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NUMERICAL SCHEME FOR BACKWARD DOUBLY
STOCHASTIC DIFFERENTIAL EQUATIONS

AUGUSTE AMAN ¥
UFR Mathématiques et Informatique
Université de Cocody,
BP 582 Abidjan 22, Céte d’lvoire

Abstract

We study a discrete-time approximation for solutions oftesys of decoupled
forward-backward doubly stochastic differential equasidFBDSDES). Assuming
that the coefficients are Lipschitz-continuous, we proescibnvergence of the scheme
when the step of time discretizatiom| goes to zero. The rate of convergence is ex-
actly equal toi'/2. The proof is based on a generalization of a remarkabletresul
the2-regularity of the solution of the backward equation dedibg J. Zhang@l].

AMS Subiject Classificationn 65C05; 60H07; 62G08
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1 Introduction

In this paper, we study a discrete time approximation schiemthe solution of a system
of the (decoupled) forward-backward doubly stochastitedintial equations (FBDSDEs,
in short) on the time intervdD, T|:

X =X+ [Sb(Xs)ds+ [§ o (Xs)dWg
(1.1)
Yo = h(Xr) + 7 £(8. X6, Ye, Z) ds+ ;T g(s Xs, Ye)dBs — ;7 ZsdWL.

HereW andB are two independent Brownian motion such that, the integit respect

to B; is a backward Itd integral and the one with respeciMds a standard forward Ité
integral. Let us note that such equations naturally appeprababilistic interpretation of
stochastic partial differential equations (SPDEs, in ghémdeed, under standard Lipschitz
assumptions on the coefficieriss, f, g, andh, the existence and uniqueness of the solution
(Y,Z) have been proved by Pardoux and P¢hg [9]. Moreover, theytiyaknk between the
classical solution of SPDE in the following. More preciskdtyconsider the SPDE

- %u(t,x) — [Lu(t,x) — f(t,x,u(t,x),0™ (X)0u(t,x))] — g(t,x, u(t,x))OBs = 0,
u(T,x) =h(x), (1.2)
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where( denotes the Wick product and, thus, indicates that therdiitel is to understand
in 1td’s sense, and

02 d 0
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Under more strengthen assumptions (the coefficiéngsandh are ¢ 2 class), the compo-
nentY of the solution of([L.1) is related to the classical solutianof SPDE [1.R), in the
sense that

Yo = u(t, X). (1.3)

Furthermore, Buckdahn and Ma relax the assumptions of caaftito standard Lipschitz
one and they proved among other that the relaffio) give the stochastic viscosity solution
of SPDE([L.3). Thus, solving(fL.1) or (L.2) is essentially the same. However it is known
that only a limited number of BDSDE can be solved explicittyorder to solved the large
class of BDSDE and of course provide an alternative to aaksiumerical schemes for a
large class of SPDE, the numerical method and numericatitligois very helpful.

In the one stochastic case, ge= 0, the numerical approximation ¢fL.1) has already
been studied in the literature; see e.g. Zhgnp [11], BaltyRages[]2], Bouchard and Touzi
[B] or Gobet et al. [[5]. In[[B], the authors suggest the follegvimplicit scheme. Given a
partition regular gridt: 0=ty < t; < .... <t, =T of the interval[0, T|, they approximate
X by its well-know Euler schem¥™and(Y,Z), by the discrete-time proce$¥™, Z")o<i<n
defined backward by

1
Z'= g B YL AW, . |71
Yt.T[ = [ |,¢t,] +Al+l (ti>xt:-[>YtiT[> Zt].-[)>

whereY" = h(X{"), A™ 1 =W, —W, andAT; =ti;1 —t. Then, it turn out that the

discretization error

T 1/2
Errn(Y,Z) = { sup ENY — "+ [ B[z~ 227 ds}
0<t<T 0

is intimately related to the quantity

tiy 1 - 1 i1
Z/ [1Zs—Z;|?]ds where Z, = A B U Zs‘fti]
i+1 i

Under Lipschitz continuity conditions on the coefficien®jang [11] was able to prove
that the latter is of order dfi, the partition’s mesh. This remarkable result allows them
to derive the boundErr(Y,Z) < C|rj¥/2. Observe that this rate of convergence cannot be
improved in general. Consider, for example, the case wKeieequal to the Brownian
motionW, h is the identity, and = 0. Then)Y =W andYti’T =W.
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In this paper, we extend the approach of Bouchard and Tpjizaf@l approximate the
solution of([L.1)) by the following backward scheme.

