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Abstract

We investigate the enhancement of both mixing and heat transfer in a
two-rod mixer for highly-viscous non-Newtonian fluids. The mixer is com-
posed of two vertical, circular rods in a cylindrical tank. Chaotic flows are
obtained by imposing the temporal modulations of the rotational velocities
of the walls. We study the effects of different stirring protocols, which lead
to non-chaotic and chaotic flows, on the efficiency of both mixing and heat
transfer for three different rheological fluid behaviors: shear-thinning, New-
tonian and shear-thickening. For this purpose, we use statistical indicators
that characterize the mean value of the fluid temperature and its homoge-
nization. We find that chaotic mixing is suitable for shear-thickening fluids
for which we observe a clear enhancement of the thermal mixing (heat ex-
traction and homogenization). This is due to the increase in the apparent
fluid viscosity in the vicinity of the rotating walls. This aspect confirms the
relevance of chaotic mixing for highly-viscous fluids.

Key words: Chaotic mixing, Power-law fluids, Heat transfer, High Prandtl
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cp heat capacity (J.kg−1.K−1)
=

D Rate of deformation tensor
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k consistency index (Pa sn)
n flow behavior index (dimensionless)
~n normal-oriented unit vector
p pressure (Pa)
R3 tank radius (m)
R1, R2 rod radii (m)
t time (s)
T temperature (K)
U tangential velocity
~U velocity field (m.s−1)
X rescaled dimensionless temperature
Dimensionless numbers

Pe Péclet number
Re Reynolds number
RePL Generalized Reynolds number
T ∗ dimensionless temperature
Greek symbols

ε eccentricity (m)
φ generic scalar variable
Γ generic diffusion coefficient
ρ fluid density (kg.m−3)
σ standard deviation
τ period of modulation (s)
=
τ viscous stress tensor
Ω angular velocity (rd.s−1)
Subscript

c cell
m mean
f face of a cell
Superscript

∗ dimensionless

Introduction

Mixing processes are currently encountered in many practical engineering
domains where enhancement of the heat, mass and momentum transfer are
required. In the present study, mixing is achieved through the presence of

2



a laminar chaotic flow that ensures the efficient stretching and folding of
material lines (in this case, for a 2D flow). The need for chaotic mixing
is particularly interesting when high viscosity and/or shear-sensitive fluids
are concerned [1]. In this case, classical laminar 2D time-independent flows
are unable to give a good mixing performance and as a consequence, heat
transport from the wall will be ineffective [2]. For example, such a situation
exists for non-Newtonian molten polymers or polymer blends [3]. Thus,
the processing of highly-viscous polymer-molecule networks can degrade in
high shear regions of the flow. Also, undesired or ill-defined structures may
be obtained for polymer blends. Furthermore, the problems of both heat
dissipation and energy costs may become very important for highly-viscous
fluids when classical impellers are used [4].

Many more works can be found in the literature that concern the relation-
ship between chaotic mixing and heat transfer (e.g., [5, 6]) or chaotic mixing
studies for non-Newtonian fluids (e.g., [7, 8]). Nevertheless, to date and to
our knowledge, there is only one published work that considers the coupling
of heat transfer and chaotic mixing for rheologically-complex fluids despite
its industrial relevance [9]. However, it is of vital importance to study this
interplay because the mixing of non-Newtonian fluids is strongly influenced
by the local flow field [10].

The approach that this work takes is to analyze the combined effects of
mixing and heat transfer in the case of shear-thinning and shear-thickening
fluids and to compare the obtained results to those of Newtonian fluids.

The flow in this mixer was previously studied for Newtonian fluids [11, 12].
It is characterized by unsteady velocity fields and streamlines that are com-
pared for each of the three rheological behaviors. Different mixing indicators
and statistical tools are also used to compare the heat transfer efficiency for
the different complex fluids.

