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MATHEMATICAL STUDY OF THE β-PLANE MODEL FOR

ROTATING FLUIDS IN A THIN LAYER

ANNE-LAURE DALIBARD AND LAURE SAINT-RAYMOND

Abstract. This article is concerned with an oceanographic model de-
scribing the asymptotic behaviour of a rapidly rotating and incompress-
ible fluid with an inhomogeneous rotation vector; the motion takes place
in a thin layer. We first exhibit a stationary solution of the system
which consists of an interior part and a boundary layer part. The spa-
tial variations of the rotation vector generate strong singularities within
the boundary layer, which have repercussions on the interior part of
the solution. The second part of the article is devoted to the analysis
of two-dimensional and three-dimensional waves. It is shown that the
thin layer effect modifies the propagation of three-dimensional Poincaré
waves by creating small scales. Using tools of semi-classical analysis,
we prove that the energy propagates at speeds of order one, i.e. much
slower than in traditional rotating fluid models.

Résumé. On étudie ici le comportement asymptotique d’un fluide incom-
pressible tournant à grande vitesse dans une couche mince, avec un vec-
teur rotation inhomogène ; ce type de modèle apparâıt en océanographie.
On commence par exhiber une solution stationnaire du système, obtenue
comme la somme d’un terme intérieur et d’un terme de couche limite.
Les variations spatiales du vecteur rotation génèrent de fortes singula-
rités dans la couche limite, qui se répercutent dans la partie intérieure
de la solution. Dans un second temps, on caractérise le comportement
des ondes bi- et tri-dimensionnelles. L’effet de couche mince modifie la
propagation des ondes de Poincaré (3D) en favorisant l’apparition de
petites échelles. Grâce à une analyse de type semi-classique, on montre
que la vitesse de propagation de l’énergie est d’ordre un, soit beaucoup
plus faible que dans les modèles classiques de fluides tournants.

1. Introduction

The goal of this article is to study the behaviour of a rotating, incom-
pressible and homogeneous fluid, whose rotation vector depends on the
(horizontal) space variable. We also assume that the motion of the fluid
takes place in a thin layer. These two features are inspired from models of
oceanic circulation, which are the main physical motivation for our study.
We will explain more thoroughly the physical assumptions and scalings lead-
ing to our model in paragraph 1.1.
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2 ANNE-LAURE DALIBARD AND LAURE SAINT-RAYMOND

The mathematical framework of our analysis is the following: consider
the equation

(1.1)
∂tu+

1

ǫ
b(xh) ∧ u+

( ∇hp
1
η2 ∂zp

)
− νh∆hu− νz∂zzu = 0,

(xh, z) ∈ ωh × (0, 1),

where the horizontal domain ωh is either T2 or T × R. Equation (1.1) is
endowed with Navier conditions at the bottom of the domain

(1.2) ∂zuh|z=0 = 0, u3|z=0 = 0,

and we assume that there is a shear stress at the surface of the fluid, de-
scribed by the boundary condition

(1.3)
∂zuh|z=1(t, xh) = γσ(xh),

u3|z=1 = 0.

Above, ǫ, η, νh, νz, γ are positive parameters, whose relative size will be pre-
cised later on. Let us merely announce that ǫ, η, νh, νz are meant to be small,
whereas γ will be taken large. We emphasize that equation (1.1), supple-
mented with (1.3)-(1.2), is already in rescaled form. Hence all quantities are
dimensionless. We refer to the next subsection for a derivation of this equa-
tion, and for a definition of the various parameters in terms of the physical
quantities involved in the model.

Notice that the rotation is of order ǫ−1, with ǫ ≪ 1; hence we focus on
the limit of high rotation. As we will see in paragraph 1.1, the parameter
η is the aspect ratio of the domain: assuming that η ≪ 1 means that the
characteristic horizontal length scale is much larger than the vertical one.
In other words, the motion is set in a thin layer.

In this article, we are primarily interested in two topics: the computation
of stationary solutions of our model, and the analysis of the local stability
of these stationary solutions in the case ωh = T × R. In particular, we will
not address the full Cauchy problem here. Indeed, it can be proved that in
the scaling which is the most relevant for our study, the energy estimates
for the system (1.1)-(1.2)-(1.3) explode in finite time. In a similar way, the
stationary solution that we build has a size which becomes arbitrarily large
as ǫ, η vanish. Hence the problem (1.1)-(1.2)-(1.3) is highly singular.

To our knowledge, the asymptotic analysis of the system (1.1) has not
been addressed before: in the papers [10] by I. Gallagher and the second
author, and then [8] by A. Dutrifoy, A. Majda and S. Schochet, the authors
study the asymptotic behaviour of a shallow water system within a β-plane
model (i.e. in the case b(xh) = βx2). This shallow water system can be
obtained by considering the limit η → 0 in (1.1) (see [14]). Thus the studies
of [10, 8] are concerned with the successive limits η → 0, ǫ → 0. In [7], B.
Desjardins and E. Grenier take into account the thin layer effect within the
original Navier-Stokes system, but they assume that b(xh) = 1 + ǫx2; hence
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the penalization is constant at first order. Our goal is to study a crossed
limit (ǫ, η) → (0, 0), with a rotation vector which has variations at the main
order.

Let us now make precise the main novelties of our work: first, the con-
struction of stationary solutions involves the definition of boundary layer
terms with a varying Coriolis factor b. Since the size of the bound-
ary layer is directly related to the amplitude of b, singularities appear at
the vanishing points of b. These singularities in the boundary layer have
repercussions on the interior part of the stationary solution, and make the
construction much more involved than in the constant case. On the other
hand, studying the stability of stationary solution when ωh = T×R amounts
to describing the waves in the β-plane model with a thin layer effect.
We exhibit new types of behaviour for the Poincaré waves, for which we
prove that dispersion takes place on a time scale much larger than usual:
for instance, in Chapter 2 of [11], the group velocity associated with Poincaré
waves (i.e. the speed at which energy propagates) is of order ǫ−1, while the
group velocity in the present setting is of order one. The proof of this fact
uses tools of semi-classical analysis, in the spirit of the recent papers by C.
Cheverry, I. Gallagher, T. Paul and the second author (see [5, 6]). Notice
also that the presence of dispersion in an oceanographic model is itself un-
usual: indeed, most models are set in a compact domain (see [4]), where
no dispersion can occur. Moreover, the most commonly used whole-space
model is the shallow water system within the β-plane model (see [10, 8]),
for which waves are trapped into a waveguide, and thus no dispersion occurs
either.

In the next paragraphs, we explain which physical assumptions led to the
system (1.1). We then present our main results. Eventually, let us point
out that the structure of the stationary solution which will be built in this
article enforces particular shapes for the isothermal surfaces inside the fluid
(the so-called “thermocline”). We present a few results in this regard in
paragraph 1.3.

1.1. Physical derivation of equation (1.1).
Let us now explain in which regime oceanic currents can be modeled by

equation (1.1). In this subsection, we denote by u the velocity of oceanic
currents in dimensional variables. The dimensionless variables, i.e. the ones
in which equation (1.1) is written, will be denoted with a prime.

• As a starting point, we recall that the ocean can be considered as an
incompressible fluid with variable density ρ. In order to simplify the analysis,
we neglect the variations of density, which are of order 10−3 in the ocean.
Consequently, the velocity u satisfies the Navier-Stokes equations, with a
Coriolis term accounting for the rotation of the Earth

(1.4)
ρ0 [∂tu+ (u · ∇)u] + ∇p = F + ρ0u ∧ Ω ,

∇ · u = 0 ,
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where F denotes the frictional force acting on the fluid, Ω is the (vertical
component of the) Earth rotation vector, p is the pressure defined as the
Lagrange multiplier associated with the incompressibility constraint, and ρ0

is the (constant) value of the density.
Since we have chosen to work on large horizontal scales (see below), equa-

tion (1.4) should be written in spherical coordinates. However, computations
involving spherical coordinates are much lengthier, and do not change sub-
stantially the physical phenomena we wish to highlight, at least at a formal
level (see [23]). Thus in the rest of the article, we neglect the curvature
of the Earth (but we keep a varying Coriolis factor nonetheless). Note
also that we neglect the influence of the horizontal component of the Earth
rotation vector, which is classical in an oceanographic framework (see [11]).

The observed persistence over several days of large-scale waves in the
oceans shows that frictional forces F are weak, almost everywhere, when
compared with the Coriolis acceleration and the pressure gradient, but large
when compared with the kinematic viscous dissipation of water. One com-
mon but not very precise notion is that small-scale motions, which appear
sporadic or on longer time scales, act to smooth and mix properties on the
larger scales by processes analogous to molecular, diffusive transports. For
the present purposes it is only necessary to note that one way to estimate
the dissipative influence of smaller-scale motions is to retain the same rep-
resentation of the frictional force

F = Ah∆hu+Az∂zzu

where Az and Ah are respectively the vertical and horizontal turbulent vis-
cosities, of much larger magnitude than the molecular value, supposedly
because of the greater efficiency of momentum transport by macroscopic
chunks of fluid. Notice that Az 6= Ah is therefore natural in a geophysical
framework (see [23]). Moreover, models of oceanic circulation usually as-
sume that the vertical viscosity Az is not constant (see [2, 22]); we choose to
retain only the mean boundary value of the vertical viscosity Az, since one
of the motivations for our work was to compute the boundary layer terms
in a context where Ω is not constant.

• Let us now describe the boundary conditions associated with (1.4):
typically, Dirichlet boundary conditions are enforced at the bottom of the
ocean and on the lateral boundaries of the horizontal domain ωh (the coasts),
i.e.

(1.5)
u|z=hB(xh) = 0 (bottom),

u|x∈∂ωh
= 0 (coasts).

In equation (1.1), we have neglected the effects of the lateral boundary
conditions by considering the case when ωh is either T × R or T2. By
doing so, we have deliberately prohibited the apparition of strong western
boundary currents, which play a crucial role in the oceanic circulation (e.g.
the Gulf Stream, the Kuroshio current). These horizontal boundary layers
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are believed to be responsible for the vertical structure of the ocean, and for
the creation of large eddies. In the linear case, the mathematical treatment
of these layers, called Munk layers, is performed by B. Desjardins and E.
Grenier in [7]. Their study could probably be mimicked in the present paper
without strong modifications; however, we have chosen to leave this issue
aside in order to focus on the other features of the model. Note that in the
nonlinear case, the analysis of lateral boundary layers is completely open
from a mathematical point of view.

In a similar fashion, for the sake of simplicity, we did not take into account
the topography of the bottom in (1.2) (i.e. we have taken hB ≡ 0),
and we took Navier instead of Dirichlet boundary conditions, meaning that
oceanic currents achieve perfect slip on the bottom. This choice simplifies
the mathematical analysis, since it avoids the apparition of Ekman boundary
layers on the lower boundary. The treatment of Ekman boundary layers in
the case of a Dirichlet boundary condition with hB ≡ 0 is in fact completely
similar to the one of Ekman boundary layers due to the wind at the surface
of the fluid, which is performed in section 2. Hence changing Dirichlet into
Navier boundary conditions is not a strong mathematical restriction. The
case of Ekman boundary layers with a non-zero hB has been addressed by B.
Desjardins and E. Grenier [7], N. Masmoudi [20], and D. Gérard-Varet [13]
in the case of a constant b, when hB is of the order of the Ekman boundary
layer (see below). In the present case, if the same assumption is satisfied, it
can be checked that the case of a non-constant hB can be treated with the
same arguments as the ones in section 2.

We assume that the upper surface, which we denote by Γs, has an equation
of the type z = hS(t, xh). As boundary conditions on Γs, we enforce (see
[14])

(1.6)

Σ · nΓs = σw,

∂

∂t
10≤z≤hS(t,x) + divx(10≤z≤hS(t,xh)u) = 0

where Σ is the total stress tensor of the fluid, and σw is a given stress tensor
describing the wind on the surface of the ocean. In general, Γs is a free
surface, and a moving interface between air and water, which has its own
self consistent motion. In (1.3), we have assumed that

hS(t, xh) ≡ D,

where D is the typical depth of the ocean. Hence (1.3) is a rigid lid approx-
imation, which is a drastic, but standard simplification. The justification of
(1.3) starting from a free surface is mainly open from a mathematical point
of view; we refer to [1] for the derivation of Navier-type wall laws for the
Laplace equation, under general assumptions on the interface, and to [16] for
some elements of justification in the case of the great lake equations. Nev-
ertheless, from a physical point of view, the simplification does not appear
so dramatic, since in any case the free surface is so turbulent with waves
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and foam, that only modelization is tractable and meaningful. Condition
(1.3) is a simple modelization which already catches most of the physical
phenomena (see [23]).
• Let us now evaluate the order of magnitude of the different parameters
occurring in (1.4), and write the equations in a dimensionless form. We set

uh = Uu′h, u3 = Wu′3,

xh = Hx′h, z = Dz′,

where U (resp. W ) is the typical value of the horizontal (resp. vertical)
velocity, H is the horizontal length scale, and D the depth of the ocean. In
order that u′(x′) remains divergence-free, we choose

W =
UD

H
.

