have

Ŷt = IE[Qt
T ŶT |Ft]−

∫ T

t

IE[Qt
s|Ft]dV̂s +

∫ T

t

IE[Qt
sf̂s|Ft]ds

> εIE[Qt
T ŶT |Ft]−

∫ T

t

IE[Qt
s|Ft]dβs

≥ e−(C
f1+Cg+αg)T ε− e(C

f1+Cg+αg)T βT , a.s.The proof is thus 
omplete.For simpli
ity of the notation, we write Y x
t = Y

ξ(x)
t in the sequel of the paper. Let us provea useful Lemma.Lemma 2.1 Assume (H1

f), (H2
g) and (H2

ξ) hold. Then for any R > 0 we haveIE [

sup
0≤t≤T

|Y x
t − Y y

t |
2

]

≤ CR|x− y|1+δR, |x|, |y| ≤ R.In parti
ular; {Y x
t : (t, x) ∈ [0, T ]× IR admits a bi
ontinuous modi�
ation. If in addition (H1

ξ)holds, then IP(ω : Y x
t (ω) < Y y

t (ω), ∀ x < y, t ∈ [0, T ]) = 1.Proof. Set Ȳt = Y x
t − Y y

t and Z̄t = Zx
t − Zy

t . By It�'s formula, we have
|Ȳt|

2 +

∫ T

t

|Z̄s|
2ds = |ȲT |

2 + 2

∫ T

t

Ȳs[f(s, Y x
s , Zx

s )− f(s, Y y
s , Zy

s )]ds

+2

∫ T

t

|g(s, Y x
s , Zx

s )− g(s, Y y
s , Zy

s )|2ds

+2

∫ T

t

Ȳs[g(s, Y x
s , Zx

s )− g(s, Y y
s , Zy

s )]dBs − 2

∫ T

t

ȲsZ̄sdWs.6



Taking expe
tation and using (H1
f), (H1

g) and Young's inequality, we dedu
e thatIE|Ȳt|
2 + (1− α− γ)IE ∫ T

t

|Z̄s|
2ds ≤ IE|ȲT |

2 + CIE ∫ T

t

|Ȳs|
2ds,for γ taken small enough su
h that 1 − α − γ > 0. It then follows from Gronwall's inequalityand (H1

ξ) that for any t ∈ [0, T ]IE|Ȳt|
2 + (1− α− γ)IE ∫ T

t

|Z̄s|
2ds ≤ CIE|ȲT |

2 ≤ C|x− y|1+δR. (2.2)Hen
e, by Burkölder's inequality we haveIE [

sup
0≤t≤T

|Ȳt|
2

]

≤ IE|ȲT |
2 + C

∫ T

0

IE|f(s, Y x
s , Zx

s )− f(s, Y y
s , Zy

s )|2ds

+2

∫ T

0

IE|g(s, Y x
s , Zx

s )− g(s, Y y
s , Zy

s )|2ds

+CIE[

sup
0≤t≤T

∣

∣

∣

∣

∫ T

t

[g(s, Y x
s , Zx

s )− g(s, Y y
s , Zy

s )]dBs

∣

∣

∣

∣

2
]

+CIE[

sup
0≤t≤T

∣

∣

∣

∣

∫ T

t

Z̄sdWs

∣

∣

∣

∣

2
]

≤ CIE{

|ȲT |
2 +

∫ T

0

|Ȳs|
2ds +

∫ T

0

|Z̄s|
2ds

}

≤ C|x− y|1+δR.The proof is �nished.We now give the proof of Theorem 1.1.Proof of Theorem 1.1. We assume that here g is linear on y and and independent of
z i.e (H2

g) holds. By (H1
f), (H1

g), Theorem 2.1 and Lemma 2.2, we know that x 7→ Y x
t (ω) are
ontinuous inje
tive for all t ∈ [0, T ], a.s. Next we prove the onto property of x 7→ Y x

t (ω). Let
(Ŷ x

t , Ẑx
t ) and (Ỹ x

t , Z̃x
t ) be respe
tively the solutions to equations:
Ŷ x

t = ξ(x) +

∫ T

t

[

|f(s, 0, 0)|+ Cf(|Ŷ
x
s |+ |Ẑ

x
s |)