1. Problem formulation

1.1. Geometry of the two-rod rotating mixer

A sketch of the mixer that was used in the study is presented in Fig. 1.
It is composed of two circular rods with equal radii, which are maintained
vertical inside of a cylindrical tank (a bounded domain). The tank and the
rods are heated and can rotate around their respective revolution axis. This
geometry is similar to the two-roll mills that were studied in the literature
by Price et al. [13] ; however, in our case, the outer cylinder has the ability
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to rotate. The rods and the tank rotate with an alternating or a continuous
velocity modulation. They can also have different rotation directions. We
have shown that for a Newtonian fluid [11] this two-rod mixer is suitable in
order to obtain fully-chaotic flow without KAM regions, which is particularly
interesting for industrial applications.

The geometry of the flow domain is characterized by the radii of the rod
and the cylindrical tank, which are, respectively, R1 = R2 = 10 mm and
R3 = 50 mm. The eccentricity of the rods is set to the value of ε = 25 mm.
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Figure 1: Sketch of the two-rod mixer.

1.2. Flow parameters: stirring protocols

Chaotic mixing flows are produced by varying, with time, the angular
velocity of the rods and the tank by using a sine-squared waveform. The
stirring protocols that were studied are defined by two parameters: the re-
spective rotation direction between the rods and the cylindrical tank, and
the duration of the time periodic modulation. Among the three possible stir-
ring configurations that correspond to different flow topologies, in this study,
we chose a stirring configuration with co-rotating tank and rods. We have
shown in previous work [12] that this configuration gives globally-chaotic
flows without the existence of elliptic KAM regions in the Newtonian fluid.
In the same study, two other types of stirring configurations were studied
but it was demonstrated that they were less efficient.
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For chaotic flows, two types of temporal modulation are considered for
the stirring protocols: continuous (sine-squared modulation of the wall veloc-
ities) and non-continuous or alternating. In the case of the non-continuous
modulation, the rods are stopped together for half a period while the outer
tank is rotating and then, for the next half-period, the contrary occurs. These
stirring protocols are illustrated in Fig. 2. The maximum angular velocity is
the same for the two types of modulation. The rods and the cylindrical tank
follow the sine-squared modulations, which are defined by equations 1 (with
a modulation period of τ = 30 s):

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

 0  10  20  30  40  50  60

Ω
 [

rp
m

]

time [s]

Rod Non-Continuous
Tank Non-Continuous

Rod Continuous
Tank Continuous

Figure 2: Temporal modulation of the angular velocity of both the rods and the tank for
the continuous and non-continuous stirring cases. The modulation period, τ , is 30s.

Non-continuous case:
Ω1,2 = 30 − 60 sin2(πt

τ
) if Ω1,2 < 0 ⇒ Ω1,2 = 0

Ω3 = 6 − 12 sin2(πt
τ

+ π
2
) if Ω3 < 0 ⇒ Ω3 = 0

Continuous case:
Ω1,2 = 30 − 15 sin2(πt

τ
)

Ω3 = 6 − 3 sin2(πt
τ

+ π
2
)

(1)
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The maximum angular wall velocities are fixed to Ω1 = Ω2 = 30 rpm
for the rods and Ω3 = 6 rpm for the outer tank. Thus, the tangential wall
velocity is the same and equal to U = 31.41 mm.s−1. In our modeling, we
take into account inertial effects because the flow that is considered for this
tangential wall velocity does not satisfy the quasi-steady hypothesis.

1.3. Rheological model

In order to model the flow of non-Newtonian fluids, we need to relate
the shear stress tensor to the rate of deformation tensor. For generalized

Newtonian fluids, the linear model,
=
τ = 2 η

=

D, which has been established
for purely-viscous fluids, is extended by replacing the constant viscosity by
a function that depends on the shear rate. For Newtonian fluids, the re-
lationship between the two tensors is simply linear, and the coefficient of
proportionality is defined as the dynamic viscosity, η, of the fluid. The
purely-viscous (i.e., inelastic) non-Newtonian character of the fluid that is
studied here is represented by an Ostwald-de Waele power-law model for the
case of both shear-thinning and shear-thickening fluids. The nonlinear rela-
tionship between the apparent viscosity, η, and the shear rate, γ̇, is given by
the constitutive equation:

η (γ̇) = k (γ̇)n−1 (2)

with empirical constants k and n, which are, respectively, the consistency
index and the flow behavior index. The viscous stress tensor is then expressed
as:

=
τ = 2η (γ̇)

=

D (3)

where

γ̇ =

√

2 tr

(

=

D
2
)

(4)

and
=

D =
1

2

(=

∇V + (
=

∇V )T
)

(5)

We will consider three different flow indexes that are respectively asso-
ciated with shear-thinning, Newtonian and shear-thickening fluids: n = 0.5,
n = 1 and n = 1.5. The consistency index is adapted in each non-Newtonian
case in order to the give the same generalized Reynolds number as was con-
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sidered for the Newtonian flow (i.e., Re =
ρ U · 2 · (R3 − R1)

µ
= 1.66). This

generalized Reynolds number, RePL, can be written for the power-law model
as [14]:

RePL =
ρ · (R3 − R1)

n

k · Un−2
(6)

The thermodependence of the viscosity and the viscous heating were not
taken into account in this study. The Newtonian fluid that was considered
in this study has the thermophysical properties that are listed in Tab. 1.

Dynamic viscosity (µ) 1.5 Pa.s
Density (ρ) 990 kg.m−3

Thermal conductivity (λ) 0.15 W.m−1K−1

Specific heat (cp) 1000 W.kg−1K−1

Péclet number (Pe) 16, 584

Table 1: Properties of the Newtonian fluid.

1.4. Thermal wall boundary condition

Dirichlet boundary conditions are imposed on the rods and the tank walls.
They are kept at a constant hot temperature, Thot. Before the start of the
heating process, the initial uniform temperature of the fluid was set to a cold

temperature, Tcold. We define the dimensionless fluid temperature as:

T ∗ =
T − Tcold

Thot − Tcold

(7)

Therefore, T ∗

cold = 0 and T ∗

hot = 1, and the maximum temperature dif-
ference between the walls and the fluid is always 1. The heated walls play
the role of a variable heat source that is continuously dissipated in the 2D
modulated flow field. This is a specific situation that is not normally en-
countered when dealing with the scalar dissipation of a concentration field.
The Dirichlet boundary condition, which is imposed on the walls, implies
that during the mixing of the fluid in the tank the parietal fluxes will change
along the walls and with time, depending on the local flow conditions.

The other important dimensionless parameter for this non-isothermal
mixing problem is the Péclet number (= Re.Pr). The Péclet number can
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be seen as the ratio of the thermal diffusion time, τtd, to the advection time,
τad, for scalar temperatures. The advantage of using the Péclet number, as
opposed to the commonly used Prandtl number, is that the Péclet number
is independent of the empirical power-law constants. Thus, its definition is
valid for both Newtonian and non-Newtonian fluids. The limit Pe = 0 corre-
sponds to the pure diffusion case. In our study, Pe is large (see Tab. 1) and
hence, τtd is 16, 584 times greater than τad. Thus, the need to speed-up the
mixing of temperature scalars is clearly demonstrated.

2. Mixing and energy indicators

In order to quantify the efficiency of the heating process for the Newtonian
and non-Newtonian fluids, we have used two instantaneous measures: the
mean value of the dimensionless temperature, T ∗

m, and its standard deviation,
σ. These quantities are defined as (where the summation is made over all of
the mesh cells, c, with area Ac):

T ∗

m =
1

∑

c Ac

(

∑

c

AcT
∗

c

)

(8)

σ =

[

1
∑

c Ac

∑

c

(

Ac(T
∗

c − T ∗

m)2
)

]
1

2

(9)

The evolution of the mean temperature can be seen as an indicator of
the total energy that is supplied to the fluid during the mixing process [11,
15] while the standard deviation accounts for the homogenization level of
the scalar temperature inside of the 2D tank. The mean temperature is
asymptotically bounded by the fixed temperature that is imposed on the
walls (i.e., Thot or 1 for non-dimensional temperatures). Efficient thermal
mixing requires good values for both of the aforementioned indicators (i.e.,
T ∗ near 1 and σ near 0).