A typical value of the horizontal velocity for the mesoscale eddies that have
been observed in western Atlantic (see for instance [23]) is U ∼ 1 cm · s−1.
Moreover, the typical horizontal and vertical scales which we are interested
in are

H ∼ 104 km, and D ∼ 4 km.

Notice that we work on an almost planetary scale, which justifies the use of
a varying rotation vector. Concerning the rotation, we write Ω = Ω0 sin(θ),
where θ is the latitude, and Ω0 = 2π/day ∼ 7 · 10−5s−1. Eventually, we
consider the motion on a typical time scale T , with T of the order of a few
months (T ∼ 107s). With these values, we get

ǫ :=
1

TΩ0
∼ 10−3,

and hence ǫ ≪ 1 (notice that the parameter ǫ is dimensionless). Thus the
asymptotic of fast rotation (small Rossby number) is valid.

Thus the dimensionless system (see for instance [23, 15]) becomes
(1.7)

∂tu
′ +

TU

H
u′ · ∇u′ + 1

ǫ
b(xh)e3 ∧ u′ +

( ∇hp
′

1
η2 ∂zp

′

)
− νh∆hu

′ − νz∂zzu
′ = 0,

∇ · u′ = 0,

where η := D/H ∼ 4·10−4 is the aspect ratio, and the vertical and horizontal
viscosities are defined by

νz :=
TAz

ρ0D2
, νh =

AhT

ρ0H2
.

Typical values for the turbulent viscosities are (see [15]) Az/ρ0 ∼ 10−4 −
10−3 m2 · s−1, and Ah/ρ0 ∼ 104 − 105 m2 · s−1, which yields in the present
case νz ∼ 10−3 and νh ∼ 10−10 − 10−9.

The boundary conditions are (1.3), (1.2), with

γ :=
|σw|D
AzU

.
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Notice that with the time scale chosen above, the convective term is of order
10−2 ≪ 1; hence we neglect it in the rest of the study. Note however that the
effect of this term is expected to be large if the waves associated with (1.7)
are resonant, and small if they are dispersive. Thus the rigorous treatment
of the convective term requires a mathematical analysis which goes beyond
the scope of this article, and which we deliberately leave aside from now on.

In the rest of the article, the relative size of the parameters will be chosen
as follows: the most important feature of our analysis is that η and ǫ are
chosen of the same order. In order to keep the number of different small
parameters to a minimum, we also choose to take νz = ǫ, and γ = ǫ−2; with
this last choice, the interior part of the stationary solution built in the next
sections will be of order one. Concerning the size of νh, our analysis allows
us to consider horizontal viscosities νh = o(ǫ), which is compatible with the
orders of magnitude given above.

1.2. Main results.
We present here two types of results: first, we build an approximate “sta-

tionary” solution of the system (1.1), endowed with the boundary conditions
(1.3)-(1.2). The problem studied is rather different from the Cauchy prob-
lem, since no initial data is prescribed. The goal is merely to compute a
solution of (1.1), and to investigate its asymptotic behaviour as ǫ vanishes.

Once the behaviour of the stationary solution is understood, we study its
local stability; since equation (1.1) is linear, this is equivalent to studying the
Cauchy problem for equation (1.1), with homogeneous Navier conditions at
z = 0 and z = 1. We then exhibit Rossby waves, which are essentially two-
dimensional, and Poincaré waves, which are fluctuations around the three
dimensional part of the initial data, and which take place on a much larger
time scale.

Let us now state our result about stationary solutions: since the vertical
viscosity is small (we take νz = ǫ ≪ 1), it disappears from the asymptotic
system. As a consequence, solutions of the limit system cannot satisfy the
boundary conditions. Thus boundary layer terms are introduced, which
restore the correct boundary conditions. Hence the stationary solution built
here is composed of an interior part and a boundary layer part.

We state our result in the case ωh = T × R, and explain below the
Theorem the main differences when ωh = T2. Throughout the paper, we
set

ω := ωh × (0, 1).

Theorem 1.1 (Stationary solutions of (1.7)). Let ωh = T × R.
Assume that νh = o(ǫ) and that η = νz = ǫ, γ = ǫ−2.
Let σ ∈ H2(ωh) ∩W 2,∞(ωh) such that

(1.8)
|σ(x, y)| , |∂xσ(x, y)| ≤ Cy2 ∀(x, y) ∈ ωh,

|∂yσ(x, y)| ≤ C|y| ∀(x, y) ∈ ωh
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and such that the following compatibility condition is satisfied

(1.9)

∫

T

σ1(x, y) dx = 0 ∀y.

Assume that the Coriolis factor b satisfies the following assumptions:

(1.10)

b(x, y) = b(y) ∀(x, y) ∈ ωh, with b ∈W 2,∞
loc

(R),

b(y) 6= 0 for y 6= 0, and ∃C > 0, |b(y)| ≥ C for |y| ≥ 1,

∃c > 0, c−1 ≤ b′(y) ≤ c ∀y, b(y) ∼ βy for y → 0.

Then there exists stationary functions (ustat, pstat) ∈ L2(ω)∩H1(ω), such
that ustat satisfies (1.3), (1.2) and

1

ǫ
b(y)(ustat

h )⊥ + ∇hp
stat − ǫ∂zzu

stat
h − νh∆hu

stat
h = r1h + r2h

1

ǫ2
∂zp

stat − ǫ∂zzu
stat
3 − νh∆hu

stat
3 = r13 + r23,

with

r1h = o(1) in L2(ω), r2h = o(
√
νh) in L2([0, 1],H−1(ωh)),

r13 = o(ǫ−1) in L2(ω), r23 = o(ǫ−1√νh) in L2([0, 1],H−1(ωh)).

Moreover, ustat can be decomposed as

ustat = uBL + uint,

where uBL is a term located in a boundary layer of size ǫ, in the vicinity of
the surface, and uint is an interior term. The functions uBL and uint satisfy
the following estimates

(1.11)

‖uint‖L2(ω) ≤ C‖σ‖H2(ωh),

‖uBL
h ‖L2(ω) ≤

C√
ǫ
‖σ‖H1(ωh),

‖uBL
3 ‖L2(ω) ≤ C‖σ‖H1(ωh).

If ωh = T2, the result remains true under slightly different conditions on
σ and b. More precisely, we assume that σ ∈ H2(T2) satisfies (1.8), (1.9),
and that

d(suppσ, (T, 1/2)) > 0

In other words, σ vanishes in a neighbourhood of (x, 1/2) for all x ∈ T (and
by periodicity, in a neighbourhood of (x,−1/2) also).

We assume furthermore that b(x, y) = b(y) with
(1.12)

b ∈ L∞(T) and b ∈W 2,∞(K) ∀K ⊂ T compact s.t. d(K, 1/2) > 0,

b(y) 6= 0 for y 6= 0, and ∃C > 0, |b(y)| ≥ C for |y| ≥ 1/4,

b(y) ∼ βy for y → 0,

∀K ⊂ T compact s.t. d(K, 1/2) > 0, ∃cK > 0, c−1
K ≤ b′(y) ≤ cK ∀y ∈ cK .



β-PLANE MODEL FOR ROTATING FLUIDS IN A THIN LAYER 9

In other words, we do not assume that b ∈ W 2,∞(T): b may have a
discontinuity at y = 1/2. But we require that σ vanishes in a neighbourhood
of that singularity, so that all terms of the type σb, σ/b, σ/b′ are well-defined
and T2-periodic.

Remark 1.2. (i) The assumptions (1.10)-(1.12) on the Coriolis factor b
is satisfied in two particular cases:

• b(y) = βy, with ωh = T × R: this approximation is particularly
relevant for the motion of equatorial currents, and is used in par-
ticular in [10], [8].

• b(y) = sin(πy/2), with ωh = T2: this is the case of a real ocean,
whose study takes place on a planetary scale. Of course, in this
case, the effect of the curvature of the Earth should be taken into
account, which we have chosen not to do here (see the discussion
in the previous paragraph).

(ii) Notice that in the above Theorem, it is assumed that the surface stress
vanishes near y = 0. Although this assumption stems from mathemat-
ical considerations, it is in fact quite reasonable in an oceanographic
context. Indeed, it is a well-known phenomena that there are no steady
surface winds near the equator: as trade winds coming from the North
and South meet, they are heated and produce upward winds. The area
of calm in the vicinity of the equator is called the Doldrums.

(iii) The compatibility condition (1.9) means that there is no zonal average
wind. This condition is of course not realistic from a physical point
of view, but it is the price to pay for working with a domain with no
boundary in x. If the horizontal domain ωh is replaced by [0, 1]×T or
[0, 1] × R, this condition disappears; the (mathematical) counterpart
lies in the construction of the horizontal boundary layer terms, the
so-called Munk layers discussed in the previous paragraph.

(iv) In general, the size of the boundary layer term uBL is much larger
than that of the interior term. This means that the greatest part of the
energy is concentrated in a boundary layer located in the vicinity of the
surface. In the original variables, it can be checked that the boundary
layer carries an energy of order ρ0U

2H3, while the energy contained
in the interior of the domain is of order ρ0U

2H2D.
This is in fact a consequence on the requirements on uBL, uint,

and not an artefact of our model. Indeed, assume that the functions
uBL, uint are such that

‖uint
3|z=1‖L2(ωh) ∼ ‖uint

h|z=1‖L2(ωh) ∼ ‖uint
h ‖L2(ω),

uint
3|z=1 = −uBL

3|z=1,

and assume that uBL, uint are divergence free and that uBL is located
in a boundary layer of size δE (where E stands for ‘Ekman’) near the
surface. Denote by ABL

h , ABL
3 the size of uBL

h , uBL
3 in L∞, and by Aint

the size of uint in L2(ω).
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The assumptions above entail that ABL
3 = Aint; on the other hand,

since uBL is divergence free, we have

ABL
h =

1

δE
ABL

3 =
1

δE
Aint.

Consequently, since

uBL
h ∼ ABL

h exp

(
−1 − z

δE

)
,

we infer that

‖uBL
h ‖L2(ω) =

√
δEA

BL
h =

1√
δE
Aint.

Thus the energy in the boundary layer is always larger than the energy
in the interior of the fluid with this type of model. The assumption
that ‖uint

3|z=1‖ ∼ ‖uint
h|z=1‖ stems from observations of the isothermal

surfaces in the ocean, as we will explain in the next paragraph. From
a physical point of view, having ‖uBL‖ much larger than ‖uint‖ is in
fact quite reasonable: indeed, it is observed that subsurface currents
generally travel at a much slower speed when compared to surface flows.

Let us also emphasize that in the case of the f -plane model (i.e. when the
rotation vector b is constant), the result of Theorem 1.1 is false in general.
Indeed, the interior part of the solution must satisfy the geostrophic system,
namely

u⊥h + ∇hp = 0,

divh uh + ∂zu3 = 0,

∂zp = 0,

and thus u is a two-dimensional divergence free vector field. In other words,
u3 ≡ 0 and thus the Ekman pumping velocities must be zero at first order.
Consequently, the interior part of the solution cannot be wind-driven at first
order.

We now address the question of the stability of the stationary solution
constructed above:

Theorem 1.3 (Waves associated with equation (1.7)). Assume that ωh =
T ×R, and that b(xh) = βy for all xh = (x, y) ∈ ωh.

For any ǫ > 0, let vǫ be a solution to the propagation equation

∂tu+
1

ǫ
b(xh) ∧ u+

(
∇hp
1
ǫ2∂zp

)
− νh∆hu− ǫ∂zzu = 0,

(xh, z) ∈ ωh × (0, 1),

with νh = O(ǫ2), supplemented with homogeneous boundary conditions

∂zuh|z=0 = ∂zuh|z=1 = 0, u3|z=0 = u3|z=1 = 0.

Then vǫ can be decomposed as the sum of
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• a stationary part v̄ǫ(t, y) =
∫
T

∫ 1
0 v

ǫ(t, x, y, z) dx dz, which satisfies

∂tv̄
ǫ − νh∂

2
y v̄

ǫ = 0,

• Rossby waves vǫ
R =

∫
vǫdx3 − v̄ǫ corresponding to the 2D vorticity

propagation

∂tζ
ǫ
R +

β

ǫ
∂x∆−1

h ζǫ
R − νh∆hζ

ǫ
R = 0,

where ζǫ
R = roth v

ǫ
R,

• and gravity waves vǫ
G = vǫ −

∫
vǫdx3.

Rossby and Gravity waves have a dispersive behaviour as ǫ vanishes:

• Rossby waves disperse on a small time scale

∀t > 0, ∀K ⊂⊂ ω, ‖vǫ
R(t)‖L2(K) → 0 as ǫ→ 0 ,

since we have assumed that y ∈ R;
• Gravity waves generate fast oscillations with respect to y, which slows

down the propagation

∀K ⊂⊂ ω, ‖vǫ
G(t)‖L2(K) → 0 as (ǫ, t) → (0,∞) .

