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NUMERICAL SCHEME FOR BACKWARD DOUBLY

STOCHASTIC DIFFERENTIAL EQUATIONS
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Abstract
We study a discrete-time approximation for solutions of systems of decoupled

forward-backward doubly stochastic differential equations (FBDSDEs). Assuming
that the coefficients are Lipschitz-continuous, we prove the convergence of the scheme
when the step of time discretization,|π| goes to zero. The rate of convergence is ex-
actly equal to|π|1/2. The proof is based on a generalization of a remarkable result on
the2-regularity of the solution of the backward equation derived by J. Zhang [11].
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1 Introduction

In this paper, we study a discrete time approximation schemefor the solution of a system
of the (decoupled) forward-backward doubly stochastic differential equations (FBDSDEs,
in short) on the time interval[0,T]:





Xt = x+
R t

0 b(Xs)ds+
R t

0 σ(Xs)dWs

Yt = h(XT)+
R T

t f (s,Xs,Ys,Zs)ds+
R T

t g(s,Xs,Ys)d
←−
Bs−

R T
t ZsdWs.

(1.1)

HereW andB are two independent Brownian motion such that, the integralwith respect
to Bt is a backward Itô integral and the one with respect toWt is a standard forward Itô
integral. Let us note that such equations naturally appear in probabilistic interpretation of
stochastic partial differential equations (SPDEs, in short). Indeed, under standard Lipschitz
assumptions on the coefficientsb,σ, f ,g, andh, the existence and uniqueness of the solution
(Y,Z) have been proved by Pardoux and Peng [9]. Moreover, they givethe link between the
classical solution of SPDE in the following. More preciselylet consider the SPDE

−
∂
∂t

u(t,x)− [Lu(t,x)− f (t,x,u(t,x),σ∗(x)∇u(t,x))]−g(t,x,u(t,x))♦Bs = 0,

u(T,x) = h(x), (1.2)
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where♦ denotes the Wick product and, thus, indicates that the differential is to understand
in Itô’s sense, and

L =
1
2

n

∑
i, j

(σσ∗)i j (x)
∂2

∂xi∂x j
+

n

∑
i

bi(x)
∂

∂xi
.

Under more strengthen assumptions (the coefficientsf , g andh areC 3 class), the compo-
nentY of the solution of(1.1) is related to the classical solutionu of SPDE (1.2), in the
sense that

Yt = u(t,Xt). (1.3)

Furthermore, Buckdahn and Ma relax the assumptions of coefficient to standard Lipschitz
one and they proved among other that the relation(1.3) give the stochastic viscosity solution
of SPDE(1.2). Thus, solving(1.1) or (1.2) is essentially the same. However it is known
that only a limited number of BDSDE can be solved explicitly.In order to solved the large
class of BDSDE and of course provide an alternative to classical numerical schemes for a
large class of SPDE, the numerical method and numerical algorithm is very helpful.

In the one stochastic case, i.eg≡ 0, the numerical approximation of(1.1) has already
been studied in the literature; see e.g. Zhang [11], Bally and Pages [2], Bouchard and Touzi
[3] or Gobet et al. [5]. In [3], the authors suggest the following implicit scheme. Given a
partition regular gridπ : 0 = t0 < t1 < .... < tn = T of the interval[0,T], they approximate
X by its well-know Euler schemeXπ and(Y,Z), by the discrete-time process(Yπ

ti ,Z
π
ti )0≤i≤n

defined backward by





Zπ
ti = 1

∆π
i+1

E
[
Yπ

ti+1
∆πWti+1|F ti

]

Yπ
ti = E

[
Yπ

ti+1
|F ti

]
+ ∆π

i+1 f (ti ,Xπ
ti ,Y

π
ti ,Zπ

ti ),

whereYπ
tn = h(Xπ

T), ∆πWi+1 = Wti+1 −Wti and ∆π
i+1 = ti+1− ti . Then, it turn out that the

discretization error

Errπ(Y,Z) =

{
sup

0≤t≤T
E|Yt −Yπ

t |
2 +

Z T

0
E
[
|Zs−Zπ

s |
2]ds

}1/2

is intimately related to the quantity

n−1

∑
i=1

Z ti+1

ti
E
[
|Zs− Z̃ti |

2]ds where Z̃ti =
1

∆π
i+1

E

[
Z ti+1

ti
Zs|F ti

]
.

Under Lipschitz continuity conditions on the coefficients,Zhang [11] was able to prove
that the latter is of order of|π|, the partition’s mesh. This remarkable result allows them
to derive the boundErrπ(Y,Z) ≤C|π|1/2. Observe that this rate of convergence cannot be
improved in general. Consider, for example, the case whereX is equal to the Brownian
motionW, h is the identity, andf = 0. Then,Y = W andYπ

ti = Wti .
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In this paper, we extend the approach of Bouchard and Touzi [3], and approximate the
solution of(1.1) by the following backward scheme.





Zπ
ti = 1

∆i+1
E

π
i

[(
Yπ

ti+1
+g(ti+1,Xπ

ti+1
,Yπ

ti+1
)∆Bi+1

)
∆Wi+1

]
,

Yπ
ti = E

π
i

[
Yπ

ti+1
+g(ti+1,Xπ

ti+1
,Yπ

ti+1
)∆Bi+1

]
+ f (ti,Xπ

ti ,Y
π

ti ,Zπ
ti )∆i+1

whereYπ
tn = h(Xπ

T ) and∆Bi+1 = Bti+1 −Bti . By adapting the arguments of Bouchard and
Touzi [3], we first prove that our discretization errorErrπ(Y,Z) converge to 0 as the step of
the discretization|π| tends to 0. We then provide upper bounds on

max
i<n

sup
0≤t≤ti

E|Yt −Yti |
2 +

n−1

∑
i

Z ti+1

ti
E
[
|Zs− Z̃ti |

2]ds.

