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HEART SEGMENTATION WITH AN ITERATIVE CHAN-VESE

ALGORITHM

OLIVIER ROUSSEAU, YVES BOURGAULT

Abstract. This paper presents 2D and 3D applications of the Chan-Vese
model to heart and trachea segmentation. We improved the multi-phase Chan-
Vese model by introducing an iterative method, by choosing an appropriate
L

1 fidelity term as well as an efficient and prior free initial condition. For
3D applications, the algorithm is parallelized in order to speed up the com-
putations. We provide extensive information on computational details, on the
convergence times and on the quality of segmentations obtained. The results
of the segmentations are then meshed to be used for finite element simulations.

Introduction

The recent increase of computers capacities now allows for realistic simulations
of human organ physiology. Mathematical modeling of organ functions opens a
wide range of research, allowing diagnostics and understanding of malfunctions
and diseases. Such simulations usually require a mesh of the given organ. However,
most computations are made on meshes of idealized geometries and there is a real
lack of accurate 3D models. Realistic geometries should be extracted from medical
images, this is known as the segmentation process.

The goal of this work is to segment the heart muscle from high resolution CT
scans of the thorax and to produce meshes that are adequate for numerical simu-
lations in electro-physiology.

Most existing methods for heart segmentation involve a prior knowledge of the
heart’s shape (see for example [29, 12]). We intend to use a modified version of
the Chan-Vese model [9], also known as Active Contours without Edges to segment
the heart, since it has no geometrical or topological a priori. This method has
been successfully used for brain segmentation [28, 10]. Brain images usually have
nice contrasts between gray and white matter. To our knowledge, this method has
not been attempted yet for segmenting 3D scans of the heart and lungs. This is a
real challenge since the images are more diversified. They contain many objects of
similar grey levels that the method should separate.

The main contributions of this paper are:

(1) Application of the Chan-Vese algorithm to trachea and heart segmentation.
(2) Introduction of an Iterative version of the Chan-Vese algorithm to replace

multi-phase segmentation.
(3) Analysis of the convergence and efficiency of the Chan-Vese algorithm under

different initial conditions and different fidelity terms.

O. Rousseau and Y. Bourgault are with the Department of Mathematics and Statistics,
University of Ottawa, Ontario, Canada. They can be joined at orous097@uottawa.ca and
ybourg@uottawa.ca.
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(4) Analysis of parallelization of the Chan-Vese algorithm to fit needs of large
applications.

(5) Creation of meshes from the segmentation results.

In the first section, the Mumford-Shah functional and the Chan-Vese model are
presented as well as the numerical methods for solving the latter. In section 2, the
improvements made to the original Chan-Vese model are explained and justified.
Sections 3 and 4 respectively present 2D and 3D applications of this modified Chan-
Vese algorithm.

1. Background

1.1. The Mumford-Shah energy and the Chan-Vese model. An image can
be interpreted as a function

g : Ω−→ R,

where Ω is some region of R
n, typically a square or a cube. In the segmentation

process, the goal is to split the image g into its constituting objects. Mumford and
Shah proposed to minimize the following functional

(1) EMS(u, K) =

∫

Ω

|∇u|2 dx + λ

∫

Ω\K

|g − u|2 dx + µHN−1(K)

over pairs (u, K). K is a compact subset of Ω representing edges of objects in g,
and u ∈ H1(Ω \ K) is the intensity of the image. This intensity varies smoothly
inside the connected components of Ω \K [20]. The middle term in the equation is
called the fidelity term, while the combination of the two others form the regularity
terms that do not depend on the underlying image g. The weights µ and λ should
be adjusted in accordance with the noise level of the image to be segmented.