Remark 1.4.

• Notice that the energy associated with gravity (or Poincaré) waves
propagates on a time scale much larger than the one of Rossby waves.
This is due to the thin layer effect, which causes the apparition of
small scales in the variable y.

• The field v̄ǫ is said to be “stationary” because the horizontal viscosity
νh is small: hence

v̄ǫ(t) ≈ v̄ǫ
|t=0 in L2

on time scales of order one.

Corollary 1.5. Assume that ωh = T × R, and that b(xh) = βy for all
xh = (x, y) ∈ ωh. Assume that νh = O(ǫ2).

For any ǫ > 0, let uǫ be a solution of (1.1) supplemented with (1.2)-(1.3),
and assume that

sup
ǫ>0

‖uǫ
h|t=0 − ustat

h ‖L2(ω) + ǫ‖uǫ
3|t=0 − ustat

3 ‖L2(ω) < +∞.

Then for any finite time t > 0,

uǫ(t) − ustat ∼ v̄ǫ(t) + vǫ
G(t) in L2

loc(ω)

where vǫ
G is the (slow propagating and fast oscillating) gravity part of the

velocity field vǫ defined in Theorem 1.3, and v̄ǫ is the stationary part of vǫ.
(Note in particular that the vertical component of the velocity uǫ is not

expected to be bounded - as is usually claimed for shallow water approxima-
tion.)

The above Corollary is an immediate consequence of Theorems 1.1 and
1.3, together with the energy inequality.
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1.3. Towards a mathematical derivation of the thermocline.
In this paragraph, we try to justify the shape of the surfaces of equal

temperature in the ocean, in view of the results of Theorem 1.1.
The isothermal surface which is located just below the Ekman bound-

ary layer is of special interest to oceanographers, due to its importance on
the global oceanic circulation (see [23, 24, 18]). Figure 1 below shows the
longitudinal variations of the temperature in the Pacific ocean in a layer of
1000 m depth below the surface. In particular, there are zones in which
the temperature surfaces are tilted up (that is, there is a flux of cold water
towards the surface); this phenomenon cannot always be accounted for by
the heating differences at the surface, as shows the upward flux of cold water
in the equatorial zone. The physical justification of these particular shapes
is the following: inside the ocean, the temperature T solves an equation of
the kind

u∗ · ∇T − κ∆T = 0,

where u∗ is the velocity of oceanic currents (in the dimensional variables)
and κ is the heat conductivity coefficient. If the temperature diffusion can
be neglected, this equation takes the form

u∗ · ∇T = 0,

which means that u is a tangent vector to the isothermal surfaces. Con-
sequently, the temperature surfaces are tilted up (or down) if and only if
u∗3|surface 6= 0, or more precisely, if |u3|z=1|/|uh|z=1| = O(1) in rescaled vari-

ables. This justifies the assumption

‖uint
3|z=1‖ ∼ ‖uint

h|z=1‖

in the previous paragraph (see Remark 1.2 (iv)).
In that regard, the special solution constructed in Theorem 1.1 is of par-

ticular interest. Indeed, in rescaled variables, we have (see section 3)

uint
3|z=1 = −1

b
roth σ − b′

b2
σ1.

Hence u3|surface 6= 0, and our model predicts that the temperature surfaces
are indeed modified by the Ekman pumping velocity.

We now give a rigorous result about the asymptotic shape of the tem-
perature in our model. We denote with a star the original variables. We
write

T (x∗h, z
∗) = T0 + T1θ

(
x∗h
H
,
z∗

D

)
,

with the same notations as in paragraph 1.1. The temperature T0 is a
reference temperature (for instance, T0 = 10◦C), whereas T1 is the order
of magnitude of the variations of the temperature. Performing the same
change of variables as in paragraph 1.1, we obtain

u · ∇θ − λη2∆hθ − λ∂zzθ = 0,
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Figure 1. Longitudinal section of the surfaces of equal tem-
perature in the Pacific ocean (from the WOCE Pacific Ocean
Atlas).

where the diffusion coefficient λ is given by

λ =
κL

D2U
.

We recall that η is the aspect ratio of the domain; as in Theorems 1.1 and
1.3, we take η = ǫ. With the notation of Theorem 1.1, our result is the
following:
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Proposition 1.6. Let λ > 0. Assume that the wind stress σ ∈ Hs(ωh) is
such that

(1.13)
|σ(x, y)| ≤ Cyk ∀(x, y) ∈ ωh,

|∇σ(x, y)| ≤ C|y|k−1 ∀(x, y) ∈ ωh,

for some k, s ≥ 2 chosen sufficiently large, and assume that

(1.14) ‖∇hu
int
h ‖L∞(ω) ≤

λ

4
.

Let θ be the solution of the equation

(1.15) ustat · ∇θ − η2λ∆hθ − λ∂zzθ = 0,

supplemented with the boundary conditions

(1.16) θ|z=1 = θ1, ∂zθ|z=0 = 0,

for some function θ1 ∈ H2(ωh).
Define the function θapp by

θapp(xh, z) = θ̄(xh, z) + ǫθBL

(
xh,

1 − z

ǫ

)
,

where θ̄, θBL are solutions of

(1.17)
−λ∂zzθ̄ + uint · ∇θ̄ = 0 in ω,

θ̄|z=1 = θ1, ∂z θ̄|z=0 = 0,

and
−λ∂ζζθ

BL(xh, ζ) + ǫuBL
h (xh, 1 − ǫζ) · ∇hθ1 = 0,

θBL(xh, ζ) −→
ζ→∞

0.

Then as ǫ→ 0,

‖θ − θapp‖L2(ω) + ‖∂z(θ − θapp)‖L2(ω) → 0.

Remark 1.7. (i) The assumption (1.14) on the size of ∇hu
int
h is purely

technical, and does not have any physical interpretation. It rises from
the fact that equation (1.17) on θ̄ is degenerate in the horizontal vari-
able; we refer to section 6 for more details. We emphasize in particu-
lar that if (1.14) is not satisfied, equation (1.17) is still well-posed in
L2(ωh,H

1(0, 1)); however, in this case, we are no longer able to prove
the convergence.

(ii) The boundary conditions (1.16) mean that the atmosphere acts like a
thermostat for the ocean, and that there is no heat flux at the bottom
of the ocean. Both assumptions seem reasonable from a physical point
of view, although other boundary conditions might also make sense:
for instance, it could also be assumed that the heat flux at the surface
is a given function of the latitude.
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(iii) Let us mention a last direction towards which the physical accuracy of
our model could be improved. When considering the spatial variations
of the temperature, it would be more reasonable to consider a model
which couples the velocity of ocean currents and the temperature, in
the spirit of [3]. However, the relevant scalings within such models
are not completely clear. Furthermore, the analysis in Chapter 6 of
[23] shows that for such problems, the curvature of the Earth should
be taken into account. Hence we leave this issue aside in the present
paper.

The construction of the article is as follows: in the next two sections,
we construct the stationary solution of equation (1.1), starting with the
boundary layer part, and then building the interior part by solving the
geostrophic equations with a Dirichlet boundary condition on the vertical
component. Then, we prove Theorem 1.3 in sections 4 and 5, by treating
separately the two-dimensional and three-dimensional parts of the initial
data. Eventually, section 6 is dedicated to the proof of Proposition 1.6.

2. The boundary layer part of the stationary solution

In this section, we construct functions uBL, pBL which are approximate
stationary solutions of equation (1.1) (in the sense of Theorem 1.1), and
which satisfy the horizontal part of the boundary condition (1.3). These
functions are located in a boundary layer in the vicinity of the surface z = 1.
Our methodology is the following: we first assume that νh = 0, and we use
the classical construction of Ekman layers in this case. We then derive
several estimates on the functions thus obtained. Eventually, we estimate
the error terms in equation (1.1) which are due to the fact that νh is non
zero.

2.1. Construction in the case νh = 0.
When the horizontal viscosity vanishes, the construction of the boundary

layer is exactly the same as in the f -plane model, i.e. when the function
b does not depend on xh. Indeed, in this case the variable xh is merely a
parameter of the equation, and building the boundary layer term amounts
to solving an equation on the rate of exponential decay. For more results re-
garding classical boundary layers, we refer to [4, 20, 21, 25]. Nonetheless, let
us stress that even though the construction itself is the same, the estimates
become much more involved than in the case of the f -plane model. Indeed,
the vanishing points of b create singularities, and prevent the boundary layer
terms to be in L2 in general. Hence, assumptions on the stress σ have to be
introduced in order to handle these singularities.

The construction of the boundary layer term is as follows: we wish to
construct an approximate solution (uBL, pBL) of (1.1), such that (1.3) is
satisfied. Furthermore, we assume that this approximate solution is small
outside a boundary layer located in the vicinity of the surface z = 1. Hence,
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we look for uBL, pBL in the form

uBL
h (t, xh, z) = UBL

h

(
xh,

1 − z

ǫ

)
,

pBL(t, xh, z) = PBL

(
xh,

1 − z

ǫ

)
.

We assume that UBL, PBL together with all their derivatives vanish as ζ →
∞, where ζ stands for the rescaled variable (1 − z)/ǫ. Inserting the above
Ansatz into equation (1.1) yields

(2.1)





b(xh)(UBL
h )⊥ − ∂2

ζU
BL
h + ǫ∇hP

BL = 0,

−∂2
ζU

BL
3 − 1

ǫ2∂ζP
BL = 0,

divh U
BL
h − 1

ǫ∂ζU3 = 0.

The last two equations entail that

PBL = −ǫ2∂ζU
BL
3 = −ǫ3 divh U

BL
h .

We henceforth neglect the pressure term in the equation on UBL
h . Then, we

set, as usual (see for instance [20]),

U±
h := Uh ± iU⊥

h .

Above and in the rest of the article, for all u = (u1, u2) ∈ R2, u⊥ :=
(−u2, u1).

An easy calculation leads to

−∂2
ζU

±
h ∓ ibU±

h = 0,

∂ζU
±
h|ζ=0 = −1

ǫ
(σ ± iσ⊥).

Consequently, U±
h is an exponentially decaying function of the form

U±
h (xh, ζ) =

1

ǫλ±(xh)
(σ ± iσ⊥)(xh) exp(−λ±(xh)ζ),

where the decay rate λ± is defined by

(λ±)2 = ∓ib and ℜ(λ±) > 0,

i.e.

(2.2) λ±(xh) = λ±(y) =
1 ∓ i sign(b)√

2
|b(y)|1/2.

Notice in particular that the decay rates λ± vanish at y = 0 and depend
only on y.

Going back to the definition of U±
h , we infer that

(2.3) UBL
h (xh, ζ) =

U+
h + U−

h

2
=

1

2ǫ

∑

±

(σ ± iσ⊥)(xh)

λ±(xh)
exp(−λ±(xh)ζ).
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Hence, in order that UBL is divergence free, we set

UBL
3 (xh, ζ) = −ǫ

∫ ∞

ζ
divh U

BL
h (xh, ζ

′)dζ ′

= −1

2

∑

±

(divh σ ∓ i roth σ)(xh)(λ±(xh))−2e−λ±(xh)ζ

+
1

2

∑

±

(σ ± iσ⊥)(xh) · ∇hλ
±(xh)

(λ±(xh))3
(2 + ζλ±(xh))e−λ±(xh)ζ .(2.4)

We have used the convention

roth uh = − divh u
⊥
h

for two dimensional-vector fields.
The remaining flux term is then given by

uBL
3|z=1 = UBL

3|ζ=0(xh) = −1

2

∑

±

(divh σ ∓ i roth σ)(xh)(λ±(xh))−2(2.5)

+
∑

±

(σ ± iσ⊥)(xh) · ∇hλ
±(xh)

(λ±(xh))3
.(2.6)

We now wish to point out a particular difficulty steming from the above
construction. If the Coriolis factor b has vanishing points, which occurs
in particular in the case of the β-plane approximation (b(xh) = βy), then
the functions UBL

h , UBL
3 may not be square integrable if the function σ is

arbitrary. Hence, the function σ should vanish at a sufficiently high order
near y = 0 so that the singularity disappears. We will check that (1.8) entails
that the functions UBL

h , UBL
3 defined by (2.3), (2.4) are square integrable.

For further purposes, we also require that the function ∇hU
BL belongs to

L2(ωh × [0,∞)ζ). Unfortunately, assumption (1.8) is not sufficient to ensure
such a result. Thus we introduce an approximate boundary layer term, in
which the low values of b have been truncated.

2.2. Estimates on the boundary layer terms.
We begin with a short justification of the need for a truncation. Using

the definition of λ± together with assumption (1.10), we infer that if y is
close to zero, then

‖∇xh
UBL

3 (xh)‖L2([0,∞)ζ) ≤ C

( |D2σ(xh)|
y5/4

+
|∇σ(xh)|
y9/4

+
|σ(xh)|
y13/4

)

≤ Cy−5/4.

