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non-Lipschitz coefficients
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Abstract. In this paper, we continue in solving reflected generalizadkivard stochastic
differential equations (RGBSDE for short) and fixed terrhtimae with use some new technical
aspects of the stochastic calculus related to the refleerdrglized BSDE. Here, existence
and uniqueness of solution is proved under the non-Lipaciibdition on the coefficients.

Key words. Reflected generalized backward stochastic differentiab#gns;p-integrable
data, non-Lipschitz coefficient.
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1. Introduction

The study of nonlinear backward stochastic differentialaggpns (BSDES, in short)
was initiated by Pardoux and Perjg][12]. Mainly motivated bwficial problems (see
e.g. the survey article by El Karoui et dl. [8]), stochastiaizol and stochastic games
(see the works by Hamadéne and Lepel{igr [5] and refereheesin ), the theory of
BSDEs was developed at high speed during the 1990. Thes#@tualso provide
probabilistic interpretation for solutions to both ellpand parabolic nonlinear partial
differential equations (see Pardoux and P¢n} [13], Periy [tleed, coupled with a
forward SDE, such BSDE'’s give an extension of the celebrajmfman-Kac formula
to nonlinear case.

In order to provide a probabilistic representation for solu of parabolic or el-
liptic semi-linear PDEs with Neumann boundary conditioard®ux and Zhand[}4]
introduced the so-called generalized BSDEs. This equétiaives the integral with
respect to an increasing process.

El-Karoui et al. [P] have introduced the notion of reflecteSIEEs (RBSDEs, in
short). Actually, it is a BSDE, but one of the components @f solution is forced to
stay above a given barrier. Since then, many others requlisecoRBSDES have been
established (se¢][{] 6] and references therein) . In Elaal. [9], the RBSDESs
also provided a probabilistic formula for the viscositywgan of an obstacle problem
for a parabolic PDEs.

Following this way, Ren et a[[16] have introduced the notadreflected gener-
alized BSDEs (RGBSDE, in short). They connected it to thetaubs problem for
PDEs with Neumann boundary condition. More precisely, tetsider the following
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RGBSDE: for0< ¢t < T,

T T T
mﬁ—5+/f@nx@w+/g@nma—/’amguﬁ—m
t t t

(id) Yy > St (1.1)
T
(#47) K is a non-decreasing process such fkigt= 0 and/ (Y, — Sy)dK, =0.
0

They proved under suitable conditions on the data the edstand uniqueness of
the solution(Y, Z, K'). The increasing proceds is introduced to pushes the com-
ponentY” upwards so that it may remain above the obstacle proges$s particular,
condition(ii:) means that the push is minimal and is done only when the @insis
saturated i.eY; < S;. In practice (finance market for example), the prod&€ssan be
regarded as the subsidy injected by a government in the irtarkéow the price pro-
cessY of a commodity (coffee, by example) to remain above a thriglghice process
S.

In the Markovian framework, the RGBSD(L.]) is combined with the following
reflected forward SDE: for eveify, z) € [0, T] x © ands € [t, T

sVt sVt sVt
XY = o+ / b(XL®)dr + / o(XL%)dW, + / V(XE®)dGY, s >0
B t e Ut t
X" € ©and GyT = / LxpeoopdG”,
t

whereG%* is an increasing process amd € C2(R?) characterizeéd and 90 as
follows:

O={zeR?: ) >0 and 00 = {z eR?: y(z) =0}

Assuming the data in the forgn= 1(X"), Ss = h(s, X2%), f(s,y,2) = f(s, X", y, 2),
andg(s,y) = g(s, X2"y), the RGBSDHEL) becomes: for any fixetle [0, T]

T T
() Y =100 + [ XY 2 [ gl X Gk

T
_ / ZE2 AW, + K5 — K5, s € [t T]
S

(i1) YI" > his, X0™), a.s.,Vs e [t,T]

T
(iii) K is a non-decreasing process such thigf = 0 and/ (Y5 — h(s, X0™)dKY® =0, a.s.,
t
(1.2)
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and gives a probabilistic interpretation of the followilygé of obstacle problem for
a partial differential equation with nonlinear Neumann fdary condition:

min{u (¢, z) — h (¢, =),
— G (to @) = (Lu) (t, ) = f(s, 2, u(t, @), (Vu(t, 2)) o (t, 2))} =0,
(t,x) €0, T] x ©

g—z (t,x)+g(t,z, u(t,z)) =0, (t,z)€[0, T] x 9O

u(T, z)=1(z), v €O,

whereL is the infinitesimal generator corresponding to the diffagprocessX* and
2 () = (Ve, V().