When the coefficients are Lipschitz continuous, we obtain

max
i<n

sup
0≤t≤ti

E|Yt −Yti |
2 +

n−1

∑
i

Z ti+1

ti
E
[
|Zs− Z̃ti |

2]ds< C|π|.

This extends to our framework the remarkable result derivedby Zhang [11]. It allows us
to show that our discrete-time scheme achieves, under the standard Lipschitz conditions, a
rate of convergence exactly equal to|π|1/2.

Observe that, in opposition to algorithms based on the approximation of the Brown-
ian motion by discrete processes taking a finite number of possible values (see e.g. [10]
and the references therein), our scheme does not provide a fully implementable numerical
procedure, since it involves the computation of a large number of conditional expectations.

This paper is organized as follows. In Section 2, we introduce some fundamental knowl-
edge and assumptions of BDSDEs and give extension of the remarkableL2-regularity re-
sults derived by Zhang [11] to the doubly stochastic case, which is our first main result. In
Section 3, we describe the approximation scheme and state convergence result, our second
main result.

Notations. We shall denote byMn,d the set of alln×d matrices with real coefficients.
We simply denoteRn = M

n,1 andM
n = M

n,n. We shall denote by‖a‖ = (∑i, j a
2
i, j)

1/2 the
Euclidian norm onMn,d, a∗ the transpose ofa, ak the k-th column ofa. To simplify, we
denote respectively by|x| andak, the norm and the thek-th component ofa∈ R

n. Finally,
we denote byx.y = ∑i xiyi the scalar product inRn.

2 Forward-Backward doubly SDEs

2.1 Preliminaries and Assumptions

Let (Ω1,F1, IP1) and(Ω2,F2, IP2) be two complete probability spaces andT > 0 a fixed final
time. Throughout this paper we consider{Wt ,0≤ t ≤ T} and{Bt ,0≤ t ≤ T} two mutually
independent standard Brownian motions processes, with values respectively inRd andR

ℓ,
defined respectively on(Ω1,F1, IP1) and (Ω2,F2, IP2). For any process(ηs : 0≤ s≤ T)
defined on(Ωi ,F i , IPi), (i = 1, 2), we denote

F
η

s,t = σ{ηr −ηs,s≤ r ≤ t}∨N , F η
t = F η

0,t .
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In the sequel of the paper unless otherwise specified we denote

Ω = Ω1×Ω2, F = F1⊗F2 andP = P1⊗P2.

Moreover, we put

F t = F W
t ⊗F

B
T ∨N

whereN is the collection ofP-null sets and denoteF = (F t)t≥0. Further, for random
variablesε(ω1), ω1 ∈ Ω1 andβ(ω2), ω2 ∈ Ω2, we view them as random variables inΩ by
the following identification:

ε(ω) = ε(ω1); β(ω) = β(ω2), ω = (ω1,ω2).

Given C > 0, we consider two functionsb : R
d → R

d and σ : R
d → M

d two functions
satisfying the Lipschitz condition

(H1) |b(x)−b(x′)|+‖σ(x)−σ(x′)‖ ≤C|x−x′|, ∀ x,x′ ∈R
d.

Then it is well-known that (see e.g Karatzas and Shreve [6]),for any initial conditionx∈R
d,

the forward stochastic differential equation

Xt = x+

Z t

0
b(Xs)ds+

Z t

0
σ(Xs)dWs, t ∈ [0,T] (2.1)

has aF t -adapted solution(Xt)0≤t≤T satisfying

E( sup
0≤t≤T

|Xt |
2) < ∞.

Before introducing the backward doubly SDE, we need to definesome additional nota-
tions. Given some real numberp≥ 2, we denote byS p the set of real valued adapted càdlàg
processesY such that

‖Y‖S p = E

[
sup

0≤t≤T
|Yt |

p
]

< ∞.

H p is the set of progressively measurableR
d-valued processesZ such that

‖Z‖H p = E

[
Z T

0
|Zt |

pdt

]1/p

< ∞.

The setB p = S p×H p is endowed with the norm

‖(Y,Z)‖B p =
(
‖Y‖p
S p +‖Z‖p

H p

)1/p
.

The aim of this paper is to study a discrete-time approximation of the pair(Y,Z) solution
on [0,T] of the backward doubly stochastic differential equation

Yt = h(XT)+

Z T

t
f (s,Xs,Ys,Zs)ds+

Z T

t
g(s,Xs,Ys)d

←−
Bs−

Z T

t
ZsdWs, 0≤ t ≤ T. (2.2)

By a solution, we mean a triplet(Y,Z) ∈ B p satisfying(2.2).
In order to ensure the existence and uniqueness of a solutionto (2.2), and the conver-

gence of our discrete-time approximation, we assume that the map f : [0,T]×R
d×R×

R
d −→ R, g : [0,T]×R

d×R−→ R
ℓ andh : R

d −→ R satisfied the Lipschitz condition:
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(H2)

(i) | f (s,x,y,z)− f (s′,x′,y′,z′)|2≤C
(
|s−s′|2 + |x−x′|2 + |y−y′|2 + |z−z′|2

)

(ii) |g(s,x,y)−g(s,x′ ,y′)|2 ≤C(|s−s′|2 + |x−x′|2 + |y−y′|2)

(iii ) |h(x)−h(x′)|2≤C|x−x′|2

for some constantC > 0 independent of all the variables.