Hence ∇xh
UBL

3 does not belong to L2(ωh × [0,∞)ζ) in general. We thus
define, for any δ > 0, the function

(2.7) bδ(y) = b(y)ψ

( |y|
δ

)
, y 6= 0
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where ψ ∈ C∞((0,∞)) is such that

ψ(y) ≥ 1

2
for y ∈ (0,∞),

ψ(y) = 1 if y ≥ 2,

ψ(y) = y−α if y ∈ (0, 1),

for some exponent α ∈ (0, 1) to be chosen later on. Notice that with this
choice of ψ, the function bδ behaves like δαy1−α for y > 0 near zero. Conse-
quently, bδ vanishes with a weaker rate than b, and thus σ/bδ vanishes more
strongly than σ/b.

We now define approximated decay rates λ±δ by replacing b by bδ in the
expression (2.2); eventually, we define approximated boundary layer terms
by the formulas (2.3)-(2.4), in which the decay rates λ± have been replaced
by λ±δ .

We then have the following result:

Lemma 2.1. Assume that hypotheses (1.8), (1.10) are satisfied. Then there
exists a constant C, depending only on σ and b, such that for all α > 0, δ > 0,

‖UBL
δ,h ‖L2(ωh×[0,∞)ζ) ≤

C

ǫ

‖UBL
δ,3 ‖L2(ωh×[0,∞)ζ) ≤ C.

Additionally, if α > 3/5, there exists a constant Cα, depending only on
α, σ and b, such that for all δ > 0,

‖∇hU
BL
δ,h ‖L2(ωh×[0,∞)ζ) ≤

Cα

ǫ

‖∇hU
BL
δ,3 ‖L2(ωh×[0,∞)ζ) ≤

Cα

δ3/4
.

Moreover, for all δ > 0,

‖(b− bδ)U
BL
δ,h ‖L2(ωh×[0,∞)ζ) ≤ C

δ11/4

ǫ
,

‖∇hP
BL
δ ‖L2(ωh×[0,∞)ζ) ≤ Cα

ǫ2

δ1/4
.

Remark 2.2. The above estimates are given for the rescaled boundary layer
profiles UBL, PBL, which are defined on ωh × [0,∞)ζ . Remember that the
boundary layer part of the stationary solution is defined on ωh × [0, 1] by

uBL(xh, z) = UBL
h

(
xh,

1 − z

ǫ

)
.

Hence

‖uBL
h ‖L2(ωh×(0,1)) ≤ ǫ1/2‖UBL

h ‖L2(ωh×[0,∞)).

The same estimates hold for pBL, uBL
3 .
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Proof. • L2 estimates: According to (1.10), and to the definition of bδ, we
have ∣∣λ±(xh)

∣∣ 6= 0 if y 6= 0,
∣∣λ±(xh)

∣∣ ∼
√
β|y| as y → 0,

and thus there exists a constant C such that
∣∣ℜ(λ±(xh))

∣∣−1
,
∣∣λ±(xh)

∣∣−1 ≤ C|y|−1/2 ∀x, ∀y ∈ [−1, 1].

Similarly, for all δ > 0, we have, for |y| ≤ δ
∣∣ℜ(λ±δ (xh))

∣∣−1
,
∣∣λ±δ (xh)

∣∣−1 ≤ C|y|−(1−α)/2δ−α/2.

If |y| ≥ δ, then λ±δ (xh) satisfies the same estimates as λ±(xh). A careful
computation leads to

(2.8)

∫ ∞

0

∣∣UBL
δ,h (xh, ζ)

∣∣2 dζ =
1

2ǫ2
|σ(xh)|2

∑

±

1

|λ±δ (y)|2ℜ(λ±δ (y))
.

Hence we obtain

(∫ ∞

0

∣∣UBL
δ,h (xh, ζ)

∣∣2 dζ
)1/2

≤ C

ǫ





|y| 5+3α
4 δ−

3α
4 if |y| ≤ δ,

|y|5/4 if δ ≤ |y| ≤ 1,
|σ|2 else.

Eventually, we infer that

‖UBL
δ,h ‖L2(ωh×[0,∞)ζ) ≤

C0

ǫ
,

where the constant C0 depends only on b and σ. Notice that the truncation
does not play any role at this stage: the same arguments show that UBL

h ∈
L2(ωh × [0,∞)ζ).

Similarly, we have

(2.9)

∫ ∞

0

∣∣UBL
δ,3 (xh, ζ)

∣∣2 dζ ≤ C
∑

±

|∇σ(xh)|2
|λ±δ (y)|5 +

|σ(xh)|2|∇λ±δ (y)|2
|λ±δ (y)|7 .

Using the definition of the decay rates λ±δ together with the definition of the
function ψ, we obtain

∣∣∇λ±δ
∣∣ =

|b′δ|
2|bδ |1/2

≤ C





|y|−α+1
2 δα/2 if |y| ≤ δ,

|y|−1/2 if δ ≤ |y| ≤ 1,
1 else.

Thus

‖UBL
δ,3 ‖L2(ωh×[0,∞)ζ) ≤ C0.

• H1
h estimates:

We begin with the bound on ∇hU
BL
δ,h ; the calculations are very similar to

the ones which led to the L2 bound on Uδ,3, and are therefore left to the
reader. In fact, the situation is even a little less singular than in the case of
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Uδ,3 (we “gain” one integration with respect to the variable ζ, and thus one

factor (λ±δ )−1). The bounds on λ±δ and σ entail that

‖∇hU
BL
δ,h ‖L2(ωh×[0,∞)ζ) ≤

C0

ǫ
.

We now tackle the bound on ∇hU
BL
δ,3 : first, differentiating equation (2.4)

with respect to xh, we obtain

‖∇hU
BL
δ,3 (xh)‖L2([0,∞)ζ) ≤ C

( |D2σ(xh)|
|λδ |5/2(y)

+ |∇σ(xh)| |∂yλ
±
δ (y)

|λδ(y)|7/2

)

+C

(
|σ(xh)| |∂yyλδ(y)|

|λδ(y)|7/2
+ |σ(xh)| |∂yλδ(y)|2

|λδ(y)|9/2

)
.

In the expression above, we have denoted by |λδ| the common size of |λ+
δ |

and |λ−δ |. Notice that due to the sign change in b at y = 0, there is in general

a Dirac mass at y = 0 in the term ∂yyλδ; more precisely, the part of ∇hU
BL
δ,3

which is not absolutely continuous with respect to the Lebesgue measure is
of the type

δy=0|σ|
|b′δ|

|bδ|1/2|λδ|7/2
= δy=0|σ||bδ |−9/4.

At this stage, the need for a truncation is clear: if bδ is replaced by b, then
|σ||b|−9/4 ∼ |y|−1/4 near y = 0, and thus the singular part of ∇hU

BL
3 is not

well-defined in the sense of distributions. Conversely, if α > 1/9, then

|σ||bδ |−9/4 ∼ |y| 9α−1
4 δ−

9α
4 as y → 0,

and thus the singular part of ∇hU
BL
δ,3 is zero.

Gathering all the terms, we deduce that

‖∇hU
BL
δ,3 (xh)‖L2

ζ
≤ C





|y|−
5(1−α)

4 δ−
5α
4 if |y| ≤ δ,

|y|−5/4 if δ ≤ |y| ≤ 1,
|σ(xh)| + |∇σ(xh)| + |D2σ(xh)| else.

Thus ∇hU
BL
δ,3 ∈ L2(ωh× [0,∞)) if and only if α > 3/5, and in this case there

exists a constant Cα, depending on σ, b and α, such that for all δ > 0

‖∇hU
BL
δ,3 (xh)‖L2(ωh×[0,∞)) ≤

Cα

δ3/4
.

• Error estimates: First, by definition of bδ, we have

∥∥(b− bδ)U
BL
δ,h

∥∥2

L2 =

∫

ωh∩{|y|≤2δ}

∫ ∞

0
|b(y) − bδ(y)|2

∣∣UBL
δ,h (x, y, ζ)

∣∣2 dζ dy dx.
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Notice that for all y ∈ R \ {0},

|b(y) − bδ(y)| = |b(y)|
∣∣∣1 − ψ

(y
δ

)∣∣∣

= 1|y|≤δ|b(y)|
(
δα

|y|α − 1

)
+ 1δ≤|y|≤2δ |b(y)|

∣∣∣1 − ψ
(y
δ

)∣∣∣

≤ C
(
1|y|≤δ|y|1−α(δα − |y|α) + 1δ≤|y|≤2δ|y|

)

≤ C1|y|≤2δ|y|1−αδα.

Using (2.8), we infer
∥∥(b− bδ)U

BL
δ,h

∥∥2

L2(ωh×[0,∞)ζ)

≤ C

ǫ2

∫

x∈T

∫

|y|≤2δ
|y|2(1−α)δ2α|y|4|y|−3/2

∣∣∣y
δ

∣∣∣
3α/2

dy

≤ C

ǫ2

∫

|y|≤2δ
|y|(9−α)/2δα/2 dy

≤ Cδ11/2

ǫ2
.

There remains to evaluate PBL
δ . By definition,

PBL
δ = −ǫ3 divh U

BL
h,δ .

Using the same kinds of calculations as the ones which led to the bound on
∇hU

BL
δ,3 , we deduce that

‖∇hP
BL
δ ‖L2(ωh×[0,∞)ζ) ≤ C

ǫ2

δ1/4
.

�

2.3. Error estimates in the case νh 6= 0 and conditions on the pa-
rameter δ.

If νh 6= 0, we keep the construction of the previous paragraph, and we
merely treat the viscous terms as error terms. The function uBL

δ,h is an

approximate solution of the horizontal part of equation (1.1), with the error
term

1

ǫ
(b− bδ)(u

BL
δ,h )⊥ − νh∆hu

BL
δ,h + ∇hp

BL
δ .

According to the estimates of the previous paragraph (see Lemma 2.1), we
have ∥∥∥∥

1

ǫ
(b− bδ)(u

BL
δ,h )⊥

∥∥∥∥
L2(ω)

≤ C
δ11/4

ǫ3/2

and

‖νh∆hu
BL
δ,h ‖L2([0,1],H−1(ωh)) ≤ C

νh√
ǫ
,

‖∇hp
BL‖L2(ω) ≤ C

ǫ5/2

δ1/4
.
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Recall that because of the boundary layer scaling, there is a factor ǫ1/2

between the L2 norms of uBL
δ and UBL

δ .
Hence, in order that the conditions of Theorem 1.1 are satisfied, the

numbers ǫ, νh, δ should verify

(2.10) ǫ10 ≪ δ ≪ ǫ6/11, νh ≪ ǫ.

On the other hand, uBL
δ,3 is an approximate solution of the vertical com-

ponent of equation (1.1), with an error term equal to

−νh∆hu
BL
3 .

The estimates of the previous paragraph entail that

∥∥−νh∆hu
BL
3

∥∥
L2([0,1],H−1(ωh))

≤ C
νh
√
ǫ

δ3/4
.

In order that the condition of Theorem 1.1 is satisfied, the parameter δ must
be chosen so that

(2.11) δ ≫ ν
2/3
h ǫ2.

Notice that if νh = O(1) and ǫ = o(1), we always have

ν
2/3
h ǫ2 ≪ ǫ6/11.

Hence it is always possible to choose a parameter δ which matches the above
conditions.

Further conditions on the parameter δ will be given in the next section.
When the conditions (2.10), (2.11) are satisfied, the couple (uBL

δ , pBL
δ ) is an

approximate solution of equation (1.1) in the sense of Theorem 1.1. Fur-
thermore, uBL

δ satisfies the horizontal part of the boundary condition (1.3)

at z = 1; uBL
3 , on the other hand, does not satisfy the non penetration con-

dition at z = 1. Hence, we construct in the next section an interior term,
which is also an approximate solution of (1.1), and which lifts the trace of
uBL

3 at z = 1.
Notice that uBL also has a non-vanishing trace at z = 0; however, this

trace is exponentially small on the set where b is bounded away from zero,
and can thus be lifted thanks to an exponentially small corrector. This will
be taken care of after the construction of the interior term uint, in the last
paragraph of the next section.

3. The interior part of the stationary solution

In this section, we construct a stationary solution uint of equation (1.1),
which is such that uint + uBL satisfies the boundary conditions (1.2), (1.3).
Going back to equation (1.1), it can be readily checked that the function
uint should satisfy the system

(3.1)

b(y)(uint
h )⊥ + ∇hp = 0,

∂zp = 0,

div uint = 0,
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together with the boundary conditions

(3.2)
∂zu

int
h|z=1 = 0, uint

3|z=1 = −uBL
3|z=1,

∂zu
int
h|z=0 = 0, uint

3|z=0 = 0.

