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Homeomorphism of solutions to bakward doubly SDEsand appliations∗Auguste Aman†U.F.R.M.I, Université de Coody,22 BP 582 Abidjan 22, C�te d'Ivoire
AbstratIn this paper we study the homeomorphi properties of the solutions to one dimensionalbakward doubly stohasti di�erential equations under suitable assumptions, where theterminal values depend on a real parameter. Then, we apply them to the solutions for alass of seond order quasilinear paraboli stohasti partial di�erential equations.MSC Subjet Classi�ation: 65C05; 60H07; 62G08Key Words: Bakward stohasti doubly di�erential equation; omparison theorem; homeo-morphism.1 Introdution and Main resultsFor �x a positive real number T > 0, let {Wt, 0 ≤ t ≤ T} and {Bt, 0 ≤ t ≤ T} are two mutuallyindependent standard Brownian motions with values in IR, de�ned respetively on the twoprobability spaes (Ω1,F1, IP1) and (Ω2,F2, IP2). Next we onsider (Ω,F , IP) the probabilityspae de�ned by

Ω = Ω1 × Ω2, F = F1 ⊗F2 and IP = IP1 ⊗ IP2,and N denote the lass of IP-null sets of F . For eah t ∈ [0, T ], we de�ne
Ft = FW

t ⊗ F
B
t,T

∗This works is partially support by Fellowship grant of AMMSI
†E-mail address: augusteaman5�yahoo.fr 1



where for any proess {ηt}, F
η
s,t = σ{ηr − ηs, s ≤ r ≤ t} ∨ N , Fη

t = Fη
0,t.Let us remark that the olletion F = {Ft, t ∈ [0, T ]} is neither inreasing nor dereasingand it does not onstitute a �ltration. Further, we assume that, random variables, ζ(ω2), ω2 ∈

Ω2 are onsidered as random variables on Ω via the following identi�ation:
ζ(ω1, ω2) = ζ(ω2).Now, let onsider the following one dimensional bakward doubly stohasti di�erentialequation (BDSDE):

Y ξ
t = ξ +

∫ T

t

f(s, Y ξ
s , Zξ

s ) ds +

∫ T

t

g(s, Y ξ
s , Zξ

s )d
←−
Bs −

∫ T

t

Zξ
sdWs, t ∈ [0, T ], (1.1)where the terminal ondition ξ ∈ L2(Ω,FT , IP), f(s, ω, y, z) : [0, T ] × Ω × IR × IR → IR and

g(s, ω2, y, z) : [0, T ]× Ω2 × IR× IR→ IR satisfy that
(H1

f) for all y, z ∈ IR, the proess t 7→ (f(t, y, z), g(t, y, z)) is Ft-adapted,
∫ T

0

|f(s, 0, 0)|ds ∈ L2(Ω,FT , IP),for some Cf > 0 and all (s, ω1, ω2) ∈ [0, T ]× Ω1 × Ω2, y, y′, z, z′ ∈ IR,

|f(s, ω, y, z)− f(s′, ω, y′, z′)| ≤ Cf (|y − y′|+ |z − z′|) .

(H1
g) for all y, z ∈ IR, the proess t 7→ g(t, y, z) is Ft-adapted,

∫ T

0

|g(s, 0, 0)|2ds ∈ L1(Ω2,FT ; IP),for some Cg > 0, 0 < αg < 1 and all (s, ω2) ∈ [0, T ]× Ω2, y, y′, z, z′ ∈ IR,
|g(s, ω2, y, z)− g(s, ω2, y

′, z′)|2 ≤ Cg|y − y′|2 + αg|z − z′|2.Solving suh an equation is to �nd a pair of Ft-adapted proesses (Yt, Zt) suh that Eq.(1.1)holds. Applying the extension of representation theorem of martingales with respet to Gt,denoting by Gt = FW
t ∨ F

B
T , the existene and uniqueness for Eq.(1.1) were �rst establishedby Pardoux-Peng [6℄. Sine then, the theory for BDSDEs ahieved fruitful results, whih hasalso been proved to be an e�ient tool suh as probabilisti interpretation of stohasti partialdi�erential equations. We an ite the two remarkable works due to Bukdhan and Ma (f.[1, 2℄), whih introdued the very interest notion of stohasti visosity solution of SPDE.In this paper, we onsider the following problem: if the terminal ondition ξ is replaedby a family of FT -measurable random variables ξ(x) depending on a parameter x ∈ IR andsuh that x 7→ ξ(x, ω) a.s. are homeomorphisms on IR, ould the orresponding solutionto Eq.(1.1) x 7→ Y