]

ds

+

∫ T

t

a(s)Ŷ x
s d
←−
B s −

∫ T

t

Ẑx
s dWs,and

Ỹ x
t = ξ(x)−

∫ T

t

[

|f(s, 0, 0)|+ Cf(|Ỹ
x
s |+ |Z̃

x
s |)

]

ds

+

∫ T

t

a(s)Ỹ x
s d
←−
B s −

∫ T

t

Z̃x
s dWs,7



where Cf is the Lips
hitz 
onstant of f .On
e again appying the 
omparison theorem of BDSDE, we obtain
Y x

t ≤ Ŷ x
t , ∀ x ∈ IR, ∀ t ∈ [0, T ], a.s., (2.3)

Ỹ x
t ≤ Y x

t , ∀ x ∈ IR, ∀ t ∈ [0, T ], a.s. (2.4)For 0 < ε0 < ε, 
hoosing M > R0 su�
iently large su
h that
|h(x)| ≥

C0T e2C0T

ε− ε0
, for all |x| > M,where C0 is the 
onstant in (H2

f).Then by (H3
ξ) we have

ξ(x) + C0Te2C0T ≤ h(x)ε0, ∀ x < −M a.s.
ξ(x)− C0Te2C0T ≥ h(x)ε0, ∀ x > M a.s.Set X±

t (x) = h(x)ε0 exp
(

±Cf (T − t) +
∫ T

t
a(s)d

←−
B s −

1
2

∫ T

t
|a(s)|2ds

)

. Then
X±

t (x) = h(x)ε0 ± Cf

∫ T

t

X±
s (x)ds +

∫ T

t

a(s)X±
s (x)d

←−
B s. (2.5)By (H2

f) and Theorem 2.1 we have
Ŷ x

t ≤ X+
t (x) = h(x)ε0. exp

(

Cf(T − t) +

∫ T

t

a(s)d
←−
B s −

1

2

∫ T

t

|a(s)|2ds

)

,

∀ x < −M a.s. (2.6)
h(x)ε0. exp

(

−Cf (T − t) +

∫ T

t

a(s)d
←−
B s −

1

2

∫ T

t

|a(s)|2ds

)

= X−
t (x) ≤ Ỹ x

t ,

∀ x > M a.s. (2.7)Thus, we �nally get from (2.3) to (2.7) and (H3
ξ)

lim
↑∞

Y x
t = +∞, lim

↓−∞
Y x

t = −∞, ∀ t ∈ [0, T ] a.s.,whi
h 
omplete the proof of surje
tion of the mapping x 7→ Y x
t (ω). �The following lemma plays a 
ru
ial role for proving Theorem 1.2.8



Lemma 2.2 Assume (H1
f), (H1

g), (H2′

f ) and (H3′

ξ ). Moreover, we suppose that g(s, ω, y, z) = 0a.s. Then
lim inf
|x|→+∞

IE(

sup
0≤t≤T

|Y x
t |

4β

)

= 0,where β is given in (H3′

ξ ).Remark 2.1 We observe that if (H2
g) holds, hen
e g(s, ω, y, z) = 0 and (H1

g) is veri�ed.Proof. In the following proof, by drawing the sequen
e if ne
essary, without any loss ofgenerality we may assume that for all x ∈ IR IE|ξ(x)|4β <∞.For any ε > 0, by It�'s formula we have
(|Y x

t |
2 + ε)β = (|ξ(x)|2 + ε)β + 2β

∫ T

t

(|Y x
s |

2 + ε)β−1Y x
s f(s, Y x

s , Zx
s )ds

−2β

∫ T

t

(|Y x
s |

2 + ε)β−1Y x
s Zx

s dWs

+2β

∫ T

t

(|Y x
s |

2 + ε)β−1Y x
s g(s, Y x

s , Zx
s )d
←−
B s

−2β(β − 1)