We recall that since the function uBL
3 depends on the small parameter δ, the

function uint also depends on δ in general, and thus will be denoted by uint
δ

in the sequel. Hence we also investigate the asymptotic behaviour of uint
δ as

δ → 0.
It turns out that the solution of the sytem (3.1)-(3.2) is unique, up to a

function of the type (v(y), 0, 0). Hence we give in this paragraph a straight-
forward way of building the solution, and then we derive L2 estimates on
the function uint

δ . The main result of this section is the following:

Lemma 1. Assume that assumptions (1.8)-(1.10) are fulfilled. Then there
exists a solution uint

δ ∈ L2(ω) of the system (3.1). Moreover, there exists a
positive constant C, depending only on σ and b, such that

‖uint
δ ‖L2(ω) ≤ C ∀δ > 0.

3.1. Construction of uint
δ .

To begin with, we differentiate the first equation of (3.1) with respect to
z, and we obtain

b(y)∂z(u
int
δ,h)⊥ = 0.

Since uint
δ is divergence-free, we infer that ∂zzu

int
δ,3 = 0. Hence the third

component uint
δ,3 is uniquely determined; in order to lighten the notation, set

wδ(xh) = −uBL
δ,3|z=1(xh).

We have

uint
δ,3 (xh, z) = zwδ(xh).

Then, taking the two-dimensional curl of the first equation in (3.1), we
derive

roth(b(uint
δ,h)⊥) = divh(buint

δ,h) = 0.

Since the Coriolis factor only depends on the latitude y, we are led to

b′(y)uint
δ,2 = −b(y) divh u

int
δ,h = +b(y)∂zu

int
δ,3 = b(y)wδ(xh).

Consequently, the second component is also uniquely determined. In the
case when b(y) = βy, one has in particular

uint
δ,2 (xh) = ywδ(xh).

This equation is known as the Sverdrup relation (see [23, 24]).
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There remains to compute the first component of uint; the divergence-free
condition entails that

∂xu
int
δ,1 = −∂yu

int
δ,2 − ∂zu

int
δ,3 = −∂y

(
b

b′
wδ

)
− wδ

= −
[
∂y

(
b

b′

)
+ 1

]
wδ −

b

b′
∂ywδ

= −
(

2 − bb′′

b′2

)
wδ −

b

b′
∂ywδ.

Notice that this equation has a solution in ωh if and only if the right-hand
side has zero average in x, for all y. This is satisfied in particular if

(3.3)

∫

T

wδ(x, y) dx = 0 ∀y.

We assume that this assumption is satisfied for the time being, and we will
prove that it is in fact equivalent to (1.9). Integrating the equality giving
∂xu

int
δ,1 with respect to x, we deduce that uint

δ,1 is defined up to a function of

y only, provided (3.3) is satisfied.
Now, let us compute wδ in terms of σ and b. Using equation (2.5), we

infer that

wδ(xh) =
1

2

∑

±

(divh σ ∓ i roth σ)
1

(λ±δ )2
−
∑

±

(σ ± iσ⊥) · ∇hλ
±
δ

(λ±δ )3
.

By definition of λ± (see (2.2)), we have

∇λ±δ =

(
0,

1 ∓ i sign(b)

2
√

2

sign(b)b′δ
|bδ |1/2

)
.

Hence

(3.4) wδ(xh) =
1

bδ
roth σ +

1

b2δ
σ⊥ · ∇bδ =

∂xσ2

bδ
− ∂y

(
σ1

bδ

)
.

(Recall that bδ only depends on the latitude y.)
We now prove the equivalence of (1.9) and (3.3). It is clear that (1.9) ⇒

(3.3). Conversely, if (3.3) is satisfied, then (3.4) leads to the existence of a
constant αδ ∈ R such that

∫

T

σ1(x, y)

bδ(y)
dx = αδ ∀y.

Since σ1 vanishes quadratically near y = 0, we deduce that the left-hand side
of the above equality vanishes at least linearly near y = 0. Consequently,
αδ = 0 for all δ, and thus (1.9) is satisfied.
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3.2. Bounds on uint.
We begin with a bound on the function wδ given by (3.4). We recall that

b(y) ∼ βy near y = 0,

and

σ1(x, y) =
1

2
∂2

yσ1(x, 0)y
2 +O(y3) as y → 0,

∂xσ2(x, y) = O(|y|2) as y → 0.

Thus

∂y

(
σ1

bδ

)
=
bδ∂yσ1 − σ1∂ybδ

b2δ
= O(|y|αδ−α) for y → 0, |y| ≤ δ.

The exponent α was introduced in the previous section, see (2.7).
Consequently, there exists a constant C (independent of δ) such that

‖wδ‖L2(ωh) ≤ C.

This entails immediately that uint
δ,3 and uint

δ,2 are bounded in L2(ω), uniformly
in δ.

As for uint
δ,1 , we have, by definition

∂xu
int
δ,1 = −∂y

(
b∂xσ2

b′bδ

)
− ∂xσ2

bδ
+ ∂y

(
b

b′
∂y
σ1

bδ

)
+ ∂y

σ1

bδ

= −∂y

(
∂xσ2

ψ( ·
δ )b′

)
− ∂xσ2

bδ
+ ∂y

∂yσ1

b′ψ( ·
δ )

− ∂y

(
σ1

bδ

(
bb′δ
b′bδ

− 1

))
.

Integrating with respect to the variable x, we deduce that

uint
δ,1 = −∂y

(
σ2

ψb′

)
− σ2

bδ
+ ∂y

∂yS1

b′ψ
− ∂y

(
S1

bδ

(
bb′δ
b′bδ

− 1

))
,

where S1(x, y) =
∫ x
0 σ1(x

′, y) dx′. Using the definition of bδ, we obtain

bb′δ
b′bδ

− 1 =
1

δ

bψ′( ·
δ )

b′ψ( ·
δ )
.

It can be checked that the function in the right-hand side is C∞ on (0,∞)
and bounded, together with all its derivatives. Moreover, its support is
included in [0, 2δ]. As a consequence, the term

∂y

(
S1

bδ

(
bb′δ
b′bδ

− 1

))

is o(1) in H1(ω) as δ → 0. The other terms can be evaluated in a similar
fashion. Using the assumptions on σ and b together with the definition of
ψ, we deduce that there exists a constant C[σ] such that

(3.5) ‖uint
δ ‖L2(ω) ≤ C[σ].
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• We now derive estimates in L2([0, 1],H1(ωh)), which are needed to
bound the error term νh∆hu

int
δ . First, using the definition of bδ together

with assumptions (1.8), (1.10), it can be proved that

∂ywδ = O(yα−1δ−α) as y → 0, |y| ≤ δ.

Hence ∂ywδ ∈ L2(ω) (recall that α > 3/5 > 1/2) and

‖∂ywδ‖L2(ω) = O(δ−1/2).

The term ∂xwδ, on the other hand, is bounded in L2(ω), uniformly in δ.
Consequently, there exists a constant C, depending only on σ, b and α, such
that

‖∇hu
int
δ,3‖L2(ω) ≤

C

δ1/2
.

Similarly, we prove that ∂yuδ,2 = O(|y|αδ−α) for y in a neighbourhood of
zero, and thus there exists a constant C such that

‖∇hu
int
δ,2‖L2(ω) ≤ C.

We now tackle the term uδ,1; using either the expression of ∂xuδ,1 in terms
of wδ or the final definition in terms of σ2 and S1, it can be checked that

∂yuδ,1 = O(yα−1δ−α) as y → 0, |y| ≤ δ.

The largest terms are those coming from S1 (or from b∂ywδ/b
′); for instance,

the above calculations show that

b

b′
∂ywδ = O(|y|αδ−α);

since one power of y is lost with each differentiation with respect to y, we
obtain the desired bound on uδ,1. Eventually, we are led to

‖∇hu
int
δ,1‖L2(ω) ≤

C

δ1/2
.

• Notice that
uint

δ → uint in L2(ω)

as δ → 0, where uint is the function defined by the same expressions as uint
δ ,

but replacing every occurrence of wδ by

w =
roth σ

b
+
σ⊥ · ∇b
b2

.

By definition of bδ, w and wδ coincide on the set {|y| ≥ 2δ}. Moreover, w is
bounded in L2 and w, y∂yw have finite limits as y → 0, while

∫

T

∫

|y|≤δ
|wδ|2 + |y|2|∂ywδ|2 = o(1).

Consequently, wδ (resp. b∂ywδ) converges towards w (resp b∂yw) in L2(ω)
as δ → 0. The convergence of uint

δ follows. However, in general, uint does
not belong to H1(ω), except if the surface stress σ vanishes at sufficiently
high order.



β-PLANE MODEL FOR ROTATING FLUIDS IN A THIN LAYER 27

3.3. Proof of Theorem 1.1.
Let us first evaluate the error terms in equation (1.7). To begin with,

notice that ∂zzu
int
δ = 0, so that there is no error term associated with the

vertical Laplacian. Consequently, the only error terms in equation (1.1) are
those coming from the term νh∆hu

int
δ .

According to the H1 estimates of the previous paragraph, we have
∥∥νh∆hu

int
δ,h

∥∥
L2([0,1],H−1(ωh))

≤ C
νh√
δ
,

∥∥νh∆hu
int
δ,3

∥∥
L2([0,1],H−1(ωh))

≤ C
νh√
δ
.

In order that the conditions of Theorem 1.1 are satisfied, we have to choose
the parameter δ so that δ ≫ νh. We recall that δ, νh should also satisfy
(2.10), (2.11). Thus the new conditions on δ, νh are

(3.6) max(νh, ǫ
10, ν

2/3
h ǫ2) ≪ δ ≪ ǫ6/11, νh ≪ ǫ.

• The proof of Theorem 1.1 is now almost complete. There only remains
to take care of the boundary conditions: indeed, as we have explained at
the end of the previous section, the trace of ∂zu

BL
δ,h and uBL

δ,3 is non zero at

z = 0. Hence, we define a corrector vint
δ , which is small in H1, and which

lifts the remaining boundary conditions. The result is the following:

Lemma 3.1. Assume that νh = o(ǫ) and that there exists κ ∈ (1, 2) such
that δ & ǫκ.

Then there exists a divergence free function vint
δ , such that vint

δ = o(1) in
L2(ω), which satisfies the conditions

∂zv
int
δ,h|z=1 = 0, vint

δ,3|z=1 = 0,

∂zv
int
δ,h|z=0 = −∂zu

BL
h|z=0, vint

δ,3|z=0 = −uBL
3|z=0.

Furthermore, we can choose the parameter α of the truncation function ψ
so that

1

ǫ
be3 ∧ vint

δ ,−ǫ∂zzv
int
h = o(1) in L2(ω),

−ǫ∂zzv
int
3 = o(ǫ−1) in L2(ω),

√
νh∆hv

int
h = o(1) in L2([0, 1]),H−1(ωh)),

√
νh∆hv

int
3 = o(ǫ−1) in L2([0, 1]),H−1(ωh)).

Before proving the lemma, let us complete the proof of Theorem 1.1: we
choose a parameter δ which matches the conditions of Lemma 3.1 together
with (3.6). Notice that the choice δ = ǫ works. We set

ustat = uBL
δ + uint

δ + vint
δ ;

by construction, ustat satisfies the boundary conditions (1.2), (1.3), and it
is an approximate solution of equation (1.1). The bounds on uint

δ and uBL
δ

were proved in the previous paragraphs. Hence Theorem 1.1 is proved.
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Proof of Lemma 3.1. Throughout the proof, we drop all indices δ in order
not to burden the notation.

The construction of the corrector vint follows the one given in Lemma 1
in Appendix B of [9]: setting

φh := −∂zu
BL
h|z=0, φ3 := −uBL

3|z=0,

we define

vint
h =

(1 − z)2

2
φh + ∇hχ,

where the potential χ ∈ H2(ωh) is defined by

∆hχ =

∫ 1

0
divh v

int
h − 1

6
divh φh

= −[vint
3 ]z=1

z=0 −
1

6
divh φh = φ3 −

1

6
divh φh.

We will check later on that the function φ3 has zero mean value on ωh, so
that χ is well-defined. The third component of vint is then determined by

vint
3 (xh, z) = −

∫ 1

z
∂zv

int
3 (xh, z

′)dz′ =

∫ 1

z
divh v

int
h (xh, z

′) dz′.

By construction, vint is divergence free and satisfies the correct boundary
conditions. There remains to evaluate vint in L2(ω) and L2([0, 1],H1(ωh)).

The boundary conditions φh, φ3 are given by

φh = − 1

2ǫ

∑

±

(σ ± iσ⊥) exp

(
−λ

±

ǫ

)
,

φ3 = −1

2

∑

±

(divh σ ∓ i roth σ)
1

(λ±)2
exp

(
−λ

±

ǫ

)

+
1

2

∑

±

(σ ± iσ⊥) · ∇hλ
±

(λ±)3

(
2 +

λ±

ǫ

)
exp

(
−λ

±

ǫ

)
.