ξ(x)
t be homeomorphisms on IR? When all the things are non-random,2



this problem is of ourse a�rmative. In the ase of forward stohasti di�erential equations,stohasti homeomorphisms �ows are well known and were studied in [4, 5, 8, 9℄, et. Inpartiular, in his book [5℄, Protter studied the more general stohasti �ows of SDEs drivenby semimartingales. The situation for BSDEs have been investigated reently by Huijie andZhang [7℄. The proof is based on given extended omparison theorem for BSDE, whih isused to ompare the solutions of the BSDE with the bakward ordinary di�erential equation,and on Yamada-Ogura's argument [8℄. The aim of this paper is to adapted the same step tothe BDSDE in order to answer the above question positively. Here, we use the new versionof omparison theorem for BDSDE to ompare the solutions of the above BDSDE with thebakward stohasti di�erential equation.We are mainly devoted to proving the following two results.Theorem 1.1 In addition to (H1
f) and (H1

g), we also assume that
(H2

f) the random variable ∫ T

0
|f(s, 0, 0)|ds is bounded by C0;

(H2
g) the funtion g is linear in y and independent of z i.e there exist a funtions a : [0, T ]×

Ω2 → IR suh that g(s, ω2, y) = a(s, ω2)y verifying |a(s, ω2)| < Cg/2 a.s. for all
s ∈ [0, T ]

(H1
ξ) for almost all ω, x 7→ ξ(ω, x) is inreasing (or dereasing) and a homeomorphism on IR;

(H2
ξ) for any R > 0, there are δR, CR > 0 suh that IE|ξ(x)− ξ(y)|2 ≤ CR|x− y|1+δR for all
|x|, |y| ≤ R;

(H3
ξ) for some R0 > 0 and ε > 0, inf |x|≥R0

ξ(x, ω)/h(x) > ε a.s., where h(x) is a real ontinuousfuntion on IR satisfying limx→±∞ h(x) = ±∞ (or limx→±∞ h(x) = ∓∞).Then, for almost all ω ∈ Ω, the map IR ∋ x → Y
ξ(x)
t (ω) ∈ IR is a homeomorphism for every

t ∈ [0, T ].The proof of this theorem is based on an extended omparison theorem for BDSDE given inSetion 2, whih is used to ompare the solutions of the BDSDE with the bakward stohastidi�erential equationTheorem 1.2 In addition to (H1
f), (H2

g), (H1
ξ) and (H2

ξ), we assume that
(H2′

f ) for some C1 > 0, and ε1 > 0, it holds that
y.f(s, ω, y, z) ≥ −C1|z|2, for all (s, ω) ∈ [0, T ]× Ω and |y| ≤ ε1, z ∈ IR;3



(H3′

ξ ) for some β < 1−2C1
2
∧ 0, lim inf |x|→∞ IE|ξ(x)|4β = 0.Then, for almost all ω ∈ Ω, the map IR ∋ x → Y

ξ(x)
t (ω) ∈ IR is a homeomorphism for every

t ∈ [0, T ].The proof of this theorem is based on Yamada-Ogura's argument [10℄. An elementaryfuntion satisfying (H1
f) and (H2′

f ) is f(y, z) = y + arctan y.(1 + sin z). Moreover, it is learthat (H2
g) and (H3

ξ) implies respetively (H1
g) and (H3′

ξ ). These two theorems will be proved inSetion 2.A simple �nanial meaning for these results is explained as follows: if one investor wantsto get su�iently high return at a future time, then he or she must invest enough money atthe present time.In Setion 3, we apply Theorem 1.2 to the following bakward doubly stohasti di�erentialequation oupled with a forward stohasti di�erential equation:






