It is a well known result that minimizers of the Mumford-Shah energy exist
(see for example [4]). It is a hard task to directly find the actual minima of the
functional. To achieve this, one can approximate the Mumford-Shah functional by
a sequence of elliptic functionals easier to solve [5, 6, 7]. An other approach is to
minimize EMS over a restricted domain. One example is the Chan-Vese model.
It seeks for a minimum over functions that take only two values c1 and c2 [9].
Such functions can be written as u = c1✶F + c2(1 − ✶F ) for some F ⊆ Ω. The
Mumford-Shah energy then rewrites as

(2) ECV (F, c1, c2) =

∫

F

|g − c1|
2 dx +

∫

Ω\F

|g − c2|
2 dx + HN−1(∂F ∩ Ω).

The set F can be described via a level set function φ : Ω→ R, that is F = {φ ≤ 0}.
Then the Level Set formulation [24, 9] of the problem 2 is to find φ that minimizes
(3)

ECV(φ, c1, c2) = λ

∫

Ω

|g−c1|
2(1−H(φ)) dx+λ

∫

Ω

|g−c2|
2H(φ) dx+µ

∫

Ω

|DH(φ)| dx,

where H(·) stands for the Heaviside function. |DH(φ)| = δ(φ)|∇φ| is the derivative
of H(φ) in the sense of distributions. This is a Dirac measure with support on the
discontinuity set {x : φ(x) = 0} of u. The two-phase image then rewrites as
u = c1(1 − H(φ)) + c2H(φ).

We can deduce that if (φ, c1, c2) is a minimum of ECV , then it is one of the
many solutions of the Euler-Lagrange equation. To avoid difficulties related to the
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non-uniqueness of φ, a time dependence is added and the following initial problem
is solved:

(4)















∂φ
∂t

= δ(φ)
[

µdiv
(

∇φ
|∇φ|

)

+ λ
(

(g − c1)
2 − (g − c2)

2
)

]

φ(x, 0) = φ0(x),

∂φ
∂n

= 0 on ∂Ω,

for some initial condition φ0 which describes an initial curve C0 = {φ0 = 0}. The
values c1 and c2 are also given by

(5) c1 =

∫

Ω
g(1 − H(φ)) dx

∫

Ω
(1 − H(φ)) dx

, c2 =

∫

Ω
gH(φ) dx

∫

Ω
H(φ) dx

,

That is, c1 and c2 are mean values of g inside the regions {φ < 0} and {φ ≥ 0}
respectively.

While solved with a time-stepping scheme, the problem 4 can be interpreted as
a gradient method applied to the minimization of the functional in 3. Any steady
state of 4 will satisfy the Euler-Lagrange equation.

In order to get a splitting of the image into more than 2 phases (multi-phase
segmentation), Chan and Vese proposed to have several level set functions φi [28].
A set of n level set functions can describe up to 2n different regions of Ω. In this
case n coupled PDE’s must be solved simultaneously. An other approach is to use
several level curves of the level set function [10]. In this case the number of regions
has to be chosen in advance. This method does not allow to have junctions of three
different regions as level curves are parallel to each other.

1.2. Numerics. The equation 4 can be solved via standard finite difference scheme
([9], [23]) using a C∞ regularization δǫ of δ. For example, in 2D the first term of

div
(

∇φ
|∇φ|

)

can be discretized as

(6)





∂

∂x

φx
√

φ2
x + φ2

y





i,j

≈ D−
x









D+
x φi,j

√

(D+
x φi,j)2 +

(

D0
yφi,j+D0

yφi+1,j

2

)2

+ ε2









.

D+
x φ, D0

x, D−
x respectively stand for forward, centered and backward finite differ-

ence approximations. Hence an explicit discretization of equation 4 can be written
as

φn+1
i,j = φn

i,j + ∆tδǫ(φi,j)[d1(φ
n
i+1,j − φn

i,j) + d2(φ
n
i,j − φn

i−1,j)

+ d3(φ
n
i,j+1 − φn

i,j) + d4(φ
n
i,j − φn

i,j−1)(7)

+ λ
(

(g − c1)
2 − (g − c2)

2
)

].