Apart the work of El Karoui et al.[[8] and Briand et af] [3] inetltase of standard
BSDEs, there has been relatively few papers which deal Wwithproblem of exis-
tence and/or uniqueness of the solution for BSDEs and RB3Dtee case when the
coefficients are not square integrable. This limits the edopseveral applications (fi-
nance, stochastic control, stochastic games, PDEs,)elq correct this shortcoming,
Hamadéne and Popief] [7] show thatifsup;-(S;") and fOT |f(t,0,0)|dt belong
to L for somep €1, 2[, then the RBSDESs with one reflecting barrier associated with
(f, g =0, & S) has a unique solution. They prove existence and uniquerfi¢iss o
solution in using penalization and Snell envelope of preessnethods. In a previous
works, Aman [[L] give the similar result for a class of RGBSOES]) with Lipschitz
condition on the coefficients by used thé°-approximation. In this paper, we extend
the previous result, assuming that in this case coefficemtsion-Lipschitz. The rest
of the paper is organized as follows. The next section costall the notations, as-
sumptions and a priori estimates. Section 3 is devoted &tenge and uniqueness
resultinLP, p € (1,2) when the coefficients are non-Lipschitz.

2. Preliminaries

2.1. Assumptions and basic notations

First of all, W = {W, };~¢ is a standard Brownian motion with valuesid defined
on some complete probability spa@@, 7, P). {F;}+>0 is the augmented natural fil-
tration of W which satisfies the usual conditions. In this paper, we Wilbgs use this
filtration. In most of this work, the stochastic processe$ v defined fort € [0, 77,
whereT is a positive real number, and will take their value®Rin

For any reap > 0, let us define the following spaces:
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SP(R) denotes set dR-valued, adapted cadlag proces$&s (o7 such that

1/\%
| X|lsr =E ( sup Xﬁ’) < +00,
0<t<T

and MP(R%) is the set of predictable procesges; },c(o,7) such that

T 51V
(/ Xﬁdt) ] < 4o0.
0

If p > 1, then||X|lsr (resp||X|/ar) is @ norm onSP(R) (resp. MP(R9)) and
these spaces are Banach spaces. Butdf(0,1), (X, X') — || X — X'||5, (resp
| X — X'|| \») defines a distance af*(R), (resp. MP(R%)) and under this metric,
SP(R) (resp.MP(R9)) is complete.

Now let us give the following assumptions:

[Xllmr =E

(Al) (Gt);>o is a continuous real valued increasitg-progressively measurable
process with bounded variation ¢ 7).

(A2) Two functionsf : Qx[0, T]x RxR? — Randg : Qx[0,T]xIR — R for some
constants? < 0, A > 0, u € Randforallt € [0,T], y,9 € R, 2,2 € R%

i)y— (f(t,y,2),9(t,y)) is continuous for alk, (¢,w) a.e.,

z)
i1) f(.,y,2) andg(.,y) are progressively measurable,
i) [f(t,y,2) — f(t,y,2')] < Alz = 2],
w) (y—y) (f(ty,2) = f(t,y,2) < ply — ¥'1%,
o) |f(ty,2)| < |f(,0,0)] + M(Jy| + |2])
vi) (y =) (9(t,y) — g(t,y) < Bly —v'%,
vii) [g(t,y)| < |g(t,0) + Mlyl,

p
viii) [(fo | f(s,0, 0)\d$) (fOT |g(3,0)|dG5) } < co.
(A3) For anyr > 0, we define the process in L” ([0, T] x Q,m @ P) by

m(t) = sup|f(t,y,0) — f(t,0,0)|.

ly|<r

(A4) ¢ is aFr-measurable variable such thg£|P) < +oc.