X t,x
s = x +

∫ s

t

b(X t,x
r )dr +

∫ s

t

σ(X t,x
r )dWr

Ys = h(X t,x
T ) +

∫ T

s

f(r, X t,x
r , Y t,x

r , Zt,x
r ) dr +

∫ T

s

a(r, X t,x
r )Y t,x

r d
←−
Br

−

∫ T

s

Zt,x
r dWr, s ∈ [t, T ],

(1.2)where b, σ, h : IR → IR, f : [0, T ] × IR × IR × IR → IR and a, c : [0, T ] × IR → IR are Borelmeasurable funtions. This type equation in general ase was proved in Pardoux-Peng [6℄ to berelated to some seond order quasilinear paraboli stohasti partial di�erential equations undersome regularity assumptions on the above funtions. Our another aim in the present paper isto obtain the homeomorphi property for x 7→ Y t,x
s , and furthermore, get the homeomorphiproperty for the solutions to some seond order paraboli partial di�erential equations.Throughout the paper, C with or without indies will denote di�erent positive onstants(depending on the indies) whose values are not important.2 Proofs of Main resultsBefore proving our main results, let us �rst prove a other version for the omparison theoremof BDSDEs whih need a slight onstraint on the oe�ient g, that is g no dependent of z .Here the method is borrowed from El Karoui et al. [3℄ .Theorem 2.1 (i) f 2 satis�es (H1

f1) with Lipshitz onstant Cf1, and f 1(s, ω, y, z) ≥ f 2(s, ω, y, z)for all (s, ω) ∈ [0, T ]× Ω and y, z,∈ IR; 4



(ii), V 1
t and V 2

t are Ft-adapted and �nite variation proesses with d(V 1−V 2)+
t ≤ dβt for somedetermined and inreasing funtion βt, where d(V 1−V 2)+

t denotes the positive variational;
(iii) ξ1, ξ2, V 1

T , V 2
T ∈ L2(Ω,FT , IP), (ξ1 − ξ2 + V 1

T − V 2
T ) > ε a.s. for some ε > 0. Let Y 1

t and
Y 2

t be the solutions to the following BDSDEs:
Y 1

t = ξ1 + V 1
t +

∫ T

t

f 1(s, Y 1
s , Z1

s )ds +

∫ T

t

g(s, Y 1
s )d
←−
B s −

∫ T

t

Z1
sdWs, t ∈ [0, T ],

Y 1
t = ξ2 + V 2

t +

∫ T

t

f 2(s, Y 2
s , Z2

s )ds +

∫ T

t

g(s, Y 2
s )d
←−
B s −

∫ T

t

Z2
s dWs, t ∈ [0, T ].Then we have for any t ∈ [0, T ]

Y 1
t − Y 2

t > e−(C
f1+Cg)T ε− e(C

f1+Cg)T , a.s.In partiular, if V 1
t = V 2

t and ξ1 > ξ2 a.s., then for all t ∈ [0, T ]

Y 1
t > Y 2

t , a.s.Proof. Put
ξ̂ = ξ1 − ξ2, Ŷt = Y 1

t − Y 2
t , V̂t = V 1

t − V 2
t , Ẑt = Z1

t − Z2
t

f̂t = f 1(t, Y 2
t , Z2

t )− f 2(t, Y 2
t , Z2

t ),and
at = [f 1(t, Y 1

t , Z1
t )− f 1(t, Y 2

t , Z1
t )]/(Y 1

t − Y 2
t )1{Y 1

t 6=Y 2
t },

bt = [f 1(t, Y 2
t , Z1

t )− f 1(t, Y 2
t , Z2

t )]/(Z1
t − Z2

t )1{Z1

t 6=Z2

t }
,

ct = [g(t, Y 1
t )− g(t, Y 2

t )]/(Y 1
t − Y 2

t )1{Y 1
t 6=Y 2

t }.Then for �xed r ∈ [0, t]

Ŷt = ξ̂ + V̂t +

∫ T

t

[asŶs + bsẐs + f̂s]ds +

∫ T

t

csŶsdBs −

∫ T

t

ẐsdWs

= Ŷr + V̂t − V̂r −

∫ t

r

[asŶs + bsẐs + f̂s]ds−

∫ t

r

csŶsdBs +

∫ t

r

ẐsdWs,is a linear BDSDE. It is well not that this equation has an expliit solution given by:
Ŷt = Qt

T ŶT −

∫ T

t

Qt
sdV̂s +

∫ T

t

Qt
sf̂sds−

∫ T

t

Qt
s(bsŶs + bsẐs + Ẑs)dWs, (2.1)where for �xed t ∈ [0, T ] we de�ne

Qt
s = exp

(
∫ s

t

brdWr −
1

2

∫ s

t

|br|
2dr +

∫ s

t

crdBr −
1

2

∫ s

t

|cr|
2dr +

∫ s

t

asds

)