This is the form of a non linear diffusion with coefficients

d1 =
µ

√

(D+
x φi,j)2 +

(

D0
yφi,j+D0

yφi+1,j

2

)2

+ ε2

...(8)

d4 =
µ

√

(

D0
xφi,j+D0

xφi,j−1

2

)2

+ (D+
y φi,j)2 + ε2
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However, for an explicit time discretization, the time step constraint for stability
may be quite restrictive, leading to a large number of time steps to reach a steady
solution.

It has been noticed that replacing δ(φ) by |∇φ| increases the stability of the
PDE [19], yielding

(9) φt = |∇φ|

[

µdiv

(

∇φ

|∇φ|

)

+ λ
(

(g − c1)
2 − (g − c2)

2
)

]

,

which can be interpreted as a motion of the interface in the normal direction with

speed Vn = −µdiv
(

∇φ
|∇φ|

)

− λ
(

(g − c1)
2 + (g − c2)

2
)

. Note that equation 9 does

not admit any steady state, although the interface {φ = 0} converges to the zero
level set of the steady state of equation 4. In fact when equation 9 evolves over
time, the level set function φ will converge to −∞ inside the curve and to +∞
outside. To avoid dealing with too large values, φ can be truncated, for example
restricted to [−1, 1]. It is also possible to use a semi-implicit time discretization,
which also increases the stability [26]. In this scheme, the value φi,j of the central
pixel is taken at time n + 1 for the right hand side of equation 7. This yields

φn+1
i,j =

|∇φ|i,j [d1φ
n
i+1,j + d2φ

n
i−1,j + d3φ

n
i,j+1 + d4φ

n
i,j−1 +

(

(g − c1)
2 + (g − c2)

2
)

]

1 + ∆t(d1 + d2 + d3 + d4)
.

(10)

We will analyze the convergence of equation 9 to a steady state using the semi-
implicit time discretization described in equation 10 under several factors. We will
study the influence of the initial condition and of the fidelity term chosen. We will
also propose an iterative method to obtain multi-phase segmentation.

In [27], Song and Chan decoupled equation 9 in order to simplify the resolu-
tion. They first smooth the image g to obtain a new image g∗, and then solve the
simplified equation

(11) φt = (g∗ − c1)
2 − (g∗ − c2)

2.

They proposed a fast algorithm for solving equation 11. In fact, their algorithm
corresponds closely to clustering the set {g∗(x) : x ∈ Ω} of values of g∗ into two
clusters using a k-means procedure [15]. Osher and He introduced a similar al-
gorithm to solve the multi-phase problem [16]. Again, this is closely related to
applying a k-means procedure to the set {g∗(x) : x ∈ Ω} with the right number
of clusters k. Independently, Gibou and Fedkiw took advantage of this analogy to
propose an hybrid algorithm that alternates between smoothing and k-means [13].

However, it is not known if any of these fast algorithms lead to minimums of the
Chan-Vese energy for some value of the parameters µ and λ.

2. Improvements

We focus on the resolution of the Chan-Vese model via equation 9 in order
to extract the heart shape from a 3D CT scan of a human thorax. We propose
improvements on several aspects of the resolution process in order to fit the needs
of large 3D applications. These aspects are:

(1) Iterative segmentation instead of multi-phase segmentation.
(2) Choice of a fidelity term in equation 9.
(3) Choice of an initial condition in equation 9.
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2.1. Iterative Segmentation. Medical images usually contain many regions of
different pixel intensity value. In this case a two-phase segmentation will generally
not be able to extract the region of interest.

A solution to the multi-region problem is the algorithm proposed by Chan and
Vese for multi-phase segmentation that simultaneously evolves several level set func-
tions, that is several curves [28]. There are drawbacks to this method. One is that
instability may appear from solving these PDE’s simultaneously. Also it may hap-
pen that the two curves need to coincide at some places. In this case, if the curvature
term is dominant, it may lead to miss-classification in this region, since the curves
may not superimpose correctly. Figure 1 shows an example of this phenomena.

The other approach is to look at several level curves of the level set function φ [10].
If n different values are chosen, it splits the domain into n+1 different regions. One
possible issue is that it can not recover triple junctions, as level curve are naturally
parallel to each other.