(A5) There exists a barri€iS;),~, which is a continuous, progressively measurable,
real-valued process satisfying:
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(i) E (SURy<i<7 (S7)P) < +o0,
(1) Sy <& P-as.

Before of all, let us recall what we mean by &-solution of RGBSDEs.

Definition 2.1. A LP-solution of RGBSDE associated to the dé&af, g, S) is a triplet
(Yz, Zy, Kt)o<i<7 Of progressively measurable processes taking valuRsdR? x R
and satisfying:

(7) Y is a continuous process,
(i)
T T T
Vi—gt [ pevazidst [ glsYdG, - [ Zaw s K- K@)
t t t

(i) Y, > S, as.,
. T 2 p/2
(iv) E ( Suzrr Vil? + (Jo 12:/2ds)" ") < +o0,
(v) K is a non-decreasing process such tkigt= 0 andfOT(YS —S;)dKs =0, as.

2.2. A priori estimates

In this paragraph, we state some estimates for solution & associated to
(&, f,9,9) in L whenp > 1 like in [fl]. But the difficulty here comes from the facts
the functionf is not supposed to be Lipschitz continuous. Let us give tlatiom

T = |x|*1x1{$#0} introduced in[[B] that will play an important role in the setju

Lemma 2.2. Assume thatY, Z) € SP(R) x MP(R%) is a solution of the following
BSDE:

T T T
Y, =¢ +/ f(s,Ys, Zs)ds +/ 9(s,Ys)dGy — / ZsdWs+ Ap — Ay, 0<t<T(2.2)
t t t
where

(i) f and§ are functions which satisfy assumptigas2),

(7i) P a.s., the proces&A;)o<:<7 is of bounded variation type.
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Then for any0 < ¢ < T we have:
r 2 2
VP + e(p) / YaP 2Ly, 0y 2P
t
T . T R
< lel+p / VoY, (s, Yo Zo) ds + p / YaP1F, § (s, Ya) dCs
t t
T R T R
+p / Ya[P1Y, dA, —p / Yo[PE, ZodWW,.
t t

with c(p) = p[(p— 1) A 1] /2
We now show how to control the procegsn terms of the data and the procéss
Lemma 2.3. Let assuméA1)-(A4) hold and let(Y, Z, K) be the solution of RGB-

SDE associated t(£, f, g, .5) . If Y € SP thenZ belong toMP and there exists a real
constantC), , depending only op and A such that,

T p/2 T P
(/ |ZT2dr) ] < CME{ sup |Yi|P + (/ f,?dr>
0 o<t<T 0
T p
+ </ g,?dG,) + sup St*|p},
0 0<t<T

wheref? = |£(r,0,0)| and g% = |g(r, 0)|.

E

Proof. For each integer > 1 let introduce

t
o = inf {t c [o, T],/ |\ Z,|?dr > n} AT.
0

The sequencer,,),>o is of stationary type since the procésgelongs taM? and then

fOT |Z,|2ds < oo, P- a.s.. Next, for anyr > 0, using It6’s formula and assumption
(A2), we get

Yol + / e\ 2, 2dr + |8| / Y, 24,
0 0

T

< Y, P42 sup |Y[/ (f?dr+g?dGr)]+(2A+e1A—a) [ ey
0 0

0<t<T

Tn 1 Tn
—1—5/ | Z,2dr + = sup e*|Y;|? 4 ¢| K, |2 — 2/ Y, ZpdW,,
0 € 0<t<ry, 0

in virtue of the standard inequality:2 < 1a? + ¢b? for anye > 0 and since? < 0.
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But

Tn 2 Tn Tn
Kol < CA{|%2+Y£|+</ ar) + [ [ pac,
0 0 0

Tn 2 Tn Tn
+< / g?dGr> + / | Z,|2dr + / ZrdWr} (2.3)
0 0 0

so that we have:
(1—gcA)|m|2+(1—g—gcA)/ " 2, dr
0

()" ()

n 1
emﬂ‘YszT—i—(l—i— _) sup eZat‘YHZ
€ 0<t<m

< (eCx + e ™)|Yy, P+ (1+2Cy)