' = A+1 [( i+ Ot ,+17Yt,Til)ABi+1) AVV|+1:| )

Y= BTN, 4 01, W BB+ (6, XY 2001

whereY" = h(XT) andABj 1 = By,, — B;. By adapting the arguments of Bouchard and
Touzi [B], we first prove that our discretization errr-(Y,Z) converge to 0 as the step of

the discretizationy] tends to 0. We then provide upper bounds on

n—1
max sup E[Y; — Y, [? +Z/ [1Zs—Z[*] ds

1<n o<t<t;

When the coefficients are Lipschitz continuous, we obtain

iy

max sup E|Y; — Y, |? + Z / B [1Zs— Z,|?] ds< C|m.
i<n o<t<;

This extends to our framework the remarkable result deriwe@hang [IlL]. It allows us

to show that our discrete-time scheme achieves, underdhdantd Lipschitz conditions, a

rate of convergence exactly equal|tg*/2.

Observe that, in opposition to algorithms based on the appatiion of the Brown-
ian motion by discrete processes taking a finite number d$ipesvalues (see e.g[ [10]
and the references therein), our scheme does not providly anfiplementable numerical
procedure, since it involves the computation of a large remolb conditional expectations.

This paper is organized as follows. In Section 2, we intredsame fundamental knowl-
edge and assumptions of BDSDESs and give extension of therkabialL?-regularity re-
sults derived by Zhand [IL1] to the doubly stochastic caséctwis our first main result. In
Section 3, we describe the approximation scheme and stavergence result, our second
main result.

Notations. We shall denote bjI™¢ the set of alln x d matrices with real coefficients.
We simply denot&R" = M™* andM" = M"". We shall denote byal| = (3, ;a?)"/? the
Euclidian norm oM™, a* the transpose o, ak the k-th column ofa. To simplify, we
denote respectively bjx| anday, the norm and the thieth component o € R". Finally,
we denote by.y = ¥;xy; the scalar product ifR".

2 Forward-Backward doubly SDEs

2.1 Preliminaries and Assumptions

Let(Q1, 71,IP1) and(Q2, 72, IP2) be two complete probability spaces ahd- 0 a fixed final
time. Throughout this paper we consid®,0 <t < T} and{B;,0 <t < T} two mutually
independent standard Brownian motions processes, witlesakspectively ilRY andR,
defined respectively 0(Qi, 71,IP1) and (Q2, #2,P2). For any procesgns:0<s<T)
defined on(Q;, 7, IP;), (i = 1, 2), we denote

9:sr,]t =0{Nr—Ns, ST <t}vag, T = Tor}t-
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In the sequel of the paper unless otherwise specified we elenot
Q=Q1xQ, 7 =71® 72 andP =P ®P>.
Moreover, we put
=V rfva

where a( is the collection ofP-null sets and denoté = (#;)i>o. Further, for random
variablese(wy ), w € Q1 andB(wy), wy € Qa, we view them as random variables(nby
the following identification:

g(w) =¢&(wy); B(w) =P(wr), w= (w1,wy).

GivenC > 0, we consider two functionb : R — RY ando : RY — MY two functions
satisfying the Lipschitz condition

(H1) [b(x) — b(X)| + [lo(X) — 6(X)|| < C]x—X], ¥ x, X € RY.

Then itis well-known that (see e.g Karatzas and Shigveff@ijany initial conditionx € R,
the forward stochastic differential equation

1 1
X = X+ / b(Xs)ds+ / O(X)dW, t € [0,T] 2.1)
0 0
has af;-adapted solutioriX;)o<t<1 Satisfying

E( sup [X?) <.
o<t<T

Before introducing the backward doubly SDE, we need to defimee additional nota-
tions. Given some real numbpr> 2, we denote by P the set of real valued adapted cadlag
processe¥ such that

¥l =E [ sup mﬂ <o,

0<t<T

7 P is the set of progressively measuraBi&-valued processes such that

T 1/p
1Zllio =E [ / rzt\pdt} <o,

The setBP = sP x # P is endowed with the norm
1
10V, 2)lla0 = (V]2 +11Z115,) .
The aim of this paper is to study a discrete-time approxiomedif the pairY, Z) solution
on [0, T] of the backward doubly stochastic differential equation

T T - T
Y; :h(XT)—i-/ f(S,Xs,YS,ZS)dS—l—/ g(s,Xs,Ys)st—/ ZAW;, 0<t<T. (2.2
t t t

By a solution, we mean a tripl€¥, Z) € 8P satisfying(p.3).