Instead of these strategies, we will segment by solving the simple two-phase
Chan-Vese problem iteratively. The process is as follows:

(1) Split the domain Ω into Ω+ and Ω− using the 2-phase Chan-Vese model.
(2) Stop if the object is extracted, that is if the object is either Ω+ or Ω−.

Otherwise, decide which of Ω+ or Ω− contains the object of interest, and
pick this region as a new domain for step 1.

Figure 2 shows the results of an iterative segmentation process on a slice of a
CT scan of the heart.

There are many advantages to proceed in this manner. First, if we are interested
in a single object in the image, the computations need not to be done on the whole
domain after the first step. This clearly saves on CPU time. We can thus focus
on the region of interest, rejecting at each step the part of the image that does not
contain the given object.

However a full 2n-phase segmentation of the image can also be done with this
iterative method. The first step splits the domain into two different sub-domains
Ω+ and Ω−. In the second step, each of these sub-domains will be split in 2 parts,
yielding four sub-domains Ω++, Ω+−, Ω−+ and Ω−−. This can be done until the
requested number of sub-domains is reached. It takes n such steps to get 2n regions.
In the multi-phase case, n different level sets functions need to be evolved. One
step of the iterative method has the same computational cost as evolving a single
level set function in the multi-phase method. However in practice the multi-phase
algorithm requires smaller time step to ensure stability, which makes it slower.
Another advantage of the iterative method is that the smoothing parameters can
be varied from steps to steps. This saves time since the equation can be solved with
larger time steps when the smoothing term is not dominant.

Another benefit of our iterative method is that triple junctions are accurately
obtained since the boundary conditions force the curve to be normal to the domains
boundary. Figure 3 shows how our method performs on the synthetic image of
Figure 1. It is clear that the the miss-classification problem is avoided with the
iterative method.
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(a) (b)

(c) (d)

Figure 1. An example of an image for which segmentation with
two level set function may lead to incorrect segmentation. (a) is the
synthetic image to be segmented. (b) shows a correct segmentation
of the image, when the curvature term is not dominant (µ = λ =
1). (c) is the result if the curvature term is more important (µ =
10000, λ = 1): there is a miss-classification of some pixels. (d)
shows a close-up on the curves where there is miss-classification:
it comes from the fact that level curves are only nearly superposed
in these regions.

2.2. L1 fidelity term. Replacing the classical L2 fidelity term by an L1 fidelity
term is an idea that has first been introduced in signal processing [1, 2, 3] and later
in image processing [21, 22]. Using L1 fidelity term makes the problem more robust
to noise and outliers in the signal or image.

It has been remarked that for TV denoising, a L1 fidelity is more natural [8],
since in this case the problem is scale-invariant. Recently, it has been shown that
the Chan-Vese model benefits from the same properties when L2 fidelity is replaced
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(a) (b)

(c) (d)

(e) (f)

Figure 2. 2D Iterative segmentation of the heart from a CT scan
image. (a) The image to be segmented (b) the result of the first
application of the 2-phase Chan-Vese model, the blue part is the
region of interest (c) Second step: in green is the region that has
been ignored in the segmentation. The red region will be chosen.
(d) Red is chosen (e) blue is chosen (f) the blue region is the heart
muscle, we stop.
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(a) (b)

(c) (d)

Figure 3. Iterative segmentation of the synthetic image (a). (b)
shows the two-phase Chan-Vese model applied to the image (µ =
10000, λ = 1). (c) is the result of the two-phase algorithm applied
to the red region of (b) (µ = 100000, λ = 1) and (d) shows the
two-phase segmentation of the blue part of (b) (µ = 10000, λ = 1).
Note that the parameters are different, since they mainly depend
on the size of the fidelity term.

by L1 fidelity. Indeed if (φ, c1, c2) minimizes
(12)