,

t ≤ s ≤ T.5



Noting that
|at| ≤ Cf1 , |bt| ≤ Cf1, |ct| ≤ Cg,

Qt
s is well de�ned. Moreover it is lear that for any 0 ≤ t ≤ s ≤ T , we have

e−(C
f1+Cg)(s−t) ≤ IE[Qt

s|Ft] ≤ e(C
f1+Cg)(s−t)Taking expetation with respet to Ft in (2.1), we obtain

Ŷt = IE[Qt
T ŶT |Ft]−

∫ T

t

IE[Qt
s|Ft]dV̂s +

∫ T

t

IE[Qt
sf̂s|Ft]ds.Therefore, by (i), (ii) and (iii) we have

Ŷt = IE[Qt
T ŶT |Ft]−

∫ T

t

IE[Qt
s|Ft]dV̂s +

∫ T

t

IE[Qt
sf̂s|Ft]ds

> εIE[Qt
T ŶT |Ft]−

∫ T

t

IE[Qt
s|Ft]dβs

≥ e−(C
f1+Cg+αg)T ε− e(C

f1+Cg+αg)T βT , a.s.The proof is thus omplete.For simpliity of the notation, we write Y x
t = Y

ξ(x)
t in the sequel of the paper. Let us provea useful Lemma.Lemma 2.1 Assume (H1

f), (H2
g) and (H2

ξ) hold. Then for any R > 0 we haveIE [

sup
0≤t≤T

|Y x
t − Y y

t |
2

]

≤ CR|x− y|1+δR, |x|, |y| ≤ R.In partiular; {Y x
t : (t, x) ∈ [0, T ]× IR admits a biontinuous modi�ation. If in addition (H1

ξ)holds, then IP(ω : Y x
t (ω) < Y y

t (ω), ∀ x < y, t ∈ [0, T ]) = 1.Proof. Set Ȳt = Y x
t − Y y

t and Z̄t = Zx
t − Zy

t . By It�'s formula, we have
|Ȳt|

2 +

∫ T

t

|Z̄s|
2ds = |ȲT |

2 + 2

∫ T

t

Ȳs[f(s, Y x
s , Zx

s )− f(s, Y y
s , Zy

s )]ds

+2

∫ T

t

|g(s, Y x
s , Zx

s )− g(s, Y y
s , Zy

s )|2ds

+2

∫ T

t

Ȳs[g(s, Y x
s , Zx

s )− g(s, Y y
s , Zy

s )]dBs − 2

∫ T

t

ȲsZ̄sdWs.6



Taking expetation and using (H1
f), (H1

g) and Young's inequality, we dedue thatIE|Ȳt|
2 + (1− α− γ)IE ∫ T

t

|Z̄s|
2ds ≤ IE|ȲT |

2 + CIE ∫ T

t

|Ȳs|
2ds,for γ taken small enough suh that 1 − α − γ > 0. It then follows from Gronwall's inequalityand (H1

ξ) that for any t ∈ [0, T ]IE|Ȳt|
2 + (1− α− γ)IE ∫ T

t

|Z̄s|
2ds ≤ CIE|ȲT |

2 ≤ C|x− y|1+δR. (2.2)Hene, by Burkölder's inequality we haveIE [

sup
0≤t≤T

|Ȳt|
2

]

≤ IE|ȲT |
2 + C

∫ T

0

IE|f(s, Y x
s , Zx

s )− f(s, Y y
s , Zy

s )|2ds

+2

∫ T

0

IE|g(s, Y x
s , Zx

s )− g(s, Y y
s , Zy

s )|2ds

+CIE[

sup
0≤t≤T

∣

∣

∣

∣

∫ T

t

[g(s, Y x
s , Zx

s )− g(s, Y y
s , Zy

s )]dBs

∣

∣

∣

∣

2
]

+CIE[

sup
0≤t≤T

∣

∣

∣

∣

∫ T

t

Z̄sdWs

∣

∣

∣

∣

2
]