In order to ensure the existence and uniqueness of a solati@d), and the conver-
gence of our discrete-time approximation, we assume tleatthpf : [0,T] x RY x R x
RY - R,g: [0,T] x RIx R — R’ andh: RY — R satisfied the Lipschitz condition:
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(H2)

() [f(sxY.2) — F(&.X.Y, )P <C(js— &P+ x—XP+ly—YP+|z—2ZP)
(i) [g(s.xy) = 9(s. X, ¥)[? < C(ls= S PP+ [x= X[+ |y - ¥[?)
(iii ) |h(x) —h(X)|? < C|x—X|?

for some constar® > 0 independent of all the variables.

Remark2.1 In order to ensure the existence and uniqueness to thesobtiR.3), we
need only thatf andg are Lipschitz with respect variablgsandz. See Pardoux and Peng
[B] for more detail.

The following lemmas collect without proof, some standaslits in SDE and BDSDE
literature. We list them for ready references. For ease titiom, we shall denote b@,
a generic constant depending only pnthe constant€, b(0), a(0), h(0) and T and the
functionsf(.,0,0,0) andg(.,0,0).

Lemma 2.2. Assume b and satisfy(H1) and X be the unique solution of forward SDE

(). Then
X155 < Co(1+[x[P)
and
E (X — Xg|P] < Cp(1+[x")[t —s72,

Lemma 2.3. AssuméH2) and(Y, Z) be the unique solution of backward doubly S(RE).
Then

1(Y.Z)][5, < Cp(1+[XP)
and

E[Y —YP] < Co{(1+ [xP)t—5P*+]Z|1°, }.

2.2 LZregularity

In this subsection we establish the first main result of tlapgy, which we shall call the
L2-regularity. Such a regularity, plays a key role for deriythe rate of convergence of our
numerical scheme in Section 4 and, in our mind generalizezbiigm 3.4.3 in[[11].

To begin with, letrt: 0=ty < ... <ty =T be a partition of the time intervaD, T], with
|T] = max<i<n|ti_1 —ti|, the size of the partition. and be the solution of the forward SDE
(23). We denote byY, Z) the solution of the following backward SDE

T T — T
Yo = T (Xegs s %)+ /t £(5,Xs, Yo, Z5)dS+ /t g(s Xs, Ye)dBs — /t ZaW,  (2.3)

the generalized form of BDSDE.3). Next, for X™ the well-know Euler scheme of that
will be explicit in Section 3, letY™ Z™) be the adapted solution to the following BDSDE

T T — T
YtT[ = (pn()q(;rv st Xt]:) + ~/t f (37 XsansT[7 Z;[) ds+ /t g(sv XST[7YST[)dBS - /t ng\/\é (24)
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To simplify presentations, in what follows we assume #hatX™ € RY, and the other
processes are all one-dimensional. But the results cantbaded to cases with higher-
dimensional on this processes without significant diffieslt For simplicity we also denote
by == (X,Y),©=(X,Y,Z) and="= (X", Y™), @™ = (X", Y™ ZT).

Now we have

Lemma 2.4. Assume the functiong™ : R4 R f:[0,T] x RY x R? - R and g:

[0,T] x RY x R — R satisfying assumptior#d2) with adequate norm. For each< i <n,
we define

- 1 fi
Z(ifl == AT[E /til stS 3

whereE" ,(.) = E(. |7t| LV IT ) Then

limsup|m—'E
m—0

max sup Y —Y; — 71 |’ds 2.5
1<i<ng_ 1<tgt,‘ e 1‘ +ZL/ ti 1 ] <. (25

Before prove this important theorem, we state the followmmegded result. To this
end let us assume the followingg™ € CL(RI™D), f € CX*([0,T] x RY x R?) andg e
Co'([0, T] x RY x R). Moreover, for allx = (X, ...., %) € RIM1),

3 Il <c. (2.6)

We also design by, the partial differential oty which respect the variable
Next, we denote b{IX™ the solution of the following variational equation:,

t t
OX = la+ [ bOOXTdr+ | o(XMOXTaW, 2.7)
0 0
and by(0'Y™ 0'Z™) the solution of the following BDSDE oft_1,T]:

. n
OV = 3 R (X e XTOXT +/ (OO + £,(@F Y™+ f(OF) DZfdr

>i

. — L
+ /t [9x(Z7)OX+gy(Z7)DY")|dB — /t 0'Z7dW, t € [tiee, T],
fori=1,...,n. (2.8)

On the other hand, we denote by
n .
O™ = Ziletnl[tifl,ti)(t) + 0" 1{T}(t), te[0,T]; (2.9)

hence1"Y™is a cadlag process.