EL1

CV,g(φ, c1, c2) =

∫

Ω

|g − c1|H(φ) dx +

∫

Ω

|g − c2|(1 − H(φ)) dx +

∫

Ω

|DH(φ)| dx,

then (φ, λc1, λc2) minimizes EL1

CV,λg [11]. This seems to be a desirable property
since the scaling of the image should not affect the geometry of the segmented
objects.
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Figure 4. Segmentation of the cameraman image using L2-
fidelity (left) and L1-fidelity (right), with the same weights (µ = 1
and λ = 0.1)

Computing the Euler-Lagrange equation of 12 yields to the gradient descent
equation

(13) φt = |∇φ|

[

div

(

∇φ

|∇φ|

)

+ |g − c1| − |g − c2|

]

,

where δ(φ) has again been replaced by |∇φ|. Now c1 and c2 are the median values
of g in {φ ≤ 0} and {φ > 0} respectively instead of the mean values. These values
are to be updated at each time step. Computing the median is more demanding
than the mean, but this is negligible compared to the time required to compute the
update of the level set function at each iteration.

How does one decide which fidelity term to chose? The L2–fidelity is more
sensible to noise as it can be seen in Figure 4. It comes from the fact that the mean
value is affected by large values whereas the median is affected by frequent values.
Hence, if the object to be segmented has a very distinct color, the L2–fidelity term
should be preferred. If the object has color close to the rest of the image or if the
image is very noisy, the L1–fidelity will be more efficient. The CT scan of the thorax
falls in the second category. We illustrate this by doing an iterative segmentation
of a 2D slice using the L1–fidelity, see Figure 5. Note that the number of steps
needed for the heart segmentation drops from 5 to 3.

2.3. Initial condition. The Chan-Vese energy may admit some local minimums,
depending on the image g and on the scale of the parameter µ. The choice of a
good initial condition is then crucial in order for the curve not to get stuck into a
local minimum which is not the global minimum. The convergence to the steady
state may also be slowed down by a bad choice of initial condition. We tried four
different strategies and compared the results obtained. They are summarized in
figure 6.
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(a) (b)

(c) (d)

Figure 5. Iterative segmentation of the heart from a 2D slice of
a CT scan using the L1–fidelity. 3 steps are required instead of 5
for the L2–fidelity.

The first strategy consists of taking a circle as an initial curve and its signed distance
function as level set function. Many level set functions may describe the curve, but
the signed distance function has the advantage of being the most regular.

The second strategy is to take the union of many circles spread out over the
image as an initial curve. Again the signed distance function to this curve is taken
as level set function. The idea is that if the curve is spread out, it should be close
to features of interest. The first two strategies are used in the seminal paper of
Chan and Vese [9].

In the same direction, we propose to take as initial condition a level set function
that takes random values in [−1, 1] over the domain Ω. Then there are point inside
and outside the curve almost everywhere. The level set function is not regular, but
this doesn’t seem to be a problem since the level curves gets smooth very fast as
time evolves.
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(a) (b)

(c) (d)

Figure 6. The different initial curves: (a) one circle, (b) 100
equidistant circles, (c) random values in [−1, 1] and (d) the so-
lution of the problem when µ = 0 and λ = 1.

The last strategy comes from the fact that when µ = 0, the Chan-Vese problem
is very easy to solve via a k-means procedure. This splits Ω into two regions Ω1

and Ω2. One can take as an initial condition φ = χΩ1
− χΩ2

. The signed distance
function to ∂Ω1∩∂Ω2 would be another option, but numerical experiments suggest
that it is a better idea that all points are initially relatively close to 0.

We tried the different strategies on the well known cameraman picture. On
Figures 7 and 8 we compared the decay of the energy and the L2–convergence to
the absolute minimum. The energy is approximated using a discretization of the
equation 3, the term DH(φ) is simply discretized using a forward Euler scheme. If
a regularized version Hǫ(φ) of H(φ) is used, the energy becomes less accurate as the
function φ evolves since φ develops sharp gradients. Figure 9 shows the semi-log
plot of the L2 distance to the absolute minimizer.