+A +e A —a) /
0

/ " Zaw,
0

Choosing nows small enough and such that 2 + e\ — a < 0, we obtain:

Tn p/2 Tn p
( / |Z,4|2dr) < Cpad sup Yf+< / f,‘.’dr)
0 0<t<, 0
Tn p p/2
+</ ngGT) + .
0

Next thanks to BDG's inequality it follows:

p/2 Tn p/4
E (/ xzzrzdr>
0
Tn p/4
sup (vip2 ([ 12,
0<t<my, 0

C_YZ Tn p/2
S ( sup ip) ([ iz par)
n 0<t<tp 0

Finally plugging the last inequality in the previous onegpasingn small enough and
finally using Fatou’s lemma we obtain the desired result. O

+eC'y +2

/ oy 7 AW,
0

/ "oy, Z,aw,
0

IN

d,E

/ Y, Z,dW,
0

IN

C,E

IN

We will now establish an estimate for the processesnd Z. The difficulty comes
from the fact that the functiony — |y|P is not C? since we work withp € (1,2).
Actually we have:
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Lemma 2.4. AssumdA1l)-(A4). Let(Y, Z, K)) be a solution of the RGBDSE asso-
ciated to the datd¢, f, g, S) whereY belong toS?. Then there exists a constafif »
depending only op and A such that

T p/2 T p
E{sup W+</ |Zs|2ds) } < cp,AE{fu( / f?ds)
0<t<T 0 0

T p
+ (/ ggdG5> + sup (Sj)?}.
0 0<t<T

Proof. For anya > 0, it from Lemma 2.2, together with assumptioh2) that

VP +e(p) [ VP gy o2 s
t

T

< epo‘“Yulp—i-p()\—a)/ epo‘5|Ys|pds+p/ PP flds
t

u
T

+p / &PV, P~1g0d G + pA / o3|, 71| 7, |ds
t u

U

+p / e L T Oy / e |V, [PYY, Z d W
t t

We have by Young'’s inequality

_ A2 c _
APz < P v+ B yper g2, 02
p—1 2
and
» / Yy (f0s + 0dGy) < (p— L)yt sup |V
t 0<s<u

U p U p
+y7P [( / Cl f;’ds> + ( / epo‘sggdGs>]
t t

for any~y > 0. Then plug the two last inequalities in the previous onepbtain:
iy + S2 [ ey 2y o)1z, s
t

< PUY, P4 (p—1)y7 T sup Vsl
0<s<u

u p u p
+y7P [(/ eP“Sdes> + (/ epasggdGs> ]
¢ ¢

)\2 u
+p <)\ + — a) / eP** Y, [Pds
p—1 t

U

+p / |V, P, dE — p / PO |V, [P1Y, Zod W
t t
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Next, the hypothesis related to incrementgoandY — S implies that

/ S|y, PV, < / e793|5,IP- 18, d K,
t

6po¢s S+ p— 1dK

11 1 “
- D sup |S;r‘p + =€ (/ @pades>
P gp-1 \0<t<u p t

IN
\

IN

for anye > 0, so that choosing such that A trg<a and putu = T', we get:

E patyp C(p)E g pas|y” p721 VA Zd
(i) + DB ([ ey 2102 P

< E(ep‘”‘Tf”)Jr(p—l)vpL—lE( sup Ys”>

0<s<T

T P T P

( / ePas ffds) + ( / emsggdas>1 (2.4)
t t

1 + 1 4 %]

—E | sup |S/|P | + =¢’E P dK ) .

gr—1 0<t<T P t

+77PE

+(p—1)

On the other hand the predictable dual projection, Jensenditional inequality and
together with Lemm§ 2.3 provide

E[(K7r — Ki)P] < C)\pE , (2.5)

T p T P
sup |Y;[P + </ fs(’ds) + </ ngG5>
0<s<T t t

whereC), , is a constant which depend @n A and possiblyl” which may change
from line to another.
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Coming back to inequalityp.4) and using BDG inequality we have