3. Computational modeling

3.1. Governing equations

The unsteady Navier-Stokes equations that govern the flow of incompress-
ible fluids as well as the continuity equation are considered in their integral
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form:

∂

∂t

∫

V

ρ ~U dV +

∫

S

ρ ~U ~U · ~n dS =

∫

V

−~∇p dV +

∫

S

=
τ · ~n dS (10)

∫

S

~U · ~n dS = 0 (11)

where
=
τ is the viscous stress tensor, which is described in section 1.3 for both

Newtonian and power-law fluids. The integration is over a volume, V , that
is surrounded by a surface, S, whose orientation is described by its outward
unit normal vector, ~n. The energy conservation equation is considered in
terms of the temperature:

∂

∂t

∫

V

ρcpT dV +

∫

S

ρcpT ~U · ~n dS =

∫

S

λ~∇T · ~n dS (12)

where λ is the thermal conductivity.

3.2. Numerical method

The conservation equations (10, 11 and 12) are solved by means of an
in-house code called Tamaris. This code has an unstructured, finite-volume
framework that is applied to hybrid meshes. Variable values (~U , p and T)
are stored at cell centers in a collocated arrangement. Cell shapes can be of
different forms (tetrahedral, hexahedral, prismatic or pyramidal).

Spatial schemes that approximate convective and diffusive fluxes are ac-
curate to a second order. The convective fluxes are approximated by the
non-linear high-resolution bounded scheme, CUBISTA, of Alves et al. [16]
and by using the deferred-correction practice of Ng et al. [17]. Diffusive
terms are treated with a centered-differencing scheme in conjunction with a
treatment of possible non-orthogonality of the mesh [18].

Pressure-velocity coupling is ensured by the SIMPLE algorithm [19] while
the mass fluxes at the cell faces are evaluated with the Rhie-Chow interpo-
lation [20] in order to avoid pressure checkerboarding. The implicit three-
time-step Gear’s scheme with a second-order accuracy is used to discretize
the unsteady terms at each iteration; the discretization technique that was
presented above leads to a linear system with a non-symmetric sparse matrix
for each variable. These linear systems are solved by means of an ILU pre-
conditioned GMRES solver using the implementation of the IML++ library
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[21].
This 3D code can deal with 2D computations (e.g., in (~x, ~y) plane), with-

out any change, by considering a single layer of computational cells (in ~z
direction) and by neutralizing the top and bottom faces (with respect to ~z).
In the scope of this work, all of the computational meshes were generated
with the open-source software Gmsh [22].

3.3. Validation test cases

Figure 3: Computational mesh for the lid-driven square cavity mesh (10468 cells).

In this section, we perform calculations for some well-documented test
cases in order to assess the accuracy of the code. We consider the flow in the
lid-driven, square cavity for three different fluids: Newtonian, shear-thinning
(with n = 0.5) and shear-thickening (with n = 1.5). The mesh that is used in
each of the three cases (Fig. 3) is composed of 10, 468 triangular cells. For the
Newtonian fluid, we present the results for the case with a Reynolds number
of Re = 1, 000. The results are then compared to the results of Botella and
Peyret [23], which were obtained by using a spectral Chebyshev method, and
Ghia et al. [24], which were obtained by using a vorticity-stream function
formulation. In Fig. 4, the velocity components u and v are both presented
along the vertical (y) and horizontal (x) cavity axes, respectively.
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Figure 4: For the Newtonian fluid, the u and v velocity components are presented for the
lid-driven cavity test case (Re = 1000).

The code is validated by comparing the results of the non-Newtonian
power-law fluids to the results of Bell and Surana [25], which were obtained
by using a p-version least-squares finite-element method. The flow that is
considered has a power-law Reynolds number of RePL = 100 (Eq. 6) for
both values of n. The results are shown in Fig. 5. For the two fluids that
were studied, the results that are given by our code compare quite well with
those of other authors.

4. Results and discussion

After a grid size-dependence study, a mesh of 10, 680 computational cells
is adopted. This mesh is shown in Fig. 6, where regular quadrilateral cells
are used near the walls to enhance the resolution of the boundary layers.