For application convenience, we shall rewiitY™in another form. Note that for each
i 2.8) is linear. Let(y°,2%) and(y!,{}), j =1,...,n be the adapted solutions of the BDSDEs

0 = [ IOPOXT O+ ORI

T =X =T V) dg ! od 2.10
+/t [ox(Z)BX" + oy(Z)V ] f_/t CrdW, (2.10)
. T . .
W= B XD OXT+ /t [fy(OF)Y! + ()¢} ]dr

T T
+ [ o=waB - [ daw,
respectively, then we have the following decomposition:

OYs=¥+ 5V, seli-ut) (2.12)

=

We may simplify(R.13) further. Let us define, for any € L1(F,[0,T]) and(04,0;) €
L(F,[0, T R) x L*(F, [0, T|;R),

t
ANn) = exp</s n(r)dr), s,te[0,T],
Lr8@,) — exp{/stel(r)dw—%/st|@1(r)|2dr}, ste0,T],

t — 1 st
Zzts(ez) exp{/S G)z(r)dBr—E/S ]Oz(r)\zdr}, s,te[0,T].

(*£8(@1) and?£8(0,) are respectively the well known Daléan-Dade stochastiomramptial
of ®; with respectW and®, with respecB). Then it is easily checked that, for apy> 0,
one has

s = (o) PP ). 212
and
[z8(@)] = "E(-eA¥(eP), i=12 (2.13)
In particular, we denote, fat € [0, T],
N = N(—fy)?E3(=gy), M= 1Z(fy), (2.14)

and if there is no danger of confusion, we denate= A° andM, = M°. Sincef, is uni-
formly bounded, by Girsanov's Theorem (see, e[d., [6]) wevkthatM is aP-martingale
on[0,T], andW =W — [} f,(@0)dr, t € [0, T] is anF-Brownian motion on the new proba-
bility space(Q, 7 ,P), whereP is defined bys = M. Moreover noting thafy, f, andg,
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are uniformly bounded, by virtue @.13) and (2.13) one can deduce easily frofg.14)
that, forp > 1, there exists a consta@} depending only off,C andp, such that

E( sup \/\t!pﬂ/\tll") <Cp; E( sup [\Mt\pHMtlyF’]) <Cp;
0<t<T 0<t<T

E (A —AgP+ AT = ASHP) < Cplt —5P/% (2.15)

E (Mt — Mg|P+ Mt = Mg YP) < Cplt — 572

Lemma 2.5. Assumeo, b € Cé and f, g, | satisfy the previous assumptions. Then for all
i=1,..,n

. ) t t
Oy = <z?+ zag) M A — /0 fx (O OXA; HdrA — /0 K(ENOXA LA B A,

=

whereEt0 and Etj, for j=1,---,n will be explicit in the proof.

Proof. Let us denote the following:
= Jo T(OFIXAr + g o(ZNOXA B, =AY,
VY = WA+ f§ f(OFOXTAr + [§ g (EMOXTA d B,
= XOOXATY, T =TACh Y= WA
Then, using integration by parts and equatipri@) we have, foii = 0,1, ....,n,
W=8- [ Gaw. teoT)

so that, féZ‘rdV\/r being a uniformly integrable martingale with in particutaro expectation,
we get

W=EE|n).
Therefore, by the Bayes rule (see e[¢, [6] Lemma 3.5.3) we fat € [0,T]
VWo= PA- / (OMDOXA; tdrA — / o (EHOXA 1d B, A
= M- /0 f(@MOXA, A — /0 G (=ZOXA, 1B A,
Vo = WA= (E15) A= E (MrE 7)) M = EMTA
where, fori =0,1,....,n,

=5 (Mrélr) = (Me€) + [ xiaw, (2.16)
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Note that the boundednessfeand(2.15) imply thatMt € LP(Q) andDX € LP(F,C([0, T];MH))
for all p > 2. Therefore for eacp > 1, (.§) leads to

n ~.
E{}JMﬁW}SCE@MﬂpSWHDNW}SC
= 0<t<T

In particular, for eachj =0,---,n, Mr&l e L(#1). So(2.18) makes sens. Finally the result
follows by (.13). O

Proof of Lemma 2.4For all 1< i < nand each € [t_1,t), applying LemmaJ, we get
E (% —Y_,[?) <Clm.