Remark2.1. In order to ensure the existence and uniqueness to the solution of (2.2), we
need only thatf andg are Lipschitz with respect variablesy andz. See Pardoux and Peng
[9] for more detail.

The following lemmas collect without proof, some standard results in SDE and BDSDE
literature. We list them for ready references. For ease of notation, we shall denote byCp

a generic constant depending only onp, the constantsC, b(0), σ(0), h(0) andT and the
functions f (.,0,0,0) andg(.,0,0).

Lemma 2.2. Assume b andσ satisfy(H1) and X be the unique solution of forward SDE
(2.1). Then

‖X‖p
S p ≤Cp(1+ |x|p)

and

E [|Xt −Xs|
p]≤Cp(1+ |x|p)|t−s|p/2.

Lemma 2.3. Assume(H2) and(Y,Z) be the unique solution of backward doubly SDE(2.2).
Then

‖(Y,Z)‖p
B p ≤Cp(1+ |x|p)

and

E [|Yt −Ys|
p]≤Cp

{
(1+ |x|p)|t−s|p−1 +‖Z‖p

H p

}
.

2.2 L2-regularity

In this subsection we establish the first main result of this paper, which we shall call the
L2-regularity. Such a regularity, plays a key role for deriving the rate of convergence of our
numerical scheme in Section 4 and, in our mind generalized Theorem 3.4.3 in [11].

To begin with, letπ : 0 = t0 < ... < tn = T be a partition of the time interval[0,T], with
|π|= max1≤i≤n |ti−1− ti |, the size of the partition. andX be the solution of the forward SDE
(2.1). We denote by(Y,Z) the solution of the following backward SDE

Yt = φπ(Xt0, ...,Xtn)+
Z T

t
f (s,Xs,Ys,Zs)ds+

Z T

t
g(s,Xs,Ys)d

←−
Bs−

Z T

t
ZsdWs, (2.3)

the generalized form of BDSDE(2.2). Next, forXπ the well-know Euler scheme ofX that
will be explicit in Section 3, let(Yπ,Zπ) be the adapted solution to the following BDSDE

Yπ
t = φπ(Xπ

t0, ...,X
π
tn)+

Z T

t
f (s,Xπ

s ,Yπ
s ,Zπ

s )ds+
Z T

t
g(s,Xπ

s ,Yπ
s )d
←−
Bs−

Z T

t
Zπ

s dWs. (2.4)
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To simplify presentations, in what follows we assume thatXt, Xπ
t ∈ R

d, and the other
processes are all one-dimensional. But the results can be extended to cases with higher-
dimensional on this processes without significant difficulties. For simplicity we also denote
by Ξ = (X,Y), Θ = (X,Y,Z) andΞπ = (Xπ,Yπ), Θπ = (Xπ,Yπ,Zπ).

Now we have

Lemma 2.4. Assume the functionsφπ : R
d(n+1) → R, f : [0,T]×R

d×R
2→ R and g:

[0,T]×R
d×R→ R satisfying assumptions(H2) with adequate norm. For each1≤ i ≤ n,

we define

Z̃π
ti−1

=
1
△π

i
E

π
i−1

[
Z ti

ti−1

Zsds

]
,

whereE
π
i−1(.) = E(.|F W

ti−1
∨F B

T ). Then

limsup
π→0

|π|−1
E

[
max
1≤i≤n

sup
ti−1≤t≤ti

|Yt −Yti−1|
2 +

n

∑
i=1

Z ti

ti−1

|Zs− Z̃π
ti−1
|2ds

]
< ∞. (2.5)

Before prove this important theorem, we state the followingneeded result. To this
end let us assume the following:φπ ∈ C1

b(R
d(n+1)), f ∈ C0,1

b ([0,T]×R
d×R

2) and g ∈

C0,1
b ([0,T]×R

d×R). Moreover, for allx = (x0, ....,xn) ∈R
d(n+1),

n

∑
i=0

|hπ
xi
(x)| ≤C. (2.6)

We also design byϕu the partial differential ofϕ which respect the variableu.
Next, we denote by∇Xπ the solution of the following variational equation:,

∇Xπ
t = Id +

Z t

0
bx(X

π
r )∇Xπ

r dr +
Z t

0
σx(X

π
r )∇Xπ

r dWr , (2.7)

and by(∇iYπ,∇iZπ) the solution of the following BDSDE on[ti−1,T]:

∇iYπ
t =

n

∑
j≥i

hπ
xj
(Xπ

t0, ...,X
π
tn)∇Xπ

t j
+

Z T

t
[ fx(Θπ

r )∇Xπ
r + fy(Θπ

r )∇
iYπ

r + fz(Θπ
r )∇

iZπ
r ]dr

+

Z T

t
[gx(Ξπ

r )∇Xπ
r +gy(Ξπ

r )∇
iYπ

r )]
←−
dBr −

Z T

t
∇iZπ

r dWr , t ∈ [ti+1,T],

for i = 1, ...,n. (2.8)

On the other hand, we denote by

∇πYπ
t =

n

∑
i=1

∇iYπ
t 1[ti−1,ti )(t)+ ∇nYπ

T−1{T}(t), t ∈ [0,T]; (2.9)

hence∇πYπ is a càdlàg process.