4.1. Non-Newtonian flow patterns

In order to compare the flow topologies that have been obtained for the
three different rheological behaviors, we present in Figs. 7 and 8 the patterns
of the scalar temperature fields that are associated with the corresponding
streamlines for both continuously- and non-continuously-modulated stirring
protocols.

In the first case (continuous modulation), the upper part of Fig. 7 repre-
sents the flow situation at time t = 120 s, which is equivalent to t = 4τ , while
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Figure 5: For the shear-thinning and shear-thickening fluids, the u and v velocity compo-
nents are presented for the lid-driven cavity test case (RePL = 100).

Figure 6: Computational mesh of the two-rod mixer.
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t = 120 s = 4 τ

t = 135 s = 4 τ + 1/2 τ

Figure 7: For the case of continuously-modulated stirring, the flow patterns (temperature
fields and streamlines) at two different instants (t = 120 s, top half, and t = 135 s, bottom
half) are presented for the three rheological fluid behaviors: shear-thinning fluid (left),
Newtonian fluid (middle) and shear-thickening fluid (right). The period of modulation is
τ = 30s.
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t = 120 s = 4 τ

t = 135 s = 4 τ + 1/2 τ

Figure 8: For the case of alternately-modulated stirring, the flow patterns (temperature
fields and streamlines) at two different instants (t = 120 s, top half, and t = 135 s, bottom
half) are presented for the three rheological fluid behaviors: shear-thinning fluid (left),
Newtonian fluid (middle) and shear-thickening fluid (right). The period of modulation is
τ = 30s.
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the lower part corresponds to the instant t = 135 s = 4.5τ . At t = 120 s,
the two rods are rotating at their maximum angular velocity while the ve-
locity of the tank is at its minimum value (see Fig. 2). By examining the
streamlines, we notice that the size of the zone of influence of the rods, i.e.

the zone of the driven fluid, depends on the fluid’s nature: it is confined for
the case of the shear-thinning fluid and is larger for both the Newtonian and
the shear-thickening fluids. For the latter, this zone is the largest. The effect
on the temperature field is the opposite: for Newtonian and shear-thickening
fluids, the streamlines that are parallel to the surface of the rods form large
zones and act as insulation, which restrains the convective heat transfer from
the rods. On the other hand, in the case of the shear-thinning fluid, the nar-
rowness of this zone induces fluid streams between the surfaces of the two
rods and promotes heat transfer from them to the center of the mixer.

Later at t = 135 s, the tank is rotating at its maximum velocity while the
rods are at their minimum. A fluid recirculation zone appears between the
rods. It is larger when the fluid is less viscous because the rods have narrower
zones of driven fluid. Thus, for the shear-thinning fluid, this recirculation
blends the heated fluid, which was extracted from the rods earlier. As will be
established below by a statistical analysis of the flow, for the continuously-
modulated stirring protocol, the best mixing results are achieved for the case
of the shear-thinning fluid.

In the case of alternating rotations, Figure 8 is the equivalent of Fig.
7. Hence, the upper part of the figure (t = 4τ) corresponds to the tank at
rest for τ/2 while the rods are rotating. By examining the streamlines, we
can observe that the more the fluid is viscous the more the effect of the rods
extends towards the tank to form four parabolic points on its boundary. Also,
two symmetrical vortices are created near this boundary, their size is very
small for the shear-thinning fluid. As a consequence, these vortices cause two
hot fluid streams to be extracted from the tank wall and have their origin
at two of the four parabolic points. In the case of the shear-thickening fluid,
these streams almost reach the center of the tank.

At t = 4.5τ (the lower part of the Fig. 8), the tank rotation is at its
maximum velocity while the rods are at rest. We observe two recirculation
zones in the center of the tank with a size that increases with increasing fluid
viscosity. Moreover, two parabolic points form on each rod and hot fluid
streams releases from these points. We can clearly see that the temperature
field contains unmixed cold zones for the case of the shear-thinning fluid
and that the best homogenization is obtained for the shear-thickening fluid.
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In comparison with Fig. 7, we can observe that the alternated modulation
produces a hotter fluid and gives a better homogenization for the three flu-
ids. These visual observations will be confirmed statistically in the following
section.