Recall that in the expressions above, the functions λ± are in fact λ±δ . Notice
that

φ3 = divh ϕ,

where

ϕ = −1

2

∑

±

(σ ± iσ⊥)
1

(λ±)2
exp

(
−λ

±

ǫ

)
;

this proves that φ3 has zero mean value on ωh, and will be used several times
in the proof.

We now derive three type of estimates: first, estimates of divh φh and φ3 in
L2(ωh) will yield H2(ωh)-bounds on χ, and thus bounds in L2([0, 1],H1(ωh))
for the function vint

h , and in L2(ω) for the function vint
3 . Then, estimates

of φh and ϕ will provide L2(ω)-bounds on vint
h . Eventually, L2 estimates of

∇hφ3,D
2
hφh will allow us to derive bounds on vint

3 in L2([0, 1],H1(ωh)).
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• Estimates of divh φh and φ3 in L2(ωh):
The main difficulty lies in the fact that λ±δ does not have the same be-

haviour for |y| ≤ δ and |y| ≥ δ. We merely explain how the term divh φh is
evaluated; the treatment of the term φ3 is left to the reader.

If |y| ≥ 1, we have

(λ±)2 = ∓ib(y), with |b(y)| ≥ C (see (1.10)).

Thus ∣∣∣∣exp

(
−λ

±

ǫ

)∣∣∣∣ ≤ exp

(
−C
ǫ

)
,

and
∫

|y|≥1

∫

x∈T

|divh φh(x, y)|2 dx dy ≤ C

ǫ4
‖σ‖2

H1(ωh) exp

(
−2C

ǫ

)
.

On the set where δ ≤ |y| ≤ 1, the assumptions on the truncation function
ψ entail that there exists a constant c such that

c−1|y|1/2 ≤ ℜ(λ±δ (y)), |λ±δ (y)| ≤ c|y|1/2,

|∂yλ
±
δ (y)| ≤ c|y|−1/2.

As a consequence,
∫

δ≤|y|≤1

∫

x∈T

|divh φh(x, y)|2 dx dy

≤ C

ǫ2

∫ 1

δ
|y|2 exp

(
−2c

√
y

ǫ

)
dy +

C

ǫ4

∫ 1

δ
|y|4 1

|y| exp

(
−2c

√
y

ǫ

)
dy

≤ Cǫ4.

There remains to treat the set where |y| ≤ δ; because of the truncation
function ψ, this part is the most complicated. The definition of the function
ψ and the fact that b(y) ∼ βy for y close to zero entail that

c−1|y| 1−α
2 δ

α
2 ≤ |λ±δ (y)|,ℜ(λ±δ (y)) ≤ c|y| 1−α

2 δ
α
2 ,

|∂yλ
±
δ (y)| ≤ c|y|− 1+α

2 δ
α
2 .

Thus, for instance

∫

|y|≤δ

∫

x∈T

∣∣∣∣divh σ exp

(
−λ

±

ǫ

)∣∣∣∣
2

≤ C

∫ δ

0
|y|2 exp

(
−c |y|

1−α
2 δ

α
2

ǫ

)
dy

≤ C

(
ǫ

2
1−α

δ
α

1−α

)3

.
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The other terms in divh φh are evaluated in the same way. Gathering all the
terms, we infer that

‖divh φh‖L2(ωh) ≤ C


ǫ−2 exp(−C/ǫ) + ǫ2 + ǫ−1

(
ǫ

1
1−α

δ
α

2(1−α)

)3

 .

The corresponding term in
√
νh∆hv

int should be o(1) in L2([0, 1],H−1(ωh));
hence the parameters ǫ, νh, δ must satisfy

√
νh

(
ǫ−2 exp(−C/ǫ) + ǫ2

)
= o(1),

√
νhǫ

−1

(
ǫ

1
1−α

δ
α

2(1−α)

)3

= o(1).

It is obvious that for νh, ǫ ≪ 1, the first condition is always satisfied. The
second condition reads

δ ≫ ν
1−α
3α

h ǫ
4+2α
3α .

Since νh ≪ ǫ (see (3.6)), we always have

ν
1−α
3α

h ǫ
4+2α
3α ≪ ǫ

5+α
3α ,

and 2 < (5 + α)/3α since α < 1. Consequently, provided that νh ≪ ǫ, we
have

ν
1−α
3α

h ǫ
4+2α
3α ≪ ǫ2.

Hence, if δ & ǫ2,
√
νh divh φh = o(1) in L2(ωh). It can be checked that φ3

satisfies the same property. The same estimates also prove that

ǫ∂zzv
int
3 = o(ǫ−1) in L2(ω),

vint
3 = o(1) in L2(ω).

Similarly, we show that φh, ϕ = o(ǫ) in L2(ωh) as long as δ & ǫ2, and thus
vint
h = o(ǫ) in L2. Notice that this is not entirely sufficient to prove the

assertion of the Lemma if the Coriolis factor b is unbounded. However,
using the fact that φh and ϕ decay like exp(−|b|1/2/ǫ) for |y| ≥ 1, it can be
easily proved that

∆h(bχ) = b∆hχ+ 2b′∂2χ+ b′′χ = o(ǫ) in H−1(ωh).

Hence bχ = o(ǫ) inH1(ωh), and b∇χ = ∇(bχ)−b′χ = o(ǫ) in L2. Eventually,
we infer that bvint

h = o(ǫ) in L2(ω).

• Estimates of D2φh and ∇hφ3 in L2(ωh):
Calculations similar to the ones led above show that

‖D2φh‖L2(ωh) ≤ C‖σ‖H2(ωh)

(
exp(−C/ǫ)

ǫ3
+ 1 +

(
ǫ√
δ

) α
1−α

)
.

And if δ & ǫ2, νh ≪ ǫ, then the right hand side is o(ǫ−1ν
−1/2
h ).
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The term ∇hφ3 is the most singular of all, and eventually prevents us
from taking δ & ǫ2; indeed, it can be proved that

‖∇hφ3‖L2(ωh) ≤ C‖σ‖H2(ωh)


exp(−C/ǫ)

ǫ2
+ 1 + δ−1/2 +

ǫ
2(2α−1)

1−α

δ
α

1−α


 .

In order that the right hand side is o((ǫ
√
νh)−1), we must have

δ ≫ ǫ
5α−1
2α .

Since δ & ǫκ for some κ ∈ (1, 2), we choose α ∈ (0, 1) such that 5α−1
2α > κ.

We then infer that ∇hφ3 = o((ǫ
√
νh)−1) in L2(ωh), and thus

√
νh∆hv

int
3 =

o(ǫ−1) in L2([0, 1],H−1(ωh)).
�

4. Two-dimensional propagation

We recall that throughout this section and the following, we assume that
b(xh) = βy, and that ωh = T×R. The object of this section is to prove the
“two-dimensional part” of Theorem 1.3. In particular, we prove that a two-
dimensional perturbation of the solution ustat creates waves, propagating at
a speed of order ǫ−1, with frequencies given by

β
k

|k|2 + |ξy|2
,

where (k, ξy) is the wavelength.
A consequence of our result is that if ustat is initially perturbed by a

two-dimensional function u0 such that u0 = O(1) in L2 and such that the
x-average of u0 is zero (i.e. u0 has no Fourier mode corresponding to k = 0),
then the solution of (1.1) with initial data ustat + u0 becomes close to ustat

for finite times, with an error term which is o(1) in L2([T0, T ] × ω) for all
T > T0 > 0.

Definition 4.1. Denote by P2D : L2(ωh)2 → L2(ωh)2 the projection on two-
dimensional divergence free vector fields. The Rossby propagation operator,
denoted by LR, is defined by

LRV = P2D(bV ⊥).

Lemma 4.2. Let v̄0
h ∈ L2(ωh) be a two-dimensional divergence free vector

field, and let u ∈ C(R+, L
2(ω)) be the solution of equation (1.1) with initial

data

u|t=0 =

(
v̄0
h
0

)
,

supplemented with the boundary conditions

∂zuh|z=1 = 0, u3|z=1 = 0,

∂zuh|z=0 = 0, u3|z=0 = 0.
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Then v = (vh, 0), where uh is a two-dimensional divergence free vector field
given by

vh(t) =
1

2π

∑

k∈Z

∫

R

exp

(
iβt

ǫ

k

|kh|2
− νh|kh|2t+ ixh · kh

)
v̂0
h(k, ξy) dξy

where kh = (k, ξy) and

v̂0
h(k, ξy) =

1

2π

∫

ωh

exp(−i(xk + yξy))v̄
0
h(x, y) dx dy, ∀(k, ξy) ∈ Z × R.

Proof. Let us first prove that the property ∂zu = 0 is propagated by equation
(1.7). Using the same arguments as Chemin, Desjardins, Gallagher and
Grenier in [4] for classical rotating fluids, one can introduce some kind of
Fourier variable with respect to z, denoted by k3. Since equation (1.7) is
linear, it can be easily checked that there is no resonance between Fourier
modes in k3; in other words, since the only Fourier mode at time t = 0 is
k3 = 0, there is no Fourier mode corresponding to k3 6= 0 for t > 0, which
means exactly that ∂zv = 0.

We infer that for all t ≥ 0, v(t) is a two-dimensional vector field which
satisfies

(4.1)
∂tvh +

1

ǫ
LRvh − νh∆hvh = 0, divh vh = 0,

∂zP = 0, v3 = 0.

This leads to

vh(t) = exp

(
t

(
−LR

ǫ
+ νh∆h

))
vh|t=0.

Let us now investigate the precise expression of the operator LR. First, since
vh is divergence free, we have, for all y ∈ R,

∂y

∫

T

v2(·, y) = −
∫

T

∂xv1(·, y) = 0.

Consequently, since vh ∈ L2(T × R),
∫

T

v2(t, ·, y) = 0 ∀t ≥ 0, y ∈ R.

Taking the x-average of the first component of (4.1), we obtain

∂t

∫

T

v1 − νh∂
2
y

∫

T

v1 = 0.

This corresponds to the “stationary part” of vǫ in Theorem 1.3.
Hence Lemma 4.2 is proved for the Fourier modes such that k = 0, where

k is the Fourier variable associated with x. Thus we now focus on the modes
such that k 6= 0, or, in other words, on initial data such that

∫
T
v̄0
h = 0. For

such vector fields, we have, since vh ∈ L2(T × R) is divergence free,

vh = ∇⊥
h ∆−1

h ζ,
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where

ζ(t) := roth vh = ∂xv2 − ∂yv1.

On the other hand,

roth(bv⊥h )) = divh(bvh) = vh · ∇b = βv2.

Gathering the last two inequalities, we infer that

∂tζ +
β

ǫ
∂x∆−1

h ζ − νh∆hζ = 0.

In Fourier space, this leads to

∂tζ̂(k, ξy) − i
βk

ǫ(|k|2 + |ξy|2)
ζ̂(k, ξy) + νh(|k|2 + |ξy|2)ζ = 0,

and thus, setting kh = (k, ξy),

v̂h(t, k, ξy) = − ik⊥h
|kh|2

exp

(
i
βk

ǫ|kh|2
t− νh|kh|2t

)
ζ̂|t=0(k, ξy)

= exp

(
i
βk

ǫ|kh|2
t− νh|kh|2t

)
k⊥h · v̂0

h(k, ξy)

|kh|2
k⊥h .

Since v is a two-dimensional divergence free vector field, for all kh ∈ Z×R,
we have kh · v̂0

h(kh) = 0, and thus

v̂0
h(kh) =

k⊥h · v̂h(kh)

|kh|2
k⊥h .

Eventually, we retrieve

v̂h(t, k, ξy) = exp

(
i

βk

|k|2 + |ξy|2
t− νh|kh|2t

)
v0
h(k, ξy) ∀t, k, ξy.

Using the Fourier inversion formula, the proof of the Lemma is complete. �

5. Three-dimensional propagation

5.1. Remarks about the qualitative behaviour of three-dimensional
waves.

We are now interested in waves having vertical oscillations, that is in the
solutions to

(5.1)

∂tu+
1

ǫ
βyu⊥ +

(
∇hp
1
ǫ2
∂zp

)
− νh∆hu− ǫ∂zzu = 0,

∇ · u = 0,

∂zuh|z=0 = ∂zuh|z=1 = 0, u3|z=0 = u3|z=1 = 0,

having zero average with respect to z.
Once again, we introduce a kind of Fourier variable with respect to z (see

[4]), denoted by k3, which here is different from zero. The Fourier variable
associated with the first coordinate x is still denoted by k.
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If νh is sufficiently small, we then expect the main dynamics to be given
by the Poincaré propagation operator

(5.2) LPu = βyu⊥ +

(
ǫ∇hp
1
ǫ∂zp

)

where p is such that both the incompressibility constraint and the boundary
condition are satisfied.