1
E sup e"|V[P < E(ePT[¢P) + (p—1) LE< sup S?”)
0<t<T ep1 0<t<T
+{Crp (7T + €P) + p}E ( sup Ytl”>
0<t<T
T p T p
(/ eP“Sdes> + (/ epo‘sggdGs> 1
0 0
p r S
s (/ epasmpzm{naéO}IZS'ZdS)
n 0
2p ) T ( 2p ) 1
1+ E(eP" €)Y+ 1+ —— | (p—1)——E | sup |S;/|?
( c(p)n ( F) c(p)n ( )517%1 OStST‘ !
Zp 1 r as 0 ! r as 0 Y
+|14+— | Cr\p(= +")E el fids | + eP* g dG
0 0

c(p)n VP
2 p_
+ {CA,p <1+ —p> (yr=t +¢€P) +pn} E| sup [V’
c(p)n 0<t<T

1
-l-C)\,p(% +eP)E

IN

Finally it is enough to chose = 2—117 and~, £ small enough to obtain the desired
result. |

Lemma 2.5. Assume thatf, g, &, S) and(f', ¢/, &', S") are two quadruplets satisfying
assumption$A1)-(A4). Suppose thafy, 7, K) is a solution of RGBSDE(f, g, &, S)
and(Y’, 7', K') is a solution of RGBSDE/f’, ¢',¢’, S”). Let us set:

Af=f-f D=¢—¢ AS=5-5
AY =Y - Y, AZ =7 7Z,0K = K — K’

and assume thakS € LP(dt x P). Then there exists a constant C such that

T p
nep + ( /0 Af(s,Ys,Zs>ds) ]

o ([ gt vorac.) oo

E [ sup |AY;P < CE
t€[0,T

p—1

B
sup |AS; p] ,
t€[0,T
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with

T P T p
Wr) = E 5P+( / f?ds) +( / ngGs) - sup (S7)”
0 0 t€[0,T

T p T p
+[€'|P + ( / f;"ds) + < / g;OdGs> + sup (S{*)”}.
0 0 te[0,T]

Proof. Using Lemma 2.1 anfA2) we have forall 0< ¢ < T

T
AY;[P + c(p) / Y, P21 a0y |07, P
t
T ——
< |ALP 4 pA / A, [PIAY|AZ, | ds
t
T T .
A / A, [Pds + p / AY, P BV, Af (5, Y, Z)ds (2.6
t t
T T -
+p8 / AY,[PdG, + p / Y, [PV Ag(s, V) |G
t t

T T
+p / |AY, [PTIAY,d(AK ) — p / |AY, |PTIAY A Z AWV
t t

Moreover

IN

T
/ IAS,[P2(ASs) 1 (as, 20y AK s

T
/ AY, [P AY,d(AK)
t

t

T
= [ B80S 1 as, oy K.

t

T
< / |AS,|PLd(AK)

t

Thus coming back tdp.§) and thanks to the Burkholder-Davis-Gundy and Young
inequalities, we get with = 0

T

c(p _

—(Z)E/o AY, P21y 0y |DZs|Pds
p)\Z T

< Blagr + (225 +p0E [ pvipras
- 0

T T
+pE/ |AY5”1Af(s,YS,ZS)ds+pE/ IAY, [P Ag(s, Ys)|dGy
0 0

T
+pE / |AS,|PLd(AK) 2.7)
0
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and

2

A T
b 1+p)\)E/ A, [Pds
0

EAVI[P < BIACP + (
T T

+pE / AY, P YAf (s, Y, Z)|ds + pE / IAY, [P-Yag(s, Y2)|dGs
0 0

T
+pE / IAS|P~Yd(AKS), (2.8)
0

since we recall agaif < 0.
We have by holder’s inequality

P

T 1
E / AS,[P~Hd(AK,) < (E sup ASt|p> (Wr)?
0

0<t<T

and

T T
pE/ |A§’5p_1Af(s,Ys,Z5)ds+pE/ AV, [PL|Ag(s, V2)|dG,
0 0

(/ ' Af(s,n,zsws)p +(/ ' |Ag<s,n>|das)p]

for anyy > 0. Finally, return again t@2.6) and use again Burkholder-Davis-Gundy
together with inequalitie@2.4) and(R.§), it follows after choosingy small enough:

AP + (/OT |Af(3,YS,ZS)|ds)p + (/OT Ag(s,Ys)dGs>p]

P

pTl
+<E sup |Astp> (Wr)Y?,

0<t<T

1
< AE sup |AY[P + ZE
0<t<T Y

E( sup AY#’) < CE

0<t<T

which ends the proof. O

3. Existence and uniqueness of a solution

With the help of the above a priori estimates, we can obtaiexdéstence and unique-
ness result by the use aP°-approximation.
Firstly, let us give this result which is a slighly extensuafiTheorem 3.1 of Ren and

Xia [[q].

Theorem 3.1. Assumé A1)-(A4). Then RGBSDE with da{g, f, g, S) has a unique
solution(Y, Z, K) € 82 x M? x 82
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To prove this theorem, we need an important result whichsgase approximation
of continuous functions by Lipschitz functions (see Leipeland San Martin[[10] to
appear for the proof).

Lemma 3.2. Let f : RP — R be a continuous function with linear growth, that is,
there exists a constatit’ < oo such thatvz € R?,|f(z)| < C(1+ |z|). Then the
sequence of functiong,(z) = inf,cqr{f(y) + nlz — y|} is well defined fom > K
and satisfies

a) Linear growth:Vz € RP, |f,(2)| < M(1+ |z|),

(
(b) Monotonicity:Vx € RP, f,(z) /,

(¢) Lipschitz conditionvz,y € RP, |f,(z) — fn(y)| < nlz —yl,

(d) Strong convergence: if, — = as n — oo, thenf, (x,) — f(z) asn — oo.

Proof of TheorerB.J Consider, for fixedt, w), the sequencef,, (t,w, y, 2), gn (t,w,y))
associated t¢f, g) by Lemma[3d. Then,f,, g, are measurable functions as well as
Lipschitz functions. Moreover, sincg satisfy (A4) and {S;,0 < ¢ < T} satisfy
(A5), we get from Ren and Xid [1L6] that there is a unique trigl&,”, Z;*, K}),0 <

t < T} of F;-progressively measurable processes taking valuBs;inR? x R, and
satisfying

(7) Y™ is a continuous process,

(@6) Yy = €+ f, fuls, YD, Z)ds + [ guls, Y)dGs — [ Z2dW, + Kf - KT,

(1) Y > S, as.,

(iv) E (SURscpcr V1P + J 12212ds) < +ov,

(v) K™ is a non-decreasing process such tiigt= 0 andfoT(YS” — SMdK? =0,

a.s.
Using the comparison theorem of BSDE's in El Karoui et I, {#¢ obtain that

Vn>m>M, Y">Y"™ dt®dP-a.s (3.2)

The idea of the proof of TheorefnBis to establish that the limit of the sequence
(Y™, Z" K")is a solution of the RGBSDHL1) with parameters¢, £, g, S). It fol-
lows by the same step and technics ag ih [11], hence we wilheut

First, there exists a constafitdepending only o/, T, E(¢2) andE(supy«, 1 (S;")?),
such that

T
E( sup |Yt”2+/ |Zg|2ds> <C. (3.2)
0

0<t<T
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Now, we have from(B.1) and (B.3) respectively, the existence of the procéss
such thaty,” Y, 0 <t < T, P-a.s. and from Fatou’s lemma, together with the
dominated convergence theorem provide respectively

T
E( sup Yt”|2> < C and / Y — Yi|?(ds + dGs) — 0 (3.3)
0

0<t<T

asn — oQ.
Now, we should prove that the sequence of proceg8esonverge inM?. For all
n>m > ng > M, from Itd’s formula fort =

T
BYg - ¥g'R+B [ 120 - Zpfds - 28 / Y (a3, Y, Z2) = fnls, VI, Z)ds
0
+2[E/ —Y"™)(gn(s,YS") — gm(s, Y"))dGs
+2E/ V(K™ — dK™).