12 OLIVIER ROUSSEAU, YVES BOURGAULT

Figure 7. The energy decay under various initial conditions.

Figure 8. The L2–convergence under various initial conditions.

On these figures, it is possible to see two different behaviors. At the beginning
of the iteration process the fidelity term is dominant in equation 9. In this case,
the random initial curve and the (µ = 0) solution converge very quickly towards
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Figure 9. The semi-log plot of the L2–convergence under various
initial conditions.

the steady state, as seen in Figure 8. As the curves get closer to the steady state,
the curvature term gain importance and then every curve approaches the steady
state at a similar rate as shown on the semi-log plot in Figure 9. The same kind of
phenomena happens for the energy.

It is not easy to determine which initial condition is better than the other. It
seems that the random curve and the (µ = 0) solution converge quickly to a state
that is close to the steady state, which is certainly a nice property. However in
practice we favor the use of the random curve since it has no a priori on the
position of the interface and the points inside and outside the curve are evenly
spread over the image. In this case, there is a lower chance to get stuck in a local
minimum.

3. 2D Application

As an illustration of the method, we have presented in Figure 5 the results of
the iterative segmentation with L1 norm on a 2D CT slice. In order to use the
results of the segmentation process as a base for numerical simulations of the organ
functions, it is usually required to generate a mesh of the given organ. To do so,
we used the simple and very efficient 2D/3D mesh generator DistMesh [25, 17].

Distmesh is a Matlab tool designed for meshing domains implicitly defined
through a level set function. Most mesh generators start by meshing the boundary
of the domain (a curve for 2D domains, a surface for 3D domains) and then march
to mesh the interior. DistMesh has a different approach: it triangulates the whole
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domain and then moves vertices to well fit the boundary, with a control on the
size and quality of the elements. It can also be modified to accommodate sub-
domains. For each sub-domain, we have computed the signed distance function to
the boundary. The signed distance function is computed using the reinitialization
equation

(14) φt = S(φ)(1 − |∇φ|),

where S(φ) is a regularization of the sign function [23]. This signed distance func-
tion is used to project on the boundary nearby vertices. It is then sufficient to
compute the signed distance function only in a neighborhood of the zero level set.

With DistMesh, an element diameter has to be specified. This one may differ
spatially. We remarked that nice boundaries can be obtain if the element size is
decreased continuously when approaching sub-domains boundaries. In practice, the
element size is usually decreased to half the size it has in the sub-domain. Figure 10
shows an example of a 2D mesh of the thorax, built from the previous segmentation
in Figure 5.

4. 3D Application

We will apply our framework to 3D segmentation of a full CT scan. This CT
scan is by courtesy of the Heart Institute of the University of Ottawa. It is of size
512×512×199 and the voxels have a 0.48mm resolution in the transverse plane (the
x − y plane) and a 1.25mm. resolution in the direction of the transverse axis (z
direction). This image has over 52 million voxels, it is thus a challenge to solve the
segmentation problem in an efficient way.

However, since the equation is solved with an explicit time scheme, it is possible
to parallelized the solver. The idea is to split the image into pieces that are to be
distributed on computing nodes. A simple choice is to split the z direction into
as many blocks as we want. At each iteration, the computations can be made
independently on each block. Then only the information about shared boundaries
of the block need to be exchanged. In the case where the image is split in only one
direction, there is only the information about the top slice and the bottom slice to
be exchanged, which can be done very quickly.

If we apply the Chan-Vese model with L2 fidelity, we need to compute the average
of a function in a given region. This is easy to do in parallel. However, if we are
to use the L1 fidelity, we need to compute the median in parallel, which is trickier.
To find the median in the serial case, the C++ template nth element is used [18],
which is a linear algorithm for partial sort (it is more efficient than complete sort
which is of order n log(n), where n is the number of pixels). Hence for preliminary
tests, we used the L2 fidelity. For all computations, a random initial curve has been
chosen. The computations then require less time steps.