≤ CIE{

|ȲT |
2 +

∫ T

0

|Ȳs|
2ds +

∫ T

0

|Z̄s|
2ds

}

≤ C|x− y|1+δR.The proof is �nished.We now give the proof of Theorem 1.1.Proof of Theorem 1.1. We assume that here g is linear on y and and independent of
z i.e (H2

g) holds. By (H1
f), (H1

g), Theorem 2.1 and Lemma 2.2, we know that x 7→ Y x
t (ω) areontinuous injetive for all t ∈ [0, T ], a.s. Next we prove the onto property of x 7→ Y x

t (ω). Let
(Ŷ x

t , Ẑx
t ) and (Ỹ x

t , Z̃x
t ) be respetively the solutions to equations:
Ŷ x

t = ξ(x) +

∫ T

t

[

|f(s, 0, 0)|+ Cf(|Ŷ
x
s |+ |Ẑ

x
s |)

]

ds

+

∫ T

t

a(s)Ŷ x
s d
←−
B s −

∫ T

t

Ẑx
s dWs,and

Ỹ x
t = ξ(x)−

∫ T

t

[

|f(s, 0, 0)|+ Cf(|Ỹ
x
s |+ |Z̃

x
s |)

]

ds

+

∫ T

t

a(s)Ỹ x
s d
←−
B s −

∫ T

t

Z̃x
s dWs,7



where Cf is the Lipshitz onstant of f .One again appying the omparison theorem of BDSDE, we obtain
Y x

t ≤ Ŷ x
t , ∀ x ∈ IR, ∀ t ∈ [0, T ], a.s., (2.3)

Ỹ x
t ≤ Y x

t , ∀ x ∈ IR, ∀ t ∈ [0, T ], a.s. (2.4)For 0 < ε0 < ε, hoosing M > R0 su�iently large suh that
|h(x)| ≥

C0T e2C0T

ε− ε0
, for all |x| > M,where C0 is the onstant in (H2

f).Then by (H3
ξ) we have

ξ(x) + C0Te2C0T ≤ h(x)ε0, ∀ x < −M a.s.
ξ(x)− C0Te2C0T ≥ h(x)ε0, ∀ x > M a.s.Set X±

t (x) = h(x)ε0 exp
(

±Cf (T − t) +
∫ T

t
a(s)d

←−
B s −

1
2

∫ T

t
|a(s)|2ds

)

. Then
X±

t (x) = h(x)ε0 ± Cf

∫ T

t

X±
s (x)ds +

∫ T

t

a(s)X±
s (x)d

←−
B s. (2.5)By (H2

f) and Theorem 2.1 we have
Ŷ x

t ≤ X+
t (x) = h(x)ε0. exp

(

Cf(T − t) +

∫ T

t

a(s)d
←−
B s −

1

2

∫ T

t

|a(s)|2ds

)

,

∀ x < −M a.s. (2.6)
h(x)ε0. exp

(

−Cf (T − t) +

∫ T

t

a(s)d
←−
B s −

1

2

∫ T

t

|a(s)|2ds

)

= X−
t (x) ≤ Ỹ x

t ,

∀ x > M a.s. (2.7)Thus, we �nally get from (2.3) to (2.7) and (H3
ξ)

lim
↑∞

Y x
t = +∞, lim

↓−∞
Y x

t = −∞, ∀ t ∈ [0, T ] a.s.,whih omplete the proof of surjetion of the mapping x 7→ Y x
t (ω). �The following lemma plays a ruial role for proving Theorem 1.2.8



Lemma 2.2 Assume (H1
f), (H1

g), (H2′

f ) and (H3′

ξ ). Moreover, we suppose that g(s, ω, y, z) = 0a.s. Then
lim inf
|x|→+∞

IE(

sup
0≤t≤T

|Y x
t |

4β

)

= 0,where β is given in (H3′

ξ ).Remark 2.1 We observe that if (H2
g) holds, hene g(s, ω, y, z) = 0 and (H1

g) is veri�ed.Proof. In the following proof, by drawing the sequene if neessary, without any loss ofgenerality we may assume that for all x ∈ IR IE|ξ(x)|4β <∞.For any ε > 0, by It�'s formula we have
(|Y x

t |
2 + ε)β = (|ξ(x)|2 + ε)β + 2β

∫ T

t

(|Y x
s |

2 + ε)β−1Y x
s f(s, Y x

s , Zx
s )ds

−2β

∫ T

t

(|Y x
s |

2 + ε)β−1Y x
s Zx

s dWs

+2β

∫ T

t

(|Y x
s |

2 + ε)β−1Y x
s g(s, Y x

s , Zx
s )d
←−
B s

−2β(β − 1)