6



For application convenience, we shall rewrite∇πYπ in another form. Note that for each
i (2.8) is linear. Let(γ0,ζ0) and(γ j ,ζ j), j = 1, ...,n be the adapted solutions of the BDSDEs

γ0
t =

Z T

t
[ fx(Θπ

r )∇Xπ
r + fy(Θπ

r )γ
0
r + fz(Θπ

r )ζ
0
r ]dr

+

Z T

t
[gx(Ξπ

r )∇Xπ
r +gy(Ξπ

r )γ
0
r ]d
←−
B r −

Z T

t
ζ0

r dWr , (2.10)

γ j
t = hπ

xj
(Xπ

t0, .....,X
π
tn)∇Xπ

t j
+

Z T

t
[ fy(Θπ

r )γ
j
r + fz(Θπ

r )ζ
j
r ]dr

+
Z T

t
gy(Ξπ

r )γ
j
r d
←−
B r −

Z T

t
ζ j

r dWr ,

respectively, then we have the following decomposition:

∇iYs = γ0
s + ∑

j≥i

γ j
s, s∈ [ti−1, ti). (2.11)

We may simplify(2.11) further. Let us define, for anyη ∈ L1(F, [0,T ]) and(Θ1,Θ2) ∈
L2(F, [0,T];R)×L2(F, [0,T];R),

Λs
t (η) = exp

(
Z t

s
η(r)dr

)
, s, t ∈ [0,T],

1E s
t (Θ1) = exp

{
Z t

s
Θ1(r)dWr −

1
2

Z t

s
|Θ1(r)|

2dr

}
, s, t ∈ [0,T],

2E s
t (Θ2) = exp

{
Z t

s
Θ2(r)d

←−
B r −

1
2

Z t

s
|Θ2(r)|

2dr

}
, s, t ∈ [0,T].

(1E s
t (Θ1) and2E s

t (Θ2) are respectively the well known Daléan-Dade stochastic exponential
of Θ1 with respectW andΘ2 with respectB). Then it is easily checked that, for anyp > 0,
one has

[iE s
t (Θi)]

p = iE s
t (pΘi)Λs

t (
p(p−1)

2
|Θi |

2), (2.12)

and

[iE s
t (Θi)]

−1 = iE s
t (−Θi)Λs

t (|Θi |
2), i = 1,2. (2.13)

In particular, we denote, fors, t ∈ [0,T],

Λs
t = Λs

t (− fy)
2E s

t (−gy), Ms
t = 1E s

t ( fz), (2.14)

and if there is no danger of confusion, we denoteΛ. = Λ0
. andM. = M0

. . Since fz is uni-
formly bounded, by Girsanov’s Theorem (see, e.g., [6]) we know thatM is aP-martingale
on [0,T], andW̃t = Wt −

R t
0 fz(Θπ

s)dr, t ∈ [0,T] is anF-Brownian motion on the new proba-

bility space(Ω,F , P̃), whereP̃ is defined bydP̃

dP
= MT . Moreover noting thatfy, fz andgy

7



are uniformly bounded, by virtue of(2.12) and(2.13) one can deduce easily from(2.14)
that, for p≥ 1, there exists a constantCp depending only onT,C andp, such that

E

(
sup

0≤t≤T
|Λt |

p + |Λ−1
t |

p
)
≤Cp; E

(
sup

0≤t≤T
[|Mt |

p + |M−1
t |

p]

)
≤Cp;

E
(
|Λt −Λs|

p + |Λ−1
t −Λ−1

s |
p)≤Cp|t−s|p/2; (2.15)

E
(
|Mt −Ms|

p + |M−1
t −M−1

s |
p)≤Cp|t−s|p/2.

Lemma 2.5. Assumeσ, b ∈C1
b and f, g, l satisfy the previous assumptions. Then for all

i = 1, ...,n

∇iYπ
t =

(
ξ0

t + ∑
j≥i

ξ j
t

)
M−1

t Λt −

Z t

0
fx(Θπ

r )∇Xπ
r Λ−1

r drΛt −

Z t

0
gx(Ξπ

r )∇Xπ
r Λ−1

r d
←−
B rΛt ,

whereξ0
t andξ j

t , for j = 1, · · ·,n will be explicit in the proof.

Proof. Let us denote the following:

ξ̃0 =
R T

0 fx(Θπ
r )∇Xπ

r Λ−1
r dr +

R T
0 gx(Ξπ

r )∇Xπ
r Λ−1

r d
←−
B r , ζ̃0

t = ζ0Λ−1
t ,

γ̃0
t = γ0

t Λ−1
t +

R t
0 fx(Θπ

r )∇Xπ
r Λ−1

r dr +
R t

0 gx(Ξπ
r )∇Xπ

r Λ−1
r d
←−
B r

ξ̃i = hπ(Xπ
t0, · · ·,X

π
tn)∇Xπ

ti Λ−1
T , ζ̃i

t = ζi
tΛ
−1
t , γ̃i

t = γi
tΛ
−1
t .

Then, using integration by parts and equation(2.10) we have, fori = 0,1, ....,n,

γ̃i
t = ξ̃i−

Z T

t
ζ̃i

rdW̃r , t ∈ [0,T],

so that,
R t

0 ζ̃i
rdW̃r being a uniformly integrable martingale with in particularzero expectation,

we get

γ̃i
t = Ẽ(ξ̃i|F t).