∫ T

t

(|Y x
s |

2 + ε)β−2|Y x
s |

2|Zx
s |

2ds

−β

∫ T

t

(|Y x
s |

2 + ε)β−1|Zx
s |

2ds

+2β(β − 1)

∫ T

t

(|Y x
s |

2 + ε)β−2|Y x
s |

2|g(s, Y x
s , Zx

s )|2ds

+β

∫ T

t

(|Y x
s |

2 + ε)β−1|g(s, Y x
s , Zx

s )|2ds. (2.8)Let us �rst prove the a priori estimate
sup

0≤t≤T

IE(|Y x
t |

2)2β . (2.9)It is 
lear that (H1
f) and (H2′

f ) implies f(s, 0, 0) = 0, whi
h together with (H1
f) then gives

|f(s, y, z)| ≤ Cf (|y|+ |z|).Sin
e β < 1−2C1

2
∧0, we 
an 
hoose δ > 0 su
h that [β(C1 + δCf) + 8β2 − 2β − αg(16β2 − 4β)] > 0.Thus repla
ing β by 2β in the above estimates, taking expe
tation and letting ε ↓ 0, we have9



by ab ≤ δ + b2/(4δ) and monotoni
 
onvergen
e theorem:IE|Y x
t |

4β + [β(C1 + δCf) + 2β(4β − 1)− 2αgβ(4β − 1)]

∫ T

t

IE(|Y x
s |

2(2β−1)|Zx
s |

2)ds

≤ IE|ξ(x)|4β +

[

4|β|Cf

(

1 +
1

4δ

)

+ 2Cgβ(4β − 1)

]
∫ T

t

IE|Y x
s |

4βds.Hen
e, Gronwall's inequality gives for any t ∈ [0, T ]IE|Y x
t |

4β +

∫ T

t

IE(|Y x
s |

2(2β−1)|Zx
s |

2)ds ≤ CIE|ξ(x)|4β.Thus (2.9) follows by (2.2) .Similar to the above 
al
ulations, from (2.8) we may derive that
|Y x

t |
2β ≤ |ξ(x)|2β + C

∫ T

t

|Y x
s |

2βds− 2β

∫ T

t

|Y x
s |

2(β−1)Y x
s Zx

s dWs

+2β

∫ T

t

|Y x
s |

2(β−1)Y x
s g(s, Y x

s , Zx
s )d
←−
B s.Therefore, by Doob's maximal inequalityIE(

sup
0≤t≤T

|Y x
t |

4β

)

≤ IE|ξ(x)|4β + C

∫ T

t

|Y x
s |

4βds + CIE [

sup
0≤t≤

∣

∣

∣

∣

∫ T

t

|Y x
s |

2(β−1)Y x
s Zx

s dWs

∣

∣

∣

∣

2
]

+CIE[

sup
0≤t≤

∣

∣

∣

∣

∫ T

t

|Y x
s |

2(β−1)Y x
s g(s, Y x

s , Zx
s )d
←−
B s

∣

∣

∣

∣

2
]

≤ IE|ξ(x)|4β + C

∫ T

t

IE|Y x
s |

4βds + C

∫ T

t

IE(|Y x
s |

2(2β−1)|Zx
s |

2)ds

≤ IE|ξ(x)|4β,whi
h yields the result by (H3′

ξ ).Proof of Theorem 1.2 By (H3′

ξ ), Theorem 2.1 and Lemma 2.2, the mappings x 7→ Y x
t (ω)are 
ontinuous inje
tive for all t ∈ [0, T ], a.s. With the help of Lemma 2.3, the proof ofsurje
tion of x 7→ Y x

t (ω) is just a repeat of ([7℄, p.13) and we therefore omit the details.3 Appli
ationsIn this se
tion we 
onsider Eq.(1.2) and work on the framework of Pardoux-Peng [6℄, assumingthat 10