• A very rough analysis shows that fast oscillations with respect to
y should appear for times greater than ǫ. Indeed, as long as the solution
(u, p) to

ǫ∂tu+ LPu = 0

depends slowly on y, the pressure which satisfies

−(∂xx + ∂yyp+
1

ǫ2
∂zz)p = −1

ǫ
βy∂xu2 +

1

ǫ
∂y(βyu1)

can be approximated in the following way

p̂ =
ǫ

k2
3

(−ikβyû2 + ∂y(βyû1)) = O(ǫ).

In particular, at leading order, the singular penalization behaves as in the
compressible case

(LPu)h ∼ βyu⊥h
Plugging this Ansatz in the evolution equation leads to

uh ∼
∑

±

u0,±
h exp

(
±iβyt

ǫ

)
,

which is relevant only for very small times, but indicates that a fast depen-
dence with respect to y can be expected.

• On the other hand, we do not expect (u, p) to behave as a function
of y/ǫ only. Such a property, together with usual integrability conditions,
would indeed imply that the solution (u, p) concentrates on small times in
the vicinity of y = 0. As previously, a rough analysis based on the change
of variable Y = y/ǫ and on some asymptotic expansion of LPu

L̂Pu ∼ (0, ik3(k
2
3 − ∂Y Y )−1(βY ∂Y û1))

shows that “concentrated functions” are not stable under the penalization
LP .

The mechanism we want to study involves therefore both scales y
and y/ǫ, and results from a balance between rotation and vertical oscilla-
tions, which is the main novelty here. Note indeed that previous works on
rotating fluids consider either the case when the effect of rotation is domi-
nating (macroscopic layer of fluid) [4] or the case when vertical oscillations
hold on very small scales and can be averaged (shallow water approximation)
[10].

Semiclassical analysis seems therefore to be the relevant tool to study this
problem, insofar as it allows to separate both scales in a systematic way.
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• Note finally that, if the horizontal viscosity is such that νh ≫ ǫ2, then
because of the small scale in y, we expect all the energy to be dissipated
on a small time interval, leading to some boundary layer effect (see the
discussion in paragraph 5.5).

In order to exhibit a non trivial propagation, we will assume in all the
sequel that

νh = o(ǫ2).

We therefore start with the study of the 3D propagation without dissipation.
We will then check a posteriori that the viscous dissipation introduces only
small error terms for any finite time.

5.2. Semiclassical analysis of the three-dimensional propagation.
In order to study the propagation of energy by 3D waves, a natural idea is

then to get a polarization of Poincaré waves, i.e. to obtain a diagonalization
of the system

ǫ∂tu+ LPu = 0

in the limit ǫ → 0. We first use the incompressibility constraint to rewrite
the propagator in the form of a 2×2 matrix of pseudo-differential operators.
We indeed have

−∆ǫp := −ǫ2(∆h +
1

ǫ2
∂zz)p = −ǫβy∂xu2 + ǫ∂y(βyu1)

from which we deduce that

ǫ∂tuh +

(
−ǫ2∂x∂y∆

−1
ǫ (βy·) −βy · −ǫ2∂2

xx∆
−1
ǫ (βy·)

βy · −ǫ2∂2
yy∆

−1
ǫ (βy·) ǫ2∂x∂y∆

−1
ǫ (βy·)

)
uh = 0.

Our first goal is then to perform a suitable change of variables leading to

ǫ∂tv +

(
H+

ǫ (∂x, ∂z, y, ǫ∂y) 0
0 H−

ǫ (∂x, ∂z, y, ǫ∂y)

)
v = O(ǫ∞).

In all the sequel, for the sake of simplicity, we will consider a single Fourier
mode in (x, z), and denote by (k, k3) ∈ Z × Z∗ the associated wavenumber.
Any solution is indeed a superposition of such waves. We will denote abu-
sively H±

ǫ (k, k3, y, ǫ∂y) the Fourier transform of H±
ǫ (∂x, ∂z, y, ǫ∂y).

We are then brought back to study the propagation of waves by the
scalar pseudo-differential operator H±

ǫ (k, k3, y, ǫ∂y), which can be done for
instance using classical results on the Wigner transform. For such scalar
skew-symmetric pseudo-differential operators, we indeed know [12] that en-
ergy is propagated according to the hamiltonian transport equations

∂tf + {h±, f} = 0,

where h±(k, k3, y, ξ) is the semiclassical principal symbol ofH±
ǫ (k, k3, y, ǫ∂y).

Note that the time scale over which one has a macroscopic propagation
of the energy is inversely proportional to the size of the oscillations. Such a
property can be seen very simply on equations with constant coefficients

ǫ∂tv + h(ǫ∂y)v = 0
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remarking that the group velocity

d

dk2

1

ǫ
h(iǫk2)

has a finite limit as ǫk2 → ξ.

What we are finally able to establish is the following Proposition

Proposition 5.1. Let u0 ∈ L2(ω) be a compactly supported divergence free
vector field such that

∫
u0dz = 0 , and let u ∈ C(R+, L

2(ω)) be the solution
of equation (5.1) with initial data u0.
Then the L2 norm of uh(t) on any fixed compact converges to 0 as t→ ∞.

In other words, 3D waves are dispersive, but only on times of order 1.
Note that, in the case of a macroscopic layer of fluid, the velocity group
of Poincaré waves is much larger (typically of order 1/ǫ); see for instance
[4, 11].

Furthermore the vertical component u3 of the velocity will not remain
bounded, as is usually claimed in formal derivations leading to shallow water
models.

5.3. Reduction to a scalar situation.
The first step of the proof follows a method initiated in [5].
• We first compute a kind of characteristic polynomial for the matrix

of pseudo-differential operators
(

ǫ(−∆ǫ)
2)−1ikǫ∂y(βy·) −βy + ǫ(−∆ǫ)

−1k2βy
βy + ǫ∂y(−∆ǫ)

−1ǫ∂y(βy·) ǫ∂y(−∆ǫ)
−1(iǫkβy·)

)

A simple way to obtain a scalar equation is to proceed by linear combination
and substitution.

Because the solution is expected to depend both on y and y/ǫ (whatever
the initial data), ǫ∂y is a O(1) operator like multiplication by any function
of y. We then apply usual rules of semiclassical analysis :

ǫ∂y = O(1), y = O(1),

and any commutator has smaller order

[ǫ∂y, y] = O(ǫ).

Keeping only leading order terms, we get

iτ û1 − βyû2 = O(ǫ),

βyû1 + ǫ∂y(k
2
3 − (ǫ∂y)

2)−1ǫ∂y(βyû1) + iτ û2 = O(ǫ)

so that

β2y2û2 + ǫ∂y(k
2
3 − (ǫ∂y)

2)−1ǫ∂y(β
2y2û2) − τ2û2 = O(ǫ)

or equivalently

(5.3) k2
3(βy)

2û2 − τ2(k2
3 − (ǫ∂y)

2)û2 = O(ǫ)
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since commutators provide higher order terms with respect to ǫ. Note that
one can also compute an exact pseudodifferential relation (which is actually
a polynomial of degree 6 with respect to τ) by keeping all the terms

(5.4) P (ǫ, y, ǫ∂y , τ)û2 = 0.

Note that, contrarily to [5], as we will only consider times of order 1, we
do not need to compute subsymbols, so that we could also proceed directly
using symbolic calculation and diagonalize the matrix

(
0 −βy

βy − ξ2βy
k2
3+ξ2 0

)
.

Anyway, we expect the roots to the following polynomial to play a special
role in the propagation :

(5.5) P (0, y, ξ, τ) = k2
3(βy)

2 − (k2
3 + ξ2)τ2

• We can actually prove that there exist pseudo-differential operators H±
ǫ

with principal symbols

h± = ±
√

(k3βy)2

k2
3 + ξ2

such that ǫ∂tµ
± = iH±

ǫ µ
± implies that

v± :=




(iH±
ǫ )−1(βy·)

Id

− k
k3

(iH±
ǫ )−1(βy·) + i

ǫk3
(ǫ∂y·)


µ± satisfies (5.1) up to O(ǫ∞),

where µ+, µ− are scalar functions.
This result is actually a variant of the main Lemma in [5]. (Indeed the

exact dispersion relation depends here explicitly on ǫ.)

Lemma 5.2. [5] Let Pǫ = P (ǫ, y, ξ, τ) be a smooth function such that
∂τP0|P=0 6= 0, and let h = h(y, ξ) be any continuous root of

P (0, y, ξ, h(y, ξ)) = 0.

Then there exists a pseudo-differential operator Hǫ = Hǫ(y,−iǫ∂y) with
principal symbol h(y, ξ) such that:

(5.6) Hǫψ = τψ =⇒ Pǫ,τψ = O(ǫ∞)

where Pǫ,τ is a pseudo-differential operator of full symbol P (ǫ, y, ξ, τ).

The proof of this lemma relies on pseudo-differential functional calculus,
and uses various quantifications to make the computations as simple as
possible. For the sake of completeness, we recall here the main arguments,
but refer to [5] for details.
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At first order, we have

Pǫ,τψ ≡
∫
ei

ξ(y−y′)
ǫ P (ǫ, y, ξ,Hǫ(y

′,−iǫ∂y))ψ(y′)
dξdy′

ǫ

=

∫
ei

ξ(y−y′)
ǫ ei

ξ′(y′−y′′)
ǫ P (ǫ, y, ξ, h(y′′, ξ′))ψ(y′′)

dξdξ′dy′dy′′

ǫ2

=

∫
ei

ξ(y−y′)
ǫ P (ǫ, y, ξ, h(y′, ξ))ψ(y′)

dξdy′

ǫ

So the principal symbol of Pǫ,τ is P (0, y, ξ, h(y, ξ)) which, by assumption, is
0.

For the ǫ∞ result, it is enough to repeat the same argument with hǫ ∼
h+

∑
ǫkhk. We obtain

P (ǫ, y, ξ, hǫ) +
∑

k≥1

ǫkQk(h, . . . , ∂
l
y∂

m
ξ hǫ) = 0,

that can be solved recursively under the condition ∂τP0|P=0 6= 0.

• We further obtain a decomposition of any initial data on the eigenstates
of the scalar propagators H±

ǫ .

For all u0
h, there exist µ0,±

ǫ such that:

u0,h =
∑

j

(
−
(
βy − ǫ∂y∆̂

−1
ǫ ǫ∂y(βy·)

)−1
(iHj

ǫ − ǫ∂y∆̂
−1
ǫ (iǫkβy·)

Id

)
µ0,j

ǫ

+O(ǫ∞)

=:
∑

±

Qj
ǫµ

0,j
ǫ +O(ǫ∞).

where ∆̂ǫ := ǫ2∂2
yy − ǫ2k2 − k2

3 . The vertical component is then entirely
determined by the divergence-free condition.

To prove this result, one first remarks that the leading order symbol of
the matrix (Q+

ǫ Q−
ǫ ), namely

(
− i

√
k2
3+ξ2

|k3|sgn(y)

i
√

k2
3+ξ2

|k3|sgn(y)

1 1

)

is invertible.
The inversion of the matrix (Q+

ǫ Q−
ǫ ) can then be done symbolically at

any order.

5.4. Dispersion of energy.
Standard arguments of semiclassical analysis allow then to control the

propagation of energy for the scalar equations

ǫ∂tµ
±
ǫ + iH±

ǫ µ
±
ǫ = 0
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• Because LP is skew-symmetric (in some weighted L2-space), we have a
uniform control on the L2 norm of uh

‖uh‖2
L2(ω) + ǫ2‖u3‖2

L2(ω) = ‖u0
h‖2

L2(ω) + ǫ2‖u0
3‖2

L2(ω)

These uniform a priori estimates allow to establish the convergence of the
remainders in the equations for the Wigner transforms

f±ǫ (t, y, ξ) :=
1

π

∫
e2iξy′

µ±ǫ (y − ǫy′)µ̄±ǫ (y + ǫy′)dy′

We therefore have
∂tf

±
ǫ + {h±, f±ǫ } = O(ǫ).

For detailed computations leading to that estimate, we refer for instance
to [17] or [12] :

Lemma 5.3. [12] Let µ0,± be any fixed function of L2 (non-oscillatory).
Assume that

• iH±
ǫ is self-adjoint on L2;

• there exists σ ∈ R such that H±
ǫ is of order σ uniformly as ǫ→ 0;

• the Weyl symbol of H±
ǫ satisfies

h±ǫ = h± + ǫh±1 + o(ǫ) uniformly in C∞
loc.

Then the Wigner transform f±ǫ (t, y, ξ) of µ±ǫ (t) converges locally uni-
formly in t to the continuously t-dependent positive mesure f±, solution
to

∂tf
± + {h±, f±} = 0 .

In other words, the energy associated to the ± mode is transported along
the characteristics of the hamiltonian h± :

(5.7)

dY ±

dt
=
∂h±

∂ξ
(Y ±,Ξ±),

dΞ±

dt
= −∂h

±

∂y
(Y ±,Ξ±) .