Therefore, by the Bayes rule (see e.g, [6] Lemma 3.5.3) we have for t ∈ [0,T]

γ0
t = γ̃0

t Λt −

Z t

0
fx(Θπ

r )∇Xπ
r Λ−1

r drΛt −

Z t

0
gx(Ξπ

r )∇Xπ
r Λ−1

r d
←−
B rΛt

= ξ0
t M−1

t Λt −

Z t

0
fx(Θπ

r )∇Xπ
r Λ−1

r drΛt −

Z t

0
gx(Ξπ

r )∇Xπ
r Λ−1

r d
←−
B rΛt ,

γi
t = γ̃i

tΛt = Ẽ

(
ξ̃i |F t

)
Λt = E

(
MT ξ̃i|F t

)
M−1

t Λt = ξi
tM
−1
t Λt ,

where, fori = 0,1, ....,n,

ξi
t = E

(
MT ξ̃i|F t

)
= E

(
MT ξ̃i

)
+

Z t

0
χi

sdWs. (2.16)
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Note that the boundedness offz and(2.15) imply thatMT ∈ Lp(Ω) and∇X ∈ Lp(F,C([0,T];Md))
for all p≥ 2. Therefore for eachp≥ 1, (2.6) leads to

E

{
n

∑
j=0

|MT ξ̃ j |

}
≤CE

{
|MT |

p sup
0≤t≤T

|∇Xt|
p
}
≤C.

In particular, for eachj = 0, · · ·,n, MT ξ̃ j ∈ L(FT). So(2.16) makes sens. Finally the result
follows by (2.11).

Proof of Lemma 2.4.For all 1≤ i ≤ n and eacht ∈ [ti−1, ti), applying Lemma 2.3, we get

E
(
|Yt −Yti−1|

2)≤C|π|.

Then by Burkölder-Davis-Gundy inequality we have

E

[
max
1≤i≤n

sup
ti−1≤t≤ti

|Yt −Yti−1|
2

]
≤C|π|. (2.17)

The estimate for the second term of the left hand in(2.5) is little involved. First we
assume thatb,σ, φπ, f , g∈C1

b such thatφπ satisfied(2.6). Let recall(Yπ,Zπ) denote the
adapted solution to the BDSDE(2.4) andXπ the solution of the Euler scheme associated to
EDS(2.1). Under the Lipschitz conditions onb andσ, we have

lim
π→0

max
1≤i≤n

E

[
sup

0≤t≤T
|Xπ

t −Xt|
2 + sup

ti−1≤t≤ti
|Xt−Xti−1|

2

]
= 0. (2.18)

Now by the Lipschitz assumption onφπ and(2.18), applying Lemma 2.2 we know that

lim
π→0

E

{
sup

0≤t≤T
|Yπ

t −Yt |
2 +

Z T

0
|Zπ

t −Zt |
2dt

}
= 0. (2.19)

Recalling(2.5) and applying Lemma 3.4.2 of Zhang [11] we have

n

∑
i=1

E

[
Z ti

ti−1

|Zs− Z̃π
ti−1
|2ds

]
≤

n

∑
i=1

E

[
Z ti

ti−1

|Zs−Zπ
ti−1
|2ds

]

≤ 2
n

∑
i=1

E

[
Z ti

ti−1

(|Zs−Zπ
s |

2 + |Zπ
s −Zπ

ti−1
|2)ds

]
. (2.20)

By (2.19) and(2.20), to estimate the second term and prove the theorem it remain to show
that

n

∑
i=1

E

[
Z ti

ti−1

|Zπ
s −Zπ

ti−1
|2ds

]
≤C|π|, (2.21)

whereC is independent ofπ.
To do this, let us recall that from Proposition 2.3 of [9] and its proof, we know that the

martingale partZπ has a continuous version given by

Zπ
t = ∇iYπ

t [∇Xπ
t ]−1σ(Xπ

t ), ∀ t ∈ [ti−1, ti),

9



which together with Lemma 2.5 provide

Zπ
t =

[(
ξ0

t + ∑
j≥i

ξ j
t

)
M−1

t −

Z t

0
fx(Θπ

r )∇Xπ
r Λ−1

r dr−
Z t

0
gx(Ξπ

r )∇Xπ
r Λ−1

r d
←−
B r

]
Λt [∇Xπ

t ]−1σ(Xπ
t ).

Therefore,

|Zπ
t −Zπ

ti−1
| ≤ I1

t + I2
t + I3

t + I4
t (2.22)

where

I1
t =

∣∣∣∣∣[ξ
0
t + ∑

j≥i
ξ j

t ]− [ξ0
ti−1

+ ∑
j≥ti−1+1

ξ j
ti−1

]

∣∣∣∣∣×
∣∣M−1

ti−1
Λti−1[∇Xπ

ti−1
]−1σ(Xπ

ti−1

∣∣ ,

I2
t =

∣∣∣∣∣ξ
0
t + ∑

j≥i
ξ j

t

∣∣∣∣∣
∣∣M−1

t Λt [∇Xπ
t ]−1σ(Xπ

t )−M−1
ti−1

Λti−1[∇Xπ
ti−1

]−1σ(Xπ
ti−1

)
∣∣ ,

I3
t =

∣∣∣∣
Z t

0
fx(r)∇Xπ

r Λ−1
r drΛt [∇Xπ

t ]−1σ(Xπ
t )−

Z ti−1

0
fx(r)∇Xπ

r Λ−1
r drΛti−1[∇Xπ

ti−1
]−1σ(Xπ

ti−1
)

∣∣∣∣ ,

I4
t =

∣∣∣∣
Z t

0
gx(r)∇Xπ

r Λ−1
r d
←−
B rΛt [∇Xπ

t ]−1σ(Xπ
t )−

Z ti−1

0
gx(r)∇Xπ

r Λ−1
r d
←−
B rΛti−1[∇Xπ

ti−1
]−1σ(Xπ

ti−1
)

∣∣∣∣ .