(C1
f) for every s ∈ [0, T ], (x, y, z) 7→ f(s, x, y, z) is of 
lass C3, the �rst order partial derivativesin y and z are bounded on [0, T ]× IR× IR × IR, as well as their derivatives of order oneand two with respe
t to x, y, z;

(C2
f) for every s ∈ [0, T ], the fun
tion x 7→ f(s, x, 0, 0) has polynomial growth at in�nitytogether with all partial derivatives up to order three;

(C3
f) for every s ∈ [0, T ] and y, z ∈ IR, the fun
tion 7→ f(s, x, y, z) is in
reasing (or de
reasing)in x;

(C4
f) for some C1 > 0 and ε1 > 0, it holds that y.f(s, x, y, z) > −C1|z|2 for all s ∈ [0, T ] and
|y| ≤ ε1, x, z ∈ IR;

(C1
g) g(s, x, y) = a(s, x)y su
h that, for every s ∈ [0, T ], (x, y) 7→ g(s, x, y) is of 
lass C3, the�rst order partial derivatives in y is bounded.

(C1
σ,b) σ, b ∈ C3

b (IR) have all bounded derivatives up to order three;
(C2

σ,b) there are 
onstants c1 > 0 su
h that
|b(x)|+ |σ(x)| ≤ c1|x|;

(C1
h) h is of 
lass C3 with polygonal growth derivatives up to order three;

(C2
h) x 7→ h(x) is in
reasing (or de
reasing) and a homeomorphism on IR;

(C3
h) there are 
onstants c2, γ > 0 su
h that

|h(x)| ≥ c2|x|
γ.Consider the following quasilinear paraboli
 sto
hasti
 partial di�erential equations:











∂u

∂t
(t, x) + Lu(t, x) + f(s, x, u(t, x), (∂xu.σ)(t, x)) + a(s, x)u(t, x)♦Bs

u(T, x) = h(x)

(3.1)where u : [0, T ] × IR → IR, L = 1
2
σ2(x) ∂2

∂x2 + b(x)∂x
∂x

and ♦ denotes the Wi
k produ
t, whi
hindi
ates that the di�erential is to understand in It�'s sense. Pardoux-Peng [6℄ proved thefollowing result:Theorem 3.1 Under the assumptions (C1
f), (C2

f), (C1
g), (C1

σ,b) and (C1
h), for any t ∈ [0, T ],let {(Y t,x

s , Zt,x
s ), s ∈ [t, T ]} be the solution to Eq. (1.2), and de�ne

u(t, x) = Y t,x
t ,then u ∈ C1,2([0, T ]× IR) is the unique solution to Eq. (3.1).11



We need the following lemma whi
h is proved in [7℄.Lemma 3.1 Assume that (C1
σ,b) and (C2

σ,b) hold. Then, for any β < 0 there is a 
onstant
C > 0 su
h that IE|X t,x

s |
2β ≤ C|x|2β, t ∈ [0, T ], s ∈ [t, T ], |x| > 1.Next, applying the well known 
omparison theorem about the forward sto
hasti
 di�erentialequation (see [7℄), and the above lemma as well as Theorems 2.1, 1.2 and 3.1, we 
an provethatProposition 3.1 Under the beginning assumptions of this se
tion, for any t ∈ [0, T ], themappings x 7→ Y t,x

s (ω) are homeomorphisms on IR for all s ∈ [t, T ] a.s. In parti
ular, theunique solution to Eq. (3.1) x 7→ u(t, x) is a homeomorphism on IR.Remark 3.1 Originally we intended to treat the problem in the present paper in general 
asei.e g nonlinear, in the hope of obtaining the homeomorphi
 property.But we have revised ourambition to fu
k. Indeed, one knows that if g is not linear, the ba
kward SDE (2.5) has not anexpli
it solution, whi
h does not provide proof of surje
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