Then by Burkélder-Davis-Gundy inequality we have

E

max sup [¥% —Y,_ f] <cClm. (2.17)

1<|<nt| 1<t<t;

The estimate for the second term of the left hand@f) is little involved. First we
assume thab, o, ¢, f, g € C! such thaty™ satisfied(2.8). Let recall(Y™ Z™) denote the
adapted solution to the BDSDE.4) andX™ the solution of the Euler scheme associated to
EDS(2.3). Under the Lipschitz conditions dmanda, we have

[im maxE
m—01<i<n

sup X=X 2+ sup X — X 112]—0 (2.18)

0<t<T i <t<t;

Now by the Lipschitz assumption agi* and (R.1§), applying Lemma 2.2 we know that
T
lim E{ sup A Yt]2+/ ]Zt"—Zt\zdt} =0. (2.19)
=0  lo<t< 0

Recalling(P.5) and applying Lemma 3.4.2 of Zhanjg][11] we have

< ZZE[/ (|1Zs— z"|2+|z“ |)ds] (2.20)

By (.19) and(R.20), to estimate the second term and prove the theorem it remaimotv
that

ZlE V Zr— Z" yzds} <cm, (2.21)

whereC is independent oft
To do this, let us recall that from Proposition 2.3 [df [9] atelproof, we know that the
martingale parZ™ has a continuous version given by

Z = OYOX Lo(X™), Vte [t ,t),



which together with Lemma 2.5 provide

AJOXT

. t t
(z?+ Zze) M- /0 (O OXTA: dr — /0 O(ZHOXTA; M B,

=

Therefore,

Z =2 | <+ 12+ 13+ (2.22)

X |Mt| Atu 1 DX{. 1] (Xtril ’

Itl == z E't| 1+ Z Et 1

= j>tioi+1
|2 = E
t

]I

P = /0 DOKA A OXT 100G~ [ nOXA e [OXT) 04T

| M A =M A [OX] OGN

)

= | [ s men B o0 - [ g DXA B AL OX] o).
Recalling(R.18) and applying Lemmp.3 and Lemm&3&, one can easily prove that
E(I77+1{1) < Clm. (2.23)
Recalling(R.18) and(R.6), we have
€0+ &1 < CE( sup |1X7| 7).

]I
Thus by using again Lemnja2and Lemma3 one can similarly show that
E(/I[?) < CIrd. (2.24)
It remains to estimatg!. To this end we denote

Mo = sup {1+ X3+ |[OXJ 7+ Mg Y}

0<s<t

Noting thatA is bounded and thdt, , € #;_,, by (2.18), we have

Et+ZEt E.t, 1+Zzt, 1

I 1>

CE{rs1E{|a9—z:31|2+z|as—aaml}}
21

CE{rfl {/ |Xr|2dr+ 5 z 2olr”.

=

E|IL? < CIE{Ftl

IN

IN

X}
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Therefore, by following the step of [[L1], we get
ZE (/ |I1|2dt> < C|ME(r¥?) < cm. (2.25)

Combining (2.23), (B-24) and (2.29), we infer (221) from (£.23). This, together with
(£:20), leads to

Zl/ —-ZI' |Ads<Clm,

which ends the estimate of the second term for the smooth case
In general case, ldf, ot, @*¢, f¢ andgf be molifiers ofb, o, @7, f andg, respectively,
and let(Y¢,Z¢#) solution of BDSDE

T T T
Y= @O X+ [ 1T ds [ F(EEMaBs - [ 28w, 0<t<T,
t t t

whereX®&™is the well-know Euler approximation of the diffusi®t, the solution to the cor-
responding forward SDER.1) modified in an obvious way. Then by the above arguments
we have

ii/titil 28— 47 [Pds< Cjm. (2.26)
Therefore using again Lemma 3.4.2 of Zharg] [11], we have
i_i/titil %= Nl'Tl ds< Zi/ TLS 2ds
ii/titil“zvzgﬁ 2527 Plds

