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Abstract

This work deals with the convergence acceleration of iterative nonlinear methods.
Two convergence accelerating techniques are evaluated: the Modified Mininal Poly-
nomial Extrapolation Method (MMPE) and the Padé approximants. The algorithms
studied in this work are iterative correctors: Newton’s modified method, a high-
order iterative corrector presented in [7] and an original algorithm for vibration of
viscoelastic structures. We first describe the iterative algorithms for the considered
nonlinear problems. Secondly, the two accelerating techniques are presented. Finally,
through several numerical tests emanating from the thin shell theory, Navier-Stokes
equations and vibration of viscoelastic shells, permit to show the advantages and
drawbacks of each accelerating technique.
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1 Introduction

The computation of solutions of nonlinear problems requires the use of a pre-
diction and a correction step. The correction step is usually done by iterative
methods, such as Newton type methods. When solving problems with a large
number of unknowns, this correction phase can consequently increase the CPU
time due to the treatment of the matrices (triangulation, backward and for-
ward substitution).

For this reason, modified versions of the Newton method can be used to avoid
large amounts of CPU time. The most common one, that will be called ”mod-
ified Newton” in this paper, needs only one matrix triangulation that is com-
puted at the first iteration. Nevertheless, the use of such a method can increase
the number of iterations and sometimes leads to divergence.

In recent works [7],[9] and [24], high-order iterative algorithms have been pro-
posed. From these studies, one can distinguish two classes of methods: on the
one hand, a high-order Newton algorithm that is efficient, robust and often
converges after a single iteration, and on the other hand, the so-called L∗

algorithm which does not require any triangulation of matrix. Like Newton’s
modified method, the drawback of the L∗-algorithm is the number of iterations
and the possibility of divergence.

In this work, we propose associating these kinds of iterative correctors with
some techniques to accelerate the convergence of sequences of vectors (the
iterates obtained with the corrector). Only two methods are considered here.
The first method is a polynomial extrapolation method and its derivatives:
minimal polynomial extrapolation (MPE [5]), the reduced rank extrapolation
(RRE [6]) and the modified minimal polynomialextrapolation method (MMPE
[8]. Applications and numerical comparison of these methods can be found in
[12,13]). Due to the results and the conclusions presented in [13], only the
MMPE method is applied in this work. Moreover, a sizeable bibliographic re-
view related to these methods can be found in [3,4]. Nevertheless, few works
deal with applications of these methods in solid or fluid mechanics. The sec-
ond method uses vectorial Padé approximants[11] and has been applied in
numerical solid mechanics. Despite the extensive bibliography on convergence
acceleration, there are few applications of these methods to practical problems
of nonlinear mechanics. We believe that significant computational savings can
be obtained by coupling some modified Newton and convergence acceleration
techniques. The aim of the present paper is to evaluate these opportunities
and to establish computational procedures that are reliable and suitable for
problems of structural mechanics.

These acceleration techniques will be evaluated on the basis of numerical
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tests emanating from nonlinear elasticity, vibrations of viscoelastic shells, and
Navier-Stokes equations. In the first part of this paper, the convergence accel-
erating techniques are coupled with the modified Newton method. Then, these
techniques are associated with high-order iterative correctors and numerically
evaluated in the buckling of thin shell and in a fluid mechanics framework. Fi-
nally, an original iterative algorithm for the vibrations of damped structures,
presented in this work, is coupled with the MMPE algorithm. The perfor-
mances of this algorithm is compared to the results presented in [25].

2 Iterative algorithms and convergence acceleration

In this section, two iterative correctors are recalled. An original algorithm for
the vibration of viscoelastic shells is also presented. The common point of
these techniques is the use of few matrices in the iterative scheme. Therefore,
a great number of iterations can be necessary to get the desired accuracy.
Convergence accelerating techniques are then used to decrease the number of
iterations and improve the quality of the solutions obtained.

2.1 Some iterative algorithms for nonlinear problems

The equations of the considered nonlinear problem, for the buckling of non-
linear elastic thin shell or for fluid mechanics, can be written in a quadratic
framework such as:

R(U, λ) = L(U) + Q(U,U) − λF = 0 with U ∈ IRn, F ∈ IRn and λ ∈ IR (1)

where U is the unknown vector (U includes the displacement and the stress
in nonlinear elasticity, the velocity and the pressure in fluid mechanics), F

is a given vector and λ is a load parameter. L(.) and Q(., .) represent linear
and quadratic operators. In this work we consider two iterative correctors to
improve the quality of a trial solution U0. The first one is the classical modified
Newton algorithm and the second one is issued from recent works ([7,9]).