∫ T

t

(|Y x
s |

2 + ε)β−2|Y x
s |

2|Zx
s |

2ds

−β

∫ T

t

(|Y x
s |

2 + ε)β−1|Zx
s |

2ds

+2β(β − 1)

∫ T

t

(|Y x
s |

2 + ε)β−2|Y x
s |

2|g(s, Y x
s , Zx

s )|2ds

+β

∫ T

t

(|Y x
s |

2 + ε)β−1|g(s, Y x
s , Zx

s )|2ds. (2.8)Let us �rst prove the a priori estimate
sup

0≤t≤T

IE(|Y x
t |

2)2β . (2.9)It is lear that (H1
f) and (H2′

f ) implies f(s, 0, 0) = 0, whih together with (H1
f) then gives

|f(s, y, z)| ≤ Cf (|y|+ |z|).Sine β < 1−2C1

2
∧0, we an hoose δ > 0 suh that [β(C1 + δCf) + 8β2 − 2β − αg(16β2 − 4β)] > 0.Thus replaing β by 2β in the above estimates, taking expetation and letting ε ↓ 0, we have9



by ab ≤ δ + b2/(4δ) and monotoni onvergene theorem:IE|Y x
t |

4β + [β(C1 + δCf) + 2β(4β − 1)− 2αgβ(4β − 1)]

∫ T

t

IE(|Y x
s |

2(2β−1)|Zx
s |

2)ds

≤ IE|ξ(x)|4β +

[

4|β|Cf

(

1 +
1

4δ

)

+ 2Cgβ(4β − 1)

]
∫ T

t

IE|Y x
s |

4βds.Hene, Gronwall's inequality gives for any t ∈ [0, T ]IE|Y x
t |

4β +

∫ T

t

IE(|Y x
s |

2(2β−1)|Zx
s |

2)ds ≤ CIE|ξ(x)|4β.Thus (2.9) follows by (2.2) .Similar to the above alulations, from (2.8) we may derive that
|Y x

t |
2β ≤ |ξ(x)|2β + C

∫ T

t

|Y x
s |

2βds− 2β

∫ T

t

|Y x
s |

2(β−1)Y x
s Zx

s dWs

+2β

∫ T

t

|Y x
s |

2(β−1)Y x
s g(s, Y x

s , Zx
s )d
←−
B s.Therefore, by Doob's maximal inequalityIE(

sup
0≤t≤T

|Y x
t |

4β

)

≤ IE|ξ(x)|4β + C

∫ T

t

|Y x
s |

4βds + CIE [

sup
0≤t≤

∣

∣

∣

∣

∫ T

t

|Y x
s |

2(β−1)Y x
s Zx

s dWs

∣

∣

∣

∣

2
]

+CIE[

sup
0≤t≤

∣

∣

∣

∣

∫ T

t

|Y x
s |

2(β−1)Y x
s g(s, Y x

s , Zx
s )d
←−
B s

∣

∣

∣

∣

2
]

≤ IE|ξ(x)|4β + C

∫ T

t

IE|Y x
s |

4βds + C

∫ T

t

IE(|Y x
s |

2(2β−1)|Zx
s |

2)ds

≤ IE|ξ(x)|4β,whih yields the result by (H3′

ξ ).Proof of Theorem 1.2 By (H3′

ξ ), Theorem 2.1 and Lemma 2.2, the mappings x 7→ Y x
t (ω)are ontinuous injetive for all t ∈ [0, T ], a.s. With the help of Lemma 2.3, the proof ofsurjetion of x 7→ Y x

t (ω) is just a repeat of ([7℄, p.13) and we therefore omit the details.3 AppliationsIn this setion we onsider Eq.(1.2) and work on the framework of Pardoux-Peng [6℄, assumingthat 10



(C1
f) for every s ∈ [0, T ], (x, y, z) 7→ f(s, x, y, z) is of lass C3, the �rst order partial derivativesin y and z are bounded on [0, T ]× IR× IR × IR, as well as their derivatives of order oneand two with respet to x, y, z;

(C2
f) for every s ∈ [0, T ], the funtion x 7→ f(s, x, 0, 0) has polynomial growth at in�nitytogether with all partial derivatives up to order three;

(C3
f) for every s ∈ [0, T ] and y, z ∈ IR, the funtion 7→ f(s, x, y, z) is inreasing (or dereasing)in x;

(C4
f) for some C1 > 0 and ε1 > 0, it holds that y.f(s, x, y, z) > −C1|z|2 for all s ∈ [0, T ] and
|y| ≤ ε1, x, z ∈ IR;

(C1
g) g(s, x, y) = a(s, x)y suh that, for every s ∈ [0, T ], (x, y) 7→ g(s, x, y) is of lass C3, the�rst order partial derivatives in y is bounded.