.
C{IE/ |ZS—Z§|2ds+|n|}. (2.27)
0

Applying Lemma 2.2 we have

IN

IN

.
lim E/ 1Zs— Z5%ds =0,
0

e—0

which, combined witH.27), proves the estimate of the second terni®¥) and together
with (2.17) prove the theorem. O

3 Discrete-time approximation error

In order to approximate the solution of the above decoupRB$DE ([L.1), we introduce
the following discretized version. Let: to <t; < ..... <ty =T be the patrtition of the time
interval [0, T] with mesh
T = max|t —tj_1|
1<i<n

11



defined in the previous section. Throughout the rest of tipepave will use the notations.
Al=ti—ti_1, AW =W, —W,_,, and A™B; =B, —B;_, fori=1,...,n
The forward component will be approximated by the clasditdér scheme
th = Xto7
(3.1)
X=X, b ) AKX, ) ATW for i =1,.

and we set

X=X AT )t —tioa) + o (X" )W —W,_,) for te (tig,t).

We shall denote by 7"} o<i<n the associated discrete-time filtration define by
="V .

Under the Lipschitz conditions dmanda, the followingLP estimate for the error due
to the Euler scheme is well known

1/p
lim sup|m|~%/2 maxEE | sup [X" X(|p+ sup X =X ,|P| <o, (3.2)

m™—0 = 0<t<T i <t

for all p> 1 (see e.g Kloeden and Platefi, [7]). We next consider thewially natural
discrete-time approximation of the backward comporent

Y= hOG), ZE =0

27, = B[ (4 0l X ) ATB) ATW], (3.3)

AT[
YtiT,[l :EF—I[YtzT_Fg(tU)(J[’Yt.T[) AT[Bi] (t| 17><t| 1’Yt| 1’Zt| 1)AT[ (34)

whereE[.] = E[.|#]. The above conditional expectation are well defined at et s
of the algorlthm Indeed using the backward induction arguoimit easily checked that
Y[ € L2 for all i.

Remark3.1 Using the induction argument, it easily seen that the randanableY," and
Z{" arew; deterministic function oK for eachi = 0,...,n. Then using the fixed point of
Banach argumenf8.4) have a unique solution when the mesh of the partitigris small
enough.

For later use, we need a continuous-time approxmaﬂo(ffdf) SinceY;"
+9(t, X Y) ATBj = Yt” being inL? for all 1 < i < n, an obvious extension of Itd mar-
tingale representation theorem yields the existence ofthwogressively measurable and
square integrable proceZ§ satisfying

~ ~ i
V=BT + [ Zian (35)

i—1

12



Then we define inductively

YtT[ = Yt.T,[l - (t _tifl)f(tiflaxtithEl’Zt?,l) - g(tla)q[’Yt.T[)(Bt - Bti—l)
t
+ ngV\é, i <t <. (3.6)

tica
The following property of th&™ is needed for the proof of the main result of this section.

Lemma 3.2. For all 1 <i < n, we have

ti
arzy, = | [ 25,
i—1

Proof. Since

L = B ATB) AW,

recalling(B.5), we have

zZr = Aln [Mvv / Z"dV\é]
The result follows by 1t6's isometry. O

We also need the following estimate, which is a particulaeaaf Lemma 2.4.

Lemma 3.3. For eachl <i < n, we define
N = ! — " [/ti sts]
i1 N -
Then

limsup|m~'E
m—0

max sup % —Y, |2 +Zl/ -7 2ds] <o, (3.7)

1<|<ntl 1<t<t;

We are now ready to state our main result of this section, wpiovides the rate of
convergence of the approximation scheff@ad) and (B.4) of the same order than Bouchard
and Touzi [B].

Theorem 3.4.