In classical iterative algorithms, the approximated solution after k iterations
is:







U(k) = U0 + ∆U(k)

λ(k) = λ0 + ∆λ(k)
(2)

where the correction (∆U(k), ∆λ(k)) is defined by the following sequence:







∆U(k) = ∆U1 + ∆U2 + · · · + ∆Uk

∆λ(k) = ∆λ1 + ∆λ2 + · · · + ∆λk
(3)
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One objective of the present work is to accelerate sequences such as (3) by
using convergence accelerating techniques.

By introducing the relations (2) into the nonlinear problem (1), we obtain the
following nonlinear problem to be solve at the iteration k:

R(U(k), λ(k)) = Rk−1+L(∆Uk)+2Q(U(k−1), ∆Uk)+Q(∆Uk, ∆Uk)−∆λkF

(4)
where Rk−1 is the residual vector computed at the approximated solution
U(k − 1) and is defined by

Rk−1 = R(U(k−1), λ(k−1)) = L(U(k−1))+Q(U(k−1), U(k−1))−λ(k−1)F
(5)

Within iterative methods, such as Newton-Raphson, the quadratic term of
the equation (4) is neglected and we have to solve the following linearized
problem:

Lk−1
t (∆Uk) − ∆λkF = −Rk−1 (6)

where Lk−1
t is the tangent matrix computed at the approximated solution

U(k − 1):

Lk−1
t (∆Uk) = L(∆Uk) + Q(U(k − 1), ∆Uk) + Q(∆Uk, U(k − 1)) (7)

When a modified Newton algorithm is considered, the previous tangent matrix
is computed once and is constant during all the iterations. The vector ∆Uk

and the scalar ∆λk are the solutions to the following linear equation:

L0
t (∆Uk) − ∆λkF = −Rk−1 (8)

where L0
t is the tangent matrix computed at the trial solution U0. In Newton

(6) or modified Newton (8) algorithm, there are n+1 unknowns (∆Uk, ∆λk)
for n equations. Thus, a supplementary equation is needed to have a well-
formulated problem. In this study, we consider two cases. In the first one,
the load parameter is fixed during all the iterations (i.e. ∆λk = 0, a load
control). In the second one, a sort of arc-length control is used. In the latter
case, the most natural way to specify the variation of λ during the iterations
is to require the correction (∆Uk, ∆λk) to be orthogonal to the slope, denoted
(U

′

, λ
′

), of the response curve. The supplementary condition associated to the
problems (6) and (8) is:

< ∆Uk, U
′

> +∆λkλ
′

= 0 (9)

where < •, • > represents the euclidian scalar product. In this study the slope
(U

′

, λ
′

) is known. Indeed, as the prediction curve (the trial point (U0, λ0)) is
determined by using the Asymptotic Numerical Method[16] which gives ana-
lytical solutions, the slope (U

′

, λ
′

) is easily computed (for details see references
[9,24]).
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The second iterative corrector, used in this work, has been recently presented
in references [7,9]. In these works high-order correctors have been proposed
which use the homotopy technique, perturbation method and Padé approxi-
mants.

To define these correctors, we consider the nonlinear problem (4) and we
modify it in the following manner:

[L∗ + η(Lk−1
t − L∗)](∆Uk) + Q(∆Uk, ∆Uk) + ηRk−1 = 0. (10)

where η is a real parameter (0 ≤ η ≤ 1), Lk−1
t is the tangent operator at the

iteration k − 1.

The solution ∆Uk of the modified problem (10) continuously passes from 0 for
η = 0 to the solution of the initial nonlinear problem for η = 1. To compute
this solution, a perturbation method is used and ∆Uk is sought in the form
of a truncated integro-power series:

∆Uk = η∆Uk
1 + η2∆Uk

2 + ... + ηn∆Uk
n . (11)

This asymptotic expansion is introduced in problem (10) and by equating like
power of η we obtain a set of ’n’ linear problems which all have the same op-
erator to be inverted (L∗). Finally when all the terms ∆Uk

n are computed, the
polynomial approximation (11) is then improved by using Padé approximants
[14,15,10,9].

The matrix to be inverted, denoted by L∗, is priori chosen. In practice, the
choice will be a matrix that has been triangulated in a previous step of the
calculation or a matrix which is easily inverted. In other words, L∗ is a precon-
ditioner. This L∗-algorithm generally requires more than one iteration to ob-
tain the required accuracy. Indeed, sometimes the number of iterations needed
for the required accuracy can be high (k =10, 15, 20 iterations). This L∗ algo-
rithm will be associated with some convergence accelerating techniques. One
can note that, in this case, two successive accelerating methods are used. The
first one concerns the series computed with expression (11) and the second
one concerns sequence (3).