(C1
σ,b) σ, b ∈ C3

b (IR) have all bounded derivatives up to order three;
(C2

σ,b) there are onstants c1 > 0 suh that
|b(x)|+ |σ(x)| ≤ c1|x|;

(C1
h) h is of lass C3 with polygonal growth derivatives up to order three;

(C2
h) x 7→ h(x) is inreasing (or dereasing) and a homeomorphism on IR;

(C3
h) there are onstants c2, γ > 0 suh that

|h(x)| ≥ c2|x|
γ.Consider the following quasilinear paraboli stohasti partial di�erential equations:











∂u

∂t
(t, x) + Lu(t, x) + f(s, x, u(t, x), (∂xu.σ)(t, x)) + a(s, x)u(t, x)♦Bs

u(T, x) = h(x)

(3.1)where u : [0, T ] × IR → IR, L = 1
2
σ2(x) ∂2

∂x2 + b(x)∂x
∂x

and ♦ denotes the Wik produt, whihindiates that the di�erential is to understand in It�'s sense. Pardoux-Peng [6℄ proved thefollowing result:Theorem 3.1 Under the assumptions (C1
f), (C2

f), (C1
g), (C1

σ,b) and (C1
h), for any t ∈ [0, T ],let {(Y t,x

s , Zt,x
s ), s ∈ [t, T ]} be the solution to Eq. (1.2), and de�ne

u(t, x) = Y t,x
t ,then u ∈ C1,2([0, T ]× IR) is the unique solution to Eq. (3.1).11



We need the following lemma whih is proved in [7℄.Lemma 3.1 Assume that (C1
σ,b) and (C2

σ,b) hold. Then, for any β < 0 there is a onstant
C > 0 suh that IE|X t,x

s |
2β ≤ C|x|2β, t ∈ [0, T ], s ∈ [t, T ], |x| > 1.Next, applying the well known omparison theorem about the forward stohasti di�erentialequation (see [7℄), and the above lemma as well as Theorems 2.1, 1.2 and 3.1, we an provethatProposition 3.1 Under the beginning assumptions of this setion, for any t ∈ [0, T ], themappings x 7→ Y t,x

s (ω) are homeomorphisms on IR for all s ∈ [t, T ] a.s. In partiular, theunique solution to Eq. (3.1) x 7→ u(t, x) is a homeomorphism on IR.Remark 3.1 Originally we intended to treat the problem in the present paper in general asei.e g nonlinear, in the hope of obtaining the homeomorphi property.But we have revised ourambition to fuk. Indeed, one knows that if g is not linear, the bakward SDE (2.5) has not anexpliit solution, whih does not provide proof of surjetive.Referenes[1℄ Bukdahn, R.; Ma, J., Stohasti visosity solutions for nonlinear stohasti partial di�er-ential equations. I. Stohasti Proess. Appl. 93 (2001), no. 2, 181-204.[2℄ Bukdahn, R.; Ma,J., Stohasti visosity solutions for nonlinear stohasti partial di�er-ential equations. II. Stohasti Proess. Appl. 93 (2001), no. 2, 205-228.[3℄ El Karoui, N.; Peng, S.; Quenez, M. C., Bakward stohasti di�erential equations in�nane. Math. Finane 7 (1997), no. 1, 1-71.[4℄ H. Kunita, Stohasti Di�erential Equations and Stohasti Flows of Di�eomorphisms, in:Let. Notes in Math., vol. 1097, Springer-Verlag, 1984, pp. 143-303.[5℄ P. Protter, Stohasti Integration and Di�erential Equation, seond ed., Springer-Verlag,Berlin, 2004.[6℄ Pardoux, E. and Peng, S., Bakward doubly stohasti di�erential equations and systemsof quasilnear SPDEs Probab. Theory Related Fields. 98 (1994), no. 2, 209-227.[7℄ Qiao, H.; Zhang, X. Homeomorphism of solutions to bakward SDEs and appliations.Stohasti Proess. Appl. 117 (2007), no. 3, 399-408.12
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