4.2. Temporal evolutions of the temperature statistics indicators

For the three rheological fluid behaviors, the temporal evolutions of the
mean value of the dimensionless temperature, T ∗

m, and its standard deviation,
σ, are shown in Fig. 9 for the following stirring protocols: (a) non-modulated,
(b) continuously modulated and (c) alternately modulated. The fixed-wall
temperature that is imposed on all of the boundaries acts as a source for the
evolution of the scalar; thus, the mean temperature will not be constant with
time but will evolve asymptotically from T ∗

m = 0 to T ∗

m = 1. The behavior
of both the Newtonian and shear-thickening fluids is exactly the same as the
non-modulated and continuously-modulated stirring protocols. They both
give a poorer mixing efficiency than the shear-thinning fluid (Fig. 9(a) and
(b)). However, this situation is reversed for the non-continuously-modulated
stirring protocol for which the shear-thickening fluid gives a more efficient
thermal mixing. When a non-continuous modulation of the wall velocity is
considered (Fig. 9(c)), the exponential decay rates of the standard deviation
of the temperature fields are always higher than for the two other types of
stirring protocols that have been studied (Fig. 9 (a) and (b)). This last
result is understandable when we observe the temperature fields in Fig. 8
and is corroborated by the study of the probability distribution functions of
the dimensionless temperature, T ∗

m, in section 4.4.
The flow mechanisms that are involved in the three modulation modes are

quite different. In the non-modulated and continuously-modulated stirring
processes of a shear-thinning fluid, a supplementary recirculation zone forms
at the center of the mixer due to the lower viscosity of the fluid (lower part
of Fig. 7). This recirculation increases the heat transfer from the two rods.

4.3. The effect of the modulation’s period size

Until now the period size was fixed at the value τ = 30 s. In this section,
we investigate the effect of increasing or decreasing this period size in the case
of alternating modulation. For both shear-thinning and shear-thickening flu-
ids, Fig. 10 presents the results that have been obtained for mixing processes
with periods of 15 s, 30 s and 60 s.
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Figure 9: For the three rheological fluid behaviors, the temporal evolution of the mean
value of the dimensionless temperature and its standard deviation is presented for (a)
non-modulated, (b) continuously-modulated and (c) non-continuously-modulated stirring
protocols.
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Figure 10: Temporal evolution of the mean value of the dimensionless temperature and
its standard deviation for three different period sizes. Left: shear-thinning fluid, right:
shear-thickening fluid.

For the two fluids, the size of the period has a slight effect on the evolution
of the mean temperature. For the standard deviation, the mixing of the
shear-thickening fluid is impacted by the change of this parameter while the
mixing of the shear-thinning fluid presents little difference. For both fluids,
the period size of τ = 30 s seems to give the best results. In our previous
studies [11, 12], we have found similar conclusions for Newtonian fluids. An
explanation can be advanced by observing the evolution of the temperature
field in the mixer (as the one in Fig. 8) during several periods of the mixing
process. It is found that when the period is shorter (τ = 15 s) the hot fluid
streams that are extracted from the walls are smaller; thus, they are returned
back to the boundary during the next movement of the wall. On the other
hand, when the period is longer (τ = 60 s), the mixing process loses some of
its temporal diversification or its unsteady character because a pseudo-steady
state is reached during each of the wall’s movements. The value τ = 30 s is
not the optimal value but we think that it is around it.

4.4. Probability distribution functions of the temperature scalars

We focus here on the probability distribution functions (PDFs) of the
dimensionless temperature, T ∗, for the whole mixer section that is filled by
the fluid. The PDFs of T ∗ fields are shown in Fig. 11 for the three stirring
protocols at two different times. In each plot, the three fluid behaviors are
compared.