Using the fact that for ath, Y,* > S;, 0 <t < T, and from the identitnyT(Yt” —
Sp)dK{* = 0, we have

T T
E/ |z — Z™%ds < 2<E/ n"—ygmﬁds)
0 0
T T 1/2
+2(E / m"—s;mFdGs) E(/ gn<s,n">—gm<s,nm>2das) |
0 0

where we have used the Holder inequality. By the uniformdirgrowth condition on
the sequencéf,, g,) and in virtue of(B.3), we obtain the existence of a constant
such that

1/2 1/2

T
E ( | 12 = gty Z;”)zds)
0

1/2

T T
Vn,m > no, E/ \Zn — 27 Pds < CE (/ Y =Y (ds + dGS)> .
0 0
Then from(B.3), (Z™) is a Cauchy sequence.ivt, and there exists &;-progressively

measurable procesésuch thatz” — 7 in M2, asn — .
Similarly by Ité’s formula and Davis-Burkholder-Gundy upaality, it follows that

E ( sup |Y) — Y;"|2> -0
0<t<T

asn, m — oo, from which we deduce th@t-almost surelyY™ converges uniformly
inttoY and thatY is a continuous process.
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Now according to RGBSDE:ii), and use the same argument[a$ [11], we have for
all n,m > ng > M, we have

E( sup KQ—K;W) —0

0<t<T

asn, m — oo. Consequently, there exists a progressively measuralsledsing (with
Ko = 0) and a continuous process procé&ssvith value inR_. such

E( sup |KQ—K52> -0

0<t<T

asn — oo.
Finally, taking limits in the RGBSDE4) we obtain that the tripl¢(Y;, Z;, K;), 0 <
t < T} is asolution of the RGBSDHR.J) and satisfy

1Y, >S as,
(2QE (SUFbgth V3% + fOT |Zs|2ds> < 400,

3) Jo (Vs — Sy)dK, =0, as.

O
We now prove our existence and uniqueness result.

Theorem 3.3. AssuméA1)-(A4). Then RGBSDE with daid&, f, g, S) has a unique
solution(Y, Z, K') € 8” x MP x SP.

Proof. Uniqueness

Letus considetY, Z, K) and(Y’, Z', K') two solutions of RGBSDE with dat@, f, g, S)
in the appropriate space. Using Lemma 2.4 (sifi§e= 0 € LP, A = Af = Ag =
0), we obtain immediatelyy’ = Y’. Therefore we have alsg = Z’ and finally
K = K’, whence uniqueness follows.

Let us turn to the existence part. In order to simplify theakdtions, we will always
assume that conditiofA 2-iv) is satisfied withy, < 0. If it is not true, the change of
variablesY; = e# tY;, Z, = e Z,, K; = et K, reduces to this case

ExistenceSince, the functiorf is non-Lipschitz, the proof will be split into two
steps
Step 1.In this part¢, supf?, supg?, supS,” are supposed bounded random variables
andr a positive real such that

VeI (|lg oo + T floo + 16T loollglloo + 157 l00) < 7
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Let 6, be a smooth function such that06,. < 1 and

1for|y| <r

0r(y) =
Oforly| >r+1

For eachn € N*, we denotey, (z) = 25— and set

[z|Vn

hn(tvyvz) = Hr(y)(f(tay7Qn(z))_f?) n+f150

7T1~+1(t) V

According to the same reason as [ih [3], this function stiiis§ies quadratic condition
(A2-iv) but with a positive constant i.e there exists- 0 depending om such that

(y—y)(ha(t,y,2) — ha(t,y,2)) < kly—y' [~

Then(¢, hy, g, S) satisfies assumptions of Theorem 3.1. Hence, for @achN, the
reflected generalized BSDE associatefttd.,, g, S) has a unique solutioft ™, Z™, K™)
belong in spac&? x M? x S2.