Recalling(2.15) and applying Lemma 2.2 and Lemma 2.3, one can easily prove that

E(|I3
t |

2 + |I4
t |

2)≤C|π|. (2.23)

Recalling(2.16) and(2.6), we have

|ξ0
t +∑

j≥i

ξ j
t | ≤CE( sup

0≤t≤T
|∇Xπ

t | | F t).

Thus by using again Lemma 2.2 and Lemma 2.3 one can similarly show that

E(|I2
t |

2)≤C|π|. (2.24)

It remains to estimateI1
t . To this end we denote

Γt = sup
0≤s≤t

{
1+ |Xπ

s |+ |[∇Xπ
s ]−1|+ |M−1

s |
}

.

Noting thatΛ is bounded and thatΓti−1 ∈ F ti−1, by (2.16), we have

E|I1
t |

2 ≤ CE



Γ6

ti−1

∣∣∣∣∣[ξ
0
t + ∑

j≥i
ξ j

t ]− [ξ0
ti−1

+∑
j≥i

ξ j
ti−1

]

∣∣∣∣∣

2




≤ CE

{
Γ6

ti−1
E

{
|ξ0

t −ξ0
ti−1
|2 +∑

j≥i
|ξ j

t −ξ j
ti−1
|2|F ti−1

}}

≤ CE



Γ6

ti−1




Z ti

ti−1

|χ0
r |

2dr +

Z ti

ti−1

∣∣∣∣∣∑j≥i

χ j
r

∣∣∣∣∣

2

dr






 .
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Therefore, by following the step of [11], we get

n

∑
i=1

E

(
Z ti

ti−1

|I1
t |

2dt

)
≤C|π|E(Γ12

T )≤C|π|. (2.25)

Combining(2.23), (2.24) and (2.25), we infer (2.21) from (2.22). This, together with
(2.20), leads to

n

∑
i=1

Z ti

ti−1

|Zs− Z̃π
ti−1
|2ds≤C|π|,

which ends the estimate of the second term for the smooth case.
In general case, letbε, σε, φπ,ε, f ε andgε be molifiers ofb, σ, φπ, f andg, respectively,

and let(Yε,Zε) solution of BDSDE

Yε,π
t = φπ,ε(Xε,π

t0 , ...,Xε,π
tn )+

Z T

t
f ε(Θε,π

s )ds+
Z T

t
gε(Ξε,π

s )d
←−
Bs−

Z T

t
Zε,π

s dWs, 0≤ t ≤ T,

whereXε,π is the well-know Euler approximation of the diffusionXε, the solution to the cor-
responding forward SDE(2.1) modified in an obvious way. Then by the above arguments
we have

n

∑
i=1

Z ti

ti−1

|Zε
s− Z̃π,ε

ti−1
|2ds≤C|π|. (2.26)

Therefore using again Lemma 3.4.2 of Zhang, [11], we have

n

∑
i=1

Z ti

ti−1

|Zs− Z̃π
ti−1
|2ds≤

n

∑
i=1

Z ti

ti−1

|Zs− Z̃π,ε
ti−1
|2ds

≤
n

∑
i=1

Z ti

ti−1

[|Zs−Zε
s|

2 + |Zε
s− Z̃π,ε

ti−1
|2]ds

≤ C

{
E

Z T

0
|Zs−Zε

s|
2ds+ |π|

}
. (2.27)

Applying Lemma 2.2 we have

lim
ε→0

E

Z T

0
|Zs−Zε

s|
2ds= 0,

which, combined with(2.27), proves the estimate of the second term of(3.7) and together
with (2.17) prove the theorem.

3 Discrete-time approximation error

In order to approximate the solution of the above decoupled FBDSDE(1.1), we introduce
the following discretized version. Letπ : t0 < t1 < ..... < tn = T be the partition of the time
interval [0,T] with mesh

|π|= max
1≤i≤n

|ti− ti−1|

11



defined in the previous section. Throughout the rest of the paper, we will use the notations.

△π
i = ti− ti−1, △

πWi = Wti −Wti−1, and△π Bi = Bti −Bti−1 for i = 1, ...,n.

The forward component will be approximated by the classicalEuler scheme

Xπ
t0 = Xt0,

(3.1)

Xπ
ti = Xπ

ti−1
+b(Xπ

ti−1
)△π

i +σ(Xπ
ti−1

)△π Wi for i = 1, ...,n

and we set

Xπ
t = Xπ

ti−1
+b(Xπ

ti−1
)(t− ti−1)+ σ(Xπ

ti−1
)(Wt −Wti−1) for t ∈ (ti−1, ti).

We shall denote by{F π
ti }0≤i≤n the associated discrete-time filtration define by

F π
ti = F W

ti ∨F
B

T .