T 1/2
Errn(Y,2) = { sup E|Y; —Y?+E U \Zs—Zgyzds} } <C|mY/2.
0<t<T 0

Proof. In the following,C > 0 will denote the generic constant independeritaridn that
may take values from line to line. Let {0,...,n— 1} be fixed, and set

Y = -V 87 =Z— 7 () = (XY Z) — £, XY ZD)
and 6“9( ) (t )([ th) (tl‘i‘l?)(til?YtEl)?
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fort € [t,ti+1). By Itd’s formula, we compute that
tir1
v = 1[-z|a'>”\(t|2+13/+ 157 Zs2ds— [, |2
t

1 1
— / (7Y, 57 () ds+ / " eg9)Pds b <t<tia.
t t
Let B > O be a constant to be chosen later. From Lipschitz property, @ and h,
together with the inequalitgb < Ba? 4- b?/B this provides
C li+1
R A e e A A A ARTE
tit1
+ [ ORI e = X, P+ Ve - YT, 2} s
i1
4B / E|8"Y,[2ds (3.8)
t

Now observe that
E[Xs— X712+ E[Xs— X" |2 < C|m,

i+1

ENe— 1 < 2(ElYs Y, [2+ E[§%2) < C (| + ", 2) (3.9)

EYe — Y4, [2 < 2(ENe— ¥, 2+ E[S™,, 2) < C (T + |5, %)
by (B-2) and(B.7). Also, with the notation of Lemma.3, it follows from Lemma 2 that
ElZ-ZP < 2(Bzs-ZR+EZ-ZP)
2)

1 t
~ 2 1 tiv1 5
2<E’ZS—Z{[‘ +—/ E[é”Zr] dr) (3.10)

AT

Tt
A
i+1 /U

IN

by Jensen’s inequality.

We now plug(B.9) and(B.10) into (B.8) to obtain
C rti+ -
%< g [TE{m Iz 2 ds
tit1 - 2
+C [ E{In+18%.2) ds

1 C flivr plisa
+TE/+ / E|5"Z %drds
t ti

i+1

i1
+B/ E|8™s|%ds
t

C i+ ~
o B8 2o 2P s

IN

i1
+C [ E{In+18%,2) ds

1 1
+%/ +1IE|6”ZS|2ds+[3/+1IE|6”YS|2ds
t t

14



From the definition o%; and(3.11), we see that, fof <t <t ,
tir1 5 tit1 5
B[P+ [ ez ds< B [ B8 ds+ A (3.12)
t t
where
Th 2 C 2 T i+t ST2
A = (LHCTEIEY, [+ I+ [+ [ Blze 2

i1
+% " E|5"Z42ds
t

By Gronwall’'s Lemma, this shows tha@l|d™;|? < AieP™ for t; <t < ti,1, which plugged
in the second inequality ¢B.11) provides

B [ EEzeds < A (1HBdT) <ALCEm) (312

for |11 small enough. Far=t; andp sufficiently large tharC, such thal% < 1, we deduce
from the last inequality that

ti
IE|6”Yti|2+(l—%)/t " E|5Z42ds

W |2 2, [ 5112
< (LCIm){ B8N, [P+ i+ [ El|Ze— 2] s

for small|Tt.
Iterating the last inequality, we get
’ C tiv1 5
B5Y P+ (1-5) [ B8z ds
t

< <1+C|n|>W{E|6"YT|2+|H|+Z / E[|Zs— .ﬁds}.

Using the estimaté3.7), together with the Lipschitz property gfand (B.3), this provides

it
E\é"Yti]ZJr(l—%)/ " E|5Z2ds
t
< (1+Cm)"™E|8Yr |2+ |1 +C|mf} <C|r (3.13)

for small|1d. Summing up inequality.13) with t = t;, we get
[l—%(l—kCB\n])} /OTE\EHZS‘ZdS
< (L CBIT) I+ (1+CPimt) (L CImt EI&"Ys
4 {(Hcsyn\)%\m _ 1] E|5Yo[2
+|@repm o+ Gim) -1 ;E\es"vt.rz

n—1 ctiq ~
+<1+cs|n|>%_; | Bz 2y
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For (3 sufficiently larger tha€, this proves that for smalit:

)
/E]é”Zs\zds < c
0

n—1
1T+ E|8™Yr|? + | zﬁ\éﬂniyz
i=

n-1 N
+ Z}E\Zs— Zl'ds| ,
i=

where we recall tha€ is a generic constant which changes from line to line. We ns&v u

(B-13) and(B.7) to see that
T
/ E|8"Z42ds < C|Tt.
0

Together with Lemmp.3 and(B.13), this shows tha#; < C|rt, and therefore,

sup |5 < Cirt.
o<t<T

by taking the supremum ovein (B.12). This end the proof of the theorem. O
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