Since

yha(t,y,2) < |yl 1% + Ayl |2]

and¢, S andG are bounded, the similar computation of Lemma i [g] provide
that the proces¥™ satisfies the inequalit}fY ||, < r. In addition, from Lemma
2.2,||Z™|| p2 < 7’ wherer’ is another constant. As a byproduat”, Zz", K™) is a
solution to the reflected generalized BSDE associatég,tf),, g, S) where

falty,2) = (F(t.qu() = ) —e + Y

7T7-+1(t) V

which satisfied assumptidi 2-iv) with ;o < 0.
We now have, foi € N, setting Y™ = Y7+ —yn zni = znti _ zn gt = gt - g0
applying the similar argument as Lemme 2.3, we obtain

_ 1 /T —
SO+ [ Bl 2 Pas
t
T — .
< 2 / ()T fsi(s, Y2 Z0) — fuls, Y Z0))ds
t

T _ T .
+2 / ()Y dK" — 2 / O(s)Y ™ Zmid W,
t t
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where fora > 0, ®(s) = exp(2\2s). But [|[Y ||, < 2r so that
N2 1 r 7n,i12
D)V, + 2/, D(s)|Z"|“ds
T
< [ O il VI Z2) ~ (YT 2D ds
t
T - T -
+2 / O(s) Y AR — 2 / O(s) Y Zm W,
t t

and using the BDG inequality, we get, for a const@ndlepending only on\, x and

T!
_ T _
B sup VP [ 120 s
0<t<T 0

T
< CTE{/ | frri(s, Y, Z2) —fn(s,}g”,Zg)ds}. (3.4)
0
On the other hand, sindg™ ||, < r, we get
|fn+i(57 szn’ Zg) - fn(37 stv Z;L)| < 2)‘|Z;L|1{\ZQ| >n} + 2)‘|Z;L‘1{7r,.+1(5)>n}
+27rr+1(s)1{7rr+1(s)>n}

from which we deduce, according assumpti@8) and inequalityB.4) that(y", Z")
is a cauchy sequence in the Banach spgfce M2, Let (Y, Z) its limit in S2 x M?,
thenforall0< ¢ < T,Y; > S; a.s..

Next, let us define

t t t
Kr =Yg —vp = [ fasvrzs - [ gt viic,+ [ zzaw.. @)
0 0 0

By the convergence df ", (for a subsequence), the fact thfay are continuous and

© SUPsolf(s, Y Zs)| < fs + K {(sup,>o|Y3*]) + | Zsl},

* SUP,solg(s, Y| < gs + K {(sup,>o YY) }

v B fy 1f(s. Y an(Z2) = f(s, Y2, Z4)Pds < CE [ |u(22) — Zs[ds
we get the existence of a procdsswhich verifies for allt € [0, 7]

E|K!— K,]* — 0.

Moreover

T
/ (Ys — S5)dK, = 0, for everyT > 0.
0
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Itis easy to pass to the limit in the approximating equatissoaiated tq¢, f,,, g,.5),
yielding (Y, Z, K) as a solution of reflected generalized BSDE associated # dat

& f.9,9).

Step 2.We now treat the general case.
For eachn € N*, let us denote

& = Qn(€)7 fn(t,y,z) = f (t,y,z) - fto + Qn(f?)u
gn(t:y) = g (t,y) — g0 + an(9?), ST = an(S).
For eachn € N*, RGBSDE associated witf€,,, f,., g, S™) has a unique solution

(Y™, Z", K™) € L? thanks to the first step of this proof, but in fact alsdi p > 1
according the Lemma 2.3. Now from Lemma 2.4, fam) € N x N*,

' T ) p/2

E{ sup Y7 vpP 4 ( | izi- Z?st) }

0<t<T 0

T 0 0
< CE {5 6l [ a9~ (2P
T

+ / ‘QnJri(gg) - Qn(gg)‘pdGs + sup ‘QnJri(St) - Qn(st)|p y

0 0<t<T

whereC depends ofi” and\. The right-hand side of the last inequality clearly tends
to 0 asn — oo, uniformly oni so that(Y™, Z™) is again a cauchy sequence in
SP x MP. Letus denote byY, Z) € SP x MP itlimit. Then it follows from identical
computation as previous that, there exists a non-decigasatesss (Ko = 0) such
that

E(|K] — Ki|P) — 0,as n — o0

and
T
/ (Ys — Sg)dK, = 0, for everyT > 0.
0

It is easy to pass to the limit in the approximating equatipalding that the triplet
(Y, Z, K) is aLP-solution of RGBSDESs with determinist time associatetttd, g, S).
O
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