Under the Lipschitz conditions onb andσ, the followingLp estimate for the error due
to the Euler scheme is well known

limsup
π−→0

|π|−1/2 max
1≤i≤n

E

[
sup

0≤t≤T
|Xπ

t −Xt|
p + sup

ti−1≤t≤ti
|Xt −Xti−1|

p

]1/p

< ∞, (3.2)

for all p≥ 1 (see e.g Kloeden and Platen, [7]). We next consider the following natural
discrete-time approximation of the backward componentY:

Yπ
tn = h(Xπ

T ), Zπ
tn = 0

Zπ
ti−1

=
1
△π

i
E

π
i−1[
(
Yπ

ti +g(ti ,X
π
ti ,Y

π
ti )△

π Bi
)
△π Wi ], (3.3)

Yπ
ti−1

= E
π
i−1[Y

π
ti +g(ti ,X

π
ti ,Y

π
ti )△

π Bi]+ f (ti−1,X
π
ti−1

,Yπ
ti−1

,Zπ
ti−1

)△π
i , (3.4)

whereE
π
i [.] = E[.|F π

ti ]. The above conditional expectation are well defined at each step
of the algorithm. Indeed using the backward induction argument, it easily checked that
Yπ

ti ∈ L2 for all i.

Remark3.1. Using the induction argument, it easily seen that the randomvariableYπ
ti and

Zπ
ti areω1 deterministic function ofXπ

ti for eachi = 0, ...,n. Then using the fixed point of
Banach argument(3.4) have a unique solution when the mesh of the partition|π| is small
enough.

For later use, we need a continuous-time approximation of(Y,Z). SinceYπ
ti

+g(ti ,Xπ
ti ,Y

π
ti )△

π Bi = Ỹπ
ti being inL2 for all 1≤ i ≤ n, an obvious extension of Itô mar-

tingale representation theorem yields the existence of theF t -progressively measurable and
square integrable processZπ satisfying

Ỹπ
ti = E[Ỹπ

ti |F
π

ti−1
]+

Z ti

ti−1

Zπ
s dWs. (3.5)
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Then we define inductively

Yπ
t = Yπ

ti−1
− (t− ti−1) f (ti−1,X

π
ti−1

,Yπ
ti−1

,Zπ
ti−1

)−g(ti,X
π
ti ,Y

π
ti )(Bt −Bti−1)

+
Z t

ti−1

Zπ
s dWs, ti−1 < t ≤ ti . (3.6)

The following property of theZπ is needed for the proof of the main result of this section.

Lemma 3.2. For all 1≤ i ≤ n, we have

△π
i Zπ

ti−1
= E

π
i−1

[
Z ti

ti−1

Zπ
s ds

]
.

Proof. Since

△π
i Zπ

ti−1
=

1
△π

i
E

π
i−1[
(
Yπ

ti +g(ti,X
π
ti ,Y

π
ti )△π Bi

)
△π Wi ],

recalling(3.5), we have

Zπ
ti−1

=
1
△π

i
E

π
i−1

[
△πWi

Z ti

ti−1

Zπ
s dWs

]
.

The result follows by Itô’s isometry.

We also need the following estimate, which is a particular case of Lemma 2.4.

Lemma 3.3. For each1≤ i ≤ n, we define

Z̃π
ti−1

=
1
△π

i
E

π
i−1

[
Z ti

ti−1

Zsds

]
.

Then

limsup
π→0

|π|−1
E

[
max
1≤i≤n

sup
ti−1≤t≤ti

|Yt −Yti−1|
2 +

n

∑
i=1

Z ti

ti−1

|Zs− Z̃π
ti−1
|2ds

]
< ∞. (3.7)

We are now ready to state our main result of this section, which provides the rate of
convergence of the approximation scheme(3.3) and(3.4) of the same order than Bouchard
and Touzi [3].

Theorem 3.4.

Errπ(Y,Z) =

{
sup

0≤t≤T
E|Yt −Yπ

t |
2 +E

[
Z T

0
|Zs−Zπ

s |
2ds

]}1/2

< C|π|1/2.

Proof. In the following,C > 0 will denote the generic constant independent ofi andn that
may take values from line to line. Leti ∈ {0, ...,n−1} be fixed, and set

δπYt = Yt −Yπ
t , δπZt = Zt −Zπ

t , δπ f (t) = f (t,Xt ,Yt ,Zt)− f (ti,X
π
ti ,Y

π
ti ,Zπ

ti )

and δπg(t) = g(t,Xt ,Yt ,)−g(ti+1,X
π
ti+1

,Yπ
ti+1

),
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for t ∈ [ti , ti+1). By Itô’s formula, we compute that

Vt = E|δπYt |
2 +E

Z ti+1

t
|δπZs|

2ds−|δπYti+1|
2

= 2E

Z ti+1

t
〈δπYs,δπ f (s)〉ds+

Z ti+1

t
|δπg(s)|2ds, ti ≤ t ≤ ti+1.