The parallel code is implemented in C++ using the openMPI library [14]. The
amount of RAM memory required to solve the Chan-Vese problem is then divided
into the different nodes. The speed up for this parallelization is nearly perfect:
using n processors divides the time per iteration by n, see figure 11.

Most computations are made on a 16 processor SUN cluster with distributed
memory. Running the code on 6 processors divides the CPU time by almost 6.
As the number of processors increases, the time lost in data transmission becomes
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(a)

(b)
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Figure 11. The speed up for the parallel algorithm: the time for
doing an iteration with one processor divided by the time for doing
an iteration with x processors. It is just below the perfect speedup,
that is the line y = x.

(a) (b)

Figure 12. The CT scan to be segmented (a) and the result of
the first segmentation step (b)

more important. Note that many computations have been made successfully on a
simple dual-core laptop, cutting the CPU time in 2, although the same amount of
RAM is required.

Figure 12 shows the 3D CT image as well as the result of the first segmentation
step. Following this first segmentation, one side of the surface must be chosen as
the new segmentation domain. The interior is the region that contains the trachea,
the exterior contains the heart. To obtain the trachea we segmented the interior
region with a high curvature term, since there is much noise and irregularities in
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Figure 13. The trachea segmented from the 3D CT scan.

(a) (b)

Figure 14. Two meshes of the trachea generated with DistMesh:
a coarse mesh of about 40 000 tetrahedra (a) and a finer of about
500 000 tetrahedra.

the lunges. Once the segmentation process is complete, we just need to chose
the connected component that corresponds to the trachea. Figure 13 shows the
resulting segmentation. The trachea is then meshed with DistMesh. Figure 14
shows 2 different meshes of the trachea: a coarse one of about 40 000 tetrahedra,
and a finer one of about 500 000 tetrahedra.

Now, if we want to segment the heart, we have to take the result of the first
segmentation and choose the exterior of the surface. To get to the heart, four more
segmentation steps will be required (five steps in total). If this would to be done
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Figure 15. 2 views of the exterior surface of the heart in the final
segmentation. The general shape is well recovered.

with several level set functions, it would then take 5 level set functions to get this
level of details, which is hard to solve on images of this size.

From the second stage, we have decided to do the segmentation not on the exact
image but on a blurred version of it, due to the high level of noise. To blur the
image, we apply the linear heat equation on the image for a few time steps with an
explicit scheme. This is also easily done in parallel. Figure 15 shows the exterior
surface of the heart in the final segmentation and Figure 16 shows the segmented
heart cavities. The cavities are well segmented, especially the one of left ventricle,
which is the most important part in many applications. The position of the mitral
valve is also precisely captured as shown in Figure 17. The general shape of the
heart is well captured, ventricles and atria are extracted as well as the aorta.

There are some imperfections in the segmentation of the heart surface near the
epicardium, as the surface leaks in some areas. This is due to the fact that the
heart touches the liver at that place in the image and that the two organs are of
same grey level. Further work has to be done to fully extract the heart.

Conclusion

In his paper, the efficiency of the iterative version of the Chan-Vese model have
been shown on test cases and successfully applied to large 2D and 3D applications
to the human trachea and heart. We also conclude that the L1 fidelity is more
efficient for this kind of segmentation. It is less sensitive to noise and to small
regions of different color intensity. Analysis of convergence under various initial
conditions showed that our new approach which consists of taking a random initial
curve is very efficient. The curve quickly converges to a state close to the steady
state and has no shape prior. It has been successfully apply in 2D and 3D for CT
scan segmentation. We also explained how the algorithm is implemented in parallel
and the computing gain obtained this way. Finally, high quality fine 2D and 3D
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Figure 16. 2 views of the interior surfaces of the heart in the final
segmentation. The pillars in the left ventricle are well segmented.

(a) (b)

Figure 17. Two other views of the internal surface of the final
segmentation: a view of the position of the mitral valve (a) and a
combined view of the left ventricle and the left atria (b).

meshes have been produced. These meshes are actually used for Finite Element
and Finite Volume simulations in electro-physiology.
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