In general and in all of the figures, we notice the presence of a significant

18



peak (which corresponds to the most probable temperature in the fluid) that
is located on the left. To the right of this peak, for the non-modulated
stirring protocol (Fig. 11 (a)), we observe some small modulations that
indicate the persistence of the scalar temperature gradients within the fluid.
Then, with time, as the peak moves towards the high temperatures, these
modulations compress towards T ∗ = 1. In this case, the shear-thinning fluid
gives the best thermal mixing efficiency; thus, the results that have been
found in section 4.2 are then confirmed. For the continuously-modulated
stirring protocol (Fig. 11(b)), we observe the same general features as in Fig.
11 (a); the PDFs are just translated a little towards T ∗ = 1. The difference
is now considerably reduced between the T ∗ location of the PDF peak that
is observed in shear-thinning fluids and the two other fluids. The PDFs
that correspond to the non-continuously-modulated stirring protocol (Fig.
11 (c)) are completely different; the peak of the most probable temperature
is wider and its tail is reduced towards T ∗ = 1 and has smaller modulations.
Contrary to the results that have been obtained for the two other stirring
protocols, the shear-thinning fluid gives the poorest thermal mixing efficiency.
In this case, the T ∗ peak conserves a left tail towards the cold temperatures,
which indicates the persistence of cold, poorly-mixed zones within the fluid;
these zones can be seen in Fig. 8 (left). With Fig. 11 (c), we can conclude
that the chaotic flow that is encountered for the non-continuously-modulated
stirring protocol is particularly interesting for the thermal mixing of shear-
thickening fluids. Generally, non-continuously-modulated stirring protocols
have a better efficiency than the two other stirring protocols.

An important feature of this thermal chaotic flow can be shown for the
case of the shear-thickening fluid in Fig. 12 by the PDFs of the rescaled,
dimensionless temperature:

X =
T ∗

− T ∗

m

σ
(13)

These PDFs are superimposed when they are plotted for different times dur-
ing the mixing process but at the same phase of the period (see Fig. 12 (a)).
This is the signature of a strange eigenmode [9, 12], which is characterized
by the production of persistent patterns in the flow. These patterns arise
from a combination of stretching, folding and thermal diffusion. In Fig. 12
(b), the PDFs are plotted for different times during a period. From these
PDF evolutions, we can observe that the temperature distributions evolve
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Figure 11: Probability distribution functions (PDFs) of T
∗ for the three rheological

fluid behaviors at two different times and for the (a) non-modulated, (b) continuously-
modulated and (c) non-continuously-modulated stirring protocols.
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within the fluid during a period but that it regains its previous form from
one period earlier.
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Figure 12: PDFs of the rescaled dimensionless temperature, X , for the shear-thickening
fluid and the non-continuously-modulated stirring protocol (a) at different period times
(τ = 30 s) and (b) at different times during one period.

5. Conclusion

Numerical simulations of the coupled mixing and heating performances
that are induced by chaotic advection in a 2D two-rod mixer for non-Newtonian
power-law fluids were performed in this study. Three different stirring proto-
cols were chosen: non-modulated, continuous and alternating (non-continuous).
The last two were able to give chaotic flow trajectories. In order to study
the thermal mixing enhancement mechanism within the fluids, different mix-
ing and energy indicators and statistical tools were used. According to the
wall boundary condition that was considered (constant wall temperature),
the following main conclusions can be made based on the obtained results:

• for the non-chaotic and partially chaotic flows, i.e., non-modulated and
continuously-modulated stirring, the thermal mixing is more effective
for the shear-thinning fluid,

• for all of the rheological fluid behaviors, a high degree of thermal mixing
is obtained for the alternating-stirring protocol (fully-chaotic flow),
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• for the alternating-stirring protocol, the most effective thermal mixing
is obtained for the shear-thickening fluid,

• for the alternating-stirring protocol, cold, poorly-mixed zones exist
when a shear-thinning fluid is considered.

Further studies will explore the influence of the fluid’s yield stress and
also the effect of the thermodependence of the complex fluids on the efficiency
of thermal chaotic mixing. An additional mid-term objective is to be able to
model the flow behavior of the concentrated emulsions [26, 27].
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