Let β > 0 be a constant to be chosen later. From Lipschitz property off , g and h,
together with the inequalityab≤ βa2 +b2/β this provides

Vt ≤
C
β

Z ti+1

t
E
{
|π|2 + |Xs−Xπ

ti |
2 + |Ys−Yπ

ti |
2 + |Zs−Zπ

ti |
2}ds

+

Z ti+1

t
CE
{
|π|2 + |Xs−Xπ

ti+1
|2 + |Ys−Yπ

ti+1
|2
}

ds

+β
Z ti+1

t
E|δπYs|

2ds. (3.8)

Now observe that

E|Xs−Xπ
ti |

2 +E|Xs−Xπ
ti+1
|2≤C|π|,

E|Ys−Yπ
ti |

2≤ 2
(
E|Ys−Yti |

2 +E|δπYti |
2
)
≤C

(
|π|+E|δπYti |

2
)

E|Ys−Yπ
ti+1
|2≤ 2

(
E|Ys−Yti+1|

2 +E|δπYti+1|
2
)
≤C

(
|π|+E|δπYti+1|

2
)

(3.9)

by (3.2) and(3.7). Also, with the notation of Lemma 3.3, it follows from Lemma 3.2 that

E|Zs−Zπ
ti |

2 ≤ 2
(
E|Zs− Z̃π

ti |
2 +E|Z̃π

ti −Zπ
ti |

2)

= 2

(
E|Zs− Z̃π

ti |
2 +E

∣∣∣∣
1

∆π
i+1

Z ti+1

ti
E(δπZr |F ti )dr

∣∣∣∣
2
)

≤ 2

(
E|Zs− Z̃π

ti |
2 +

1
∆π

i+1

Z ti+1

ti
E|δπZr |

2dr

)
(3.10)

by Jensen’s inequality.
We now plug(3.9) and(3.10) into (3.8) to obtain

Vt ≤
C
β

Z ti+1

t
E
{
|π|+ |δπYti |

2 + |Zs− Z̃π
ti |

2}ds

+C
Z ti+1

t
E
{
|π|+ |δπYti+1|

2}ds

+
1

∆π
i+1

C
β

Z ti+1

t

Z ti+1

ti
E|δπZr |

2drds

+β
Z ti+1

t
E|δπYs|

2ds

≤
C
β

Z ti+1

t
E
{
|π|+ |δπYti |

2 + |Zs− Z̃π
ti |

2}ds

+C
Z ti+1

t
E
{
|π|+ |δπYti+1|

2}ds

+
C
β

Z ti+1

t
E|δπZs|

2ds+ β
Z ti+1

t
E|δπYs|

2ds.

14



From the definition ofVt and(3.11), we see that, forti ≤ t ≤ ti+1,

E|δπYt |
2 +

Z ti+1

t
E|δπZs|

2ds≤ β
Z ti+1

t
E|δπYs|

2ds+Ai (3.11)

where

Ai = (1+Cπ)E|δπYti+1|
2 +

C
β

[
|π|2 + |π|E|Yπ

ti |+

Z ti+1

ti
E|Zs− Z̃π

ti |
2ds

]

+
C
β

Z ti+1

ti
E|δπZs|

2ds.

By Gronwall’s Lemma, this shows thatE|δπYt |
2 ≤ Aieβ|π| for ti ≤ t < ti+1, which plugged

in the second inequality of(3.11) provides

E|δπYt |
2 +

Z ti+1

t
E|δπZs|

2ds ≤ Ai

(
1+ |π|βeβ|π|

)
≤ Ai (1+Cβ|π|) (3.12)

for |π| small enough. Fort = ti andβ sufficiently large thanC, such thatCβ < 1, we deduce
from the last inequality that

E|δπYti |
2 +(1−

C
β

)
Z ti+1

ti
E|δπZs|

2ds

≤ (1+C|π|)
{

E|δπYti+1|
2 + |π|2+

Z ti+1

ti
E[|Zs− Z̃π

ti |
2]ds

}

for small|π|.
Iterating the last inequality, we get

E|δπYti |
2 +(1−

C
β

)

Z ti+1

ti
E|δπZs|

2ds

≤ (1+C|π|)T/|π|

{
E|δπYT |

2 + |π|+
n

∑
i=1

Z ti

ti−1

E[|Zs− Z̃π
ti−1
|2]ds

}
.

Using the estimate(3.7), together with the Lipschitz property ofg and(3.2), this provides

E|δπYti |
2 +(1−

C
β

)

Z ti+1

ti
E|δπZs|

2ds

≤ (1+C|π|)T/π{
E|δπYT |

2 + |π|+C|π|
}
≤C|π| (3.13)

for small|π|. Summing up inequality(3.12) with t = ti , we get
[
1−

C
β

(1+Cβ|π|)
]

Z T

0
E|δπZs|

2ds

≤ (1+Cβ|π|)
C
β
|π|+(1+Cβ|π|)(1+C|π|)E|δπYT |

2

+

[
(1+Cβ|π|)

C
β
|π|−1

]
E|δπY0|

2

+

[
(1+Cβ|π|)((1+C|π|)+

C
β
|π|)−1

]n−1

∑
i=1

E|δπYti |
2

+(1+Cβ|π|)
C
β

n−1

∑
i=0

Z ti+1

ti
E|Zs− Z̃π

ti |
2ds.
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For β sufficiently larger thatC, this proves that for small|π|:

Z T

0
E|δπZs|

2ds ≤ C

[
|π|+E|δπYT |

2 + |π|
n−1

∑
i=1

E|δπYti |
2

+
n−1

∑
i=0

E|Zs− Z̃π
ti |

2ds

]
,

where we recall thatC is a generic constant which changes from line to line. We now use
(3.13) and(3.7) to see that

Z T

0
E|δπZs|

2ds≤C|π|.

Together with Lemma 3.3 and(3.13), this shows thatAi ≤C|π|, and therefore,

sup
0≤t≤T

|δπYt |
2≤C|π|.

by taking the supremum overt in (3.12). This end the proof of the theorem.
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