• The previous 1D hamiltonian systems are of course integrable. The
bicharacteristics are indeed included in the level lines of h±, which are hy-
perbola as shown in Figure 2.

A rapid inspection of the large time asymptotics show that trajectories
cannot be trapped in some compact. This would indeed imply that there
exists either some stationary point or some turning point. But Ξ(t) is a
monotonic function

dΞ

dt
= ∓βk3sgn(Y (t))√

k2
3 + Ξ2(t)

which converges necessarily to infinity.
For any fixed compact, we can even get an explicit estimate of the exit

time since
|Ξ(t) − Ξ0| ≥ βt,
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Figure 2. Bicharacterictics associated to Poincaré waves
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from which one deduces a similar estimate for Y (t) :

|Y (t)| ≥ h0

βk3

√
k3
3 + (βt− |Ξ0|)2

Note that, since the initial data u0 we consider is supposed to depend only on
the slow variable y, all bicharacteristics we are interested in satisfy Ξ0 = 0.

By definition of the wavefront set, we finally obtain Proposition 5.1.

Remark 5.4. The qualitative behaviour of Rossby and Poincaré waves ob-
tained here, i.e. in the case of a thin layer of fluid with rigid lid, is very
different from the one exhibited in shallow water approximations (see [5]).
Note that, in both cases, Rossby waves are easily identified because they are
directly linked to the inhomogeneity of the Coriolis force, in particular they
always propagate eastwards.

Here the energy associated to Poincaré waves propagates much slower than
the energy associated to Rossby waves. The point is that fast oscillations with
respect to latitude y, which are generated spontaneously for vertical modes
but not for purely 2D Rossby waves, slow down the propagation. Maybe it
would be physically relevant to consider initial data that depend already on
the fast variable y/ǫ.

The other point which should be discussed is the influence of the free-
surface. But, at the present time, we have no convenient mathematical tool
to study the propagation of waves in such a complex geometry.

5.5. Influence of the viscosity. In the case when νh = o(ǫ2), an easy
computation based on the energy estimate shows that the viscous dissipation
does not modify the propagation for finite times.

More generally, we could extend the previous study considering the whole
viscous Poincaré propagation operator

(5.8) LPu = βyu⊥ +

(
ǫ∇hp
1
ǫ∂zp

)
− νh∆hu− ǫ∂zzu

where p is such that both the incompressibility constraint and the boundary
condition are satisfied.

The diagonalization process is of course unchanged since the dissipation
operator is scalar. The only difference is therefore that one has now to
control the propagation of energy for the scalar equations

ǫ∂tµ
±
ǫ + iH±

ǫ µ
±
ǫ − νh∆hµ

±
ǫ − ǫ∂zzµ

±
ǫ = 0.

A standard computation (reported for instance in Proposition 1.8 of [12])
shows that the Wigner transform then satisfies the following damped trans-
port equation

∂tf
±
ǫ + 4

νh

ǫ2
|ξ|2f±ǫ + {h±, f±ǫ } = o(1) .

(Note that the symmetric part of the propagator occurs at leading order in
ǫ, which can be seen by easy symmetry considerations.)
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We then deduce that

• if νh ≪ ǫ2, the energy is propagated according to the bicharacteris-
tics associated to h±, as stated in Proposition 5.1 ;

• if νh ≫ ǫ2, the energy contained initially in the Poincaré modes is
dissipated on a very short time, leading to some initial layer phe-
nomenon ;

• if νh ∼ ǫ2, the dynamics is a combination of both phenomena, as
shown by Duhamel’s formula

f±(t, Y ±(t, y, ξ),Ξ±((t, y, ξ)) exp
(
4
νh

ǫ2
|Ξ(t, y, ξ)|2t

)
= f0(t, y, ξ) .

Note in particular that the energy associated to Poincaré modes has a
super exponential decay, since |Ξ(t, y, ξ)| → ∞ along any trajectory.

6. Derivation of the thermocline

This section is devoted to the proof of Proposition 1.6, which relies on
classical elliptic arguments. The main difficulty lies in the fact that the
equation on θ is degenerate in the horizontal variables. We first prove the
existence of θ̄, along with some H1 estimates, and then we prove the con-
vergence.

Throughout the proof, we assume that the wind stress σ vanishes at
sufficiently high order near y = 0, so that there is no need for a truncation
(see section 2) and the function ustat does not have any singularity.

• A priori estimates on the function θ̄:

Let θ̄ ∈ L2(ωh,H
1([0, 1])) be any solution of (1.17). Multiplying (1.17)

by θ̄ and integrating on ω, we obtain

λ

∫
|∂z θ̄|2 = −1

2

∫

∂ω
uint · nωθ̄

2 + λ

∫

ωh

∂z θ̄|z=1θ̄|z=1 − λ

∫

ωh

∂z θ̄|z=0θ̄|z=0

= −1

2

∫

ωh

uint
3|z=1θ

2
1 + λ

∫

ωh

θ1∂z θ̄|z=1.(6.1)

According to section 3, we have

uint
3|z=1 =

∂xσ2

b
− ∂y

σ1

b
.

We assume that σ is such that the right-hand side belongs to L∞(ωh). We
now evaluate ∂z θ̄|z=1 : we have

λ∂z θ̄|z=1 = λ

∫ 1

0
∂zzθ̄ =

∫ 1

0
uint · ∇θ̄

= divh(uint
h

∫ 1

0
θ̄) + uint

3|z=1θ1.(6.2)
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Recall that uint
h , defined in section 3, is independent of z, while uint

3 is linear
with respect to z. Consequently, the function θ̄ depends on xh and z, and

λ

∫

ωh

θ1∂z θ̄|z=1 =

∫

ωh

θ1

(
divh(uint

h

∫ 1

0
θ̄) + uint

3|z=1θ1

)

= −
∫

ω
θ̄uint

h · ∇hθ1 +

∫

ωh

uint
3|z=1θ

2
1.(6.3)

Using the identity

θ̄(·, z) = θ1 −
∫ 1

z
∂z θ̄(·, z′) dz′,

we deduce that

(6.4) ‖θ̄‖L2(ω) ≤ ‖θ1‖L2(ωh) + ‖∂z θ̄‖L2(ω).

Gathering (6.1), (6.3) and (6.4), we infer that

λ

∫

ω
|∂z θ̄|2 =

1

2

∫

ωh

uint
3|z=1θ

2
1 −

∫

ω
θ̄uint

h · ∇hθ1

≤ 1

2
‖uint

3|z=1‖L∞(ωh)‖θ1‖2
L2

+‖uint
h ‖L∞‖∇hθ1‖L2(‖θ1‖L2 + ‖∂z θ̄‖L2).

Using the Cauchy-Schwarz inequality, we obtain eventually

λ

∫

ω
|∂z θ̄|2 ≤ ‖uint

3|z=1‖L∞‖θ1‖2
L2 + ‖uint

h ‖L∞‖∇hθ1‖L2‖θ1‖L2(6.5)

+
1

λ
‖uint

h ‖2
L∞‖∇hθ1‖2

L2 .

Inequalities (6.5) and (6.4) entail that any solution θ̄ of (1.17) is bounded
in L2(ωh,H

1([0, 1])) by a constant depending only on λ, θ1 and uint.
We now derive estimates on the horizontal derivatives in a similar fashion:

we have

(6.6) − λ∂zz∇hθ̄ + (uint · ∇)∇hθ̄ = −(∇hu
int
h ) · ∇hθ̄ −∇hu

int
3 ∂z θ̄.

Multiplying the above equation by ∇hθ̄ and integrating by parts, we have,
using the boundary conditions,

−
∫

ω
∂zz∇hθ̄ · ∇hθ̄ =

∫

ω
|∂z∇hθ̄|2 −

∫

ωh

∂z∇hθ̄|z=1 · ∇hθ1

=

∫

ω
|∂z∇hθ̄|2 +

∫

ωh

∂z θ̄|z=1∆hθ1.

Using equation (6.2), we express ∂z θ̄|z=1 in terms of θ̄ and θ1. Integrating
by parts once again leads to
∣∣∣∣
∫

ωh

∂z θ̄|z=1∆hθ1

∣∣∣∣ ≤
1

λ

(
‖uint

h ‖L∞‖θ̄‖L2‖θ1‖H3 + ‖uint
3 ‖L∞‖θ1‖H2‖θ1‖L2

)
.
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On the other hand, since uint
3|z=0 = 0, we have

2

∫

ω

[
(uint · ∇)∇hθ̄

]
· ∇hθ̄ =

∫

ωh

uint
3|z=1|∇hθ̄|z=1|2 −

∫

ωh

uint
3|z=0|∇hθ̄|z=0|2

=

∫

ωh

uint
3|z=1|∇hθ1|2.

The two terms in the right-hand side of (6.6) can easily be evaluated in L2

using the estimate on ∂z θ̄; there remains

λ

∫

ω
|∂z∇hθ̄|2 ≤ C + ‖∇hu

int
h ‖L∞‖∇hθ̄‖2

L2 ,

where the constant C depends on λ, ‖uint‖L∞ and ‖θ1‖H3 .
Assume that

‖∇hu
int
h ‖L∞(ω) ≤

λ

2
;

this assumption is discussed in Remark 1.7 following Proposition 1.6. Then
∫

ω
|∂z∇hθ̄|2 +

∫

ω
|∇hθ̄|2 ≤ C,

where the constant C depends on λ, θ1 and uint. These estimates easily lead
to the existence of a solution θ̄ of equation (1.17); the uniqueness of θ̄ follows
from the estimates above with θ1 = 0. The same method also shows that
under condition (1.14) on ∇hu

int
h , D2

hθ̄ is bounded in L2(ωh,H
1([0, 1]). Plug-

ging this estimate back into (6.6), we deduce that ∇hθ̄ ∈ L2(ωh,H
2[0, 1]),

and thus that ∇hθ̄ is bounded in L2(ωh,W
1,∞([0, 1])).

Concerning the function θBL, the existence and uniqueness are obvious;
we have merely

θBL(xh, ζ) =
1

2λ
∇hθ1 ·

∑

±

(σ ± iσ⊥)
exp(−λ±(xh)ζ)

(λ±(xh))3
.

• Proof of convergence:

We construct an approximate solution of (1.15) as follows: we set

θapp(xh, z) = θ̄(xh, z) + ǫθBL

(
xh,

1 − z

ǫ

)
+ ǫθ̃(xh, z),

where the function θ̃ is defined by

θ̃(xh, z) = (z − 1)
1

ǫ
∂ζθ

BL
|ζ= 1

ǫ

(xh) − θBL
|ζ=0(xh).

Notice that by construction,

∂zθ
app
|z=0 = 0, θapp

|z=1 = θ1.

Moreover, using the definition on θBL, it is easily proved that θ̃ = O(1) in
W 2,∞(ω) (provided the stress σ is smooth and vanishes at a sufficiently high
order near y = 0).
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Consequently,

−λ∂zzθ
app − λǫ2∆hθ

app + ustat · ∇θapp(6.7)

= uBL
h · ∇h(θ̄ − θ1) − λǫ2∆hθ̄ + uBL

3 ∂z θ̄ + vint · ∇θ̄

−λǫ3∆hθ
BL

(
xh,

1 − z

ǫ

)
+ ǫustat · ∇θBL

(
xh,

1 − z

ǫ

)

−λǫ3∆hθ̃ + ǫustat · ∇θ̃.
According to the results of sections 2 and 3, we have

‖uBL
3 ‖L2 = O(

√
ǫ), ‖vint‖L2 = o(ǫ),

ǫ‖ustat
h ‖L∞ , ‖ustat

3 ‖L∞ = O(1), ǫ‖ustat‖L2 = O(
√
ǫ).

These estimates, together with the ones derived above on θ̄, enable us to
bound all the terms in the right-hand side of (6.7), except for the first one.
Using Hardy’s inequality, we have

∥∥uBL
h · ∇h(θ̄ − θ1)

∥∥
L2(ω)

≤
∥∥(1 − z)uBL

h

∥∥
L∞(ωh,L2([0,1]))

∥∥(1 − z)−1∇h(θ̄ − θ1)
∥∥

L2(ωh,L∞([0,1]))

≤ C
√
ǫ
∥∥∂z∇h(θ̄ − θ1)

∥∥
L2(ωh,L∞([0,1]))

.

Thus θapp is an approximate solution of (1.15), with an error term o(1) in
L2(ω). As a consequence, θ − θapp satisfies

−λ∂zz(θ − θapp) − λǫ2∆h(θ − θapp) + ustat · ∇(θ − θapp) = o(1),

(θ − θapp)|z=1 = 0, ∂z(θ − θapp)|z=0 = 0.

Multiplying the above equation by θ−θapp and using the Poincaré inequality,
we prove that

‖∂z(θ − θapp)‖L2(ω) = o(1),

and thus the Proposition is proved.
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