The third nonlinear iterative algorithm, studied in this paper, deals with the
vibration of viscoelastic shells. The unknowns, the displacement u and the
vibration frequency ω, are thus solutions of a complex eigenvalue problem[25]:

R(U) =











[K(ω) − ω2M ] u

tuM .M.(u − uM)











= 0 with u ∈ ICn and ω ∈ IC (12)

where M is the real mass matrix, K(ω) is the complex stiffness matrix de-
pending on frequency. The second equation of (12) is a normalization condition
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and uM is the real mode of the undamped structure, ωM is the corresponding
real eigenfrequency. In this work, we propose iteratively solving problem (12)
which is nonlinear, with respect to the frequency. If one applies the Newton
iterative method to (12), the tangent matrix is given by:







K(ω) − ω2M [K
′

(ω) − 2ωM ]uM

tuM .M 0






(13)

This tangent matrix is complex-valued, because K(ω) and ω are complex. To
avoid the triangulation of a complex matrix, we propose replacing this tangent
matrix by a real one. We have chosen the preconditioner introduced in [25]
within the framework of a high-order algorithm similar to (10) (11).

Hence, at the iterate k, the problem to be solved thus becomes:

K∗∆Uk =







K(0) − ω2
MM −2ωM M uM

−2ωM M uM 0

















∆uk

ωk











= R(∆U(k − 1)) (14)

where K(0) is the elastic matrix which is symmetric and real [25]. Therefore,
with the previous equation, we have defined an iterative algorithm based on
a real operator K∗. At the iterate k, a sequence identical to the one obtained
with the modified Newton algorithm (eq 3) is built . The convergence of this
sequence is then improved by using convergence accelerating methods. Unlike
a Newton algorithm, this procedure requires the inversion of one real matrix
for all the iterations instead of one complex matrix per iteration.

2.2 Two convergence acceleration techniques

In this section, a brief description of two algorithms to accelerate the conver-
gence of sequences is given: the Modified Minimal Polynomial Extrapolation
and the vectorial Padé approximants. These methods will be applied to se-
quences obtained either by the modified Newton algorithm, the high-order
iterative algorithm or the original iterative corrector defined for the vibration
of viscoelastic shells.

With vector extrapolation methods or Vectorial Padé Approximants (VPA)[11],
sequence (3) is transformed into a new one with a faster convergence than the
initial sequence. The initial sequence (3) is then replaced by:

∆Unew(k) =
k−1
∑

i=1

ei∆U i (15)
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where the subscript ”new” designates the new vector obtained with either
a vector extrapolation method or with VPA. In the first case, ei are scalar
coefficients and in the second one, ei are rational functions. First, the vector
extrapolation method is described.

After ’k’ iterations of an iterative method (such as the ones defined in the
previous section), providing ’k’ vectors ∆Uk, one can build an approximated
vector, ∆UMMPE(k), by using the following MMPE algorithm:

Step 1 : Initialization

choose ’k-1’ vectors Yi

Step 2 : Computations

Mij = (∆U j+1 − ∆U j).Yi (16)

fi = −∆U1.Yi with i, j = 1, .., k − 1 (17)

Step 3 : Solve the linear system

[M ]{a} = {f} (18)

Step 4 : Build the extrapolated vector

∆UMMPE(k) =
k−1
∑

i=1

ai∆U i (19)

In this study, in which only consider polynomial methods [13] are considered,
coefficients ai are obtained from an orthogonality relation and are then solu-
tions of the linear system (18). Within this extrapolation, the chosen vectors,
Yi are arbitrary linearly independent ones. Thus, in the numerical tests pre-
sented in this work, the ’n-1’ vectorsYi are either the residual R(∆U(i)) or the
vectors ∆U i. Finally, the transformation (19) has been designed to accelerate
the convergence of the sequence (3), where coefficients ai are computed from
system (18).

Concerning the Vectorial Padé approximants [11], the sequence (3) (’k’ vectors
∆Uk issued from an iterative scheme) is replaced by its equivalent rational
representation, ∆UPadé(k), by using the following algorithm:
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Step 1: Gram-Schmidt orthonormalisation

∆Un =
n

∑

j=1

αnjV
∗
j with n = 1, .., k (20)

Step 2: Compute the coefficients di

di = −
1

αk−i,k−i

(αk,k−i +
i−1
∑

n=1

dnαk−n,k−i) with i = 1, .., k − 1 (21)

Step 3: Compute the coefficients cn

cn =

k−1−n
∑

j=0
dj

k−1
∑

j=0
dj

with d0 = 1 (22)

Step 4: Build the Vectorial Padé Approximant

∆UPadé(k) =
k−1
∑

n=1

cn∆Un (23)

Let us remark that coefficients αij are deduced from a Gram-Schmidt ortho-
normalisation, the vectors V ∗

j in (20) being orthonormalized. In this work, a
modified Gram-Schmidt orthonormalisation is used because it is more stable
than the classical Gram-Schmidt procedure. This algorithm is summarized
below:

for i = 1, · · · , n

qi = ∆U i

forj = 1, · · · , i − 1

αij =< qi, V
∗
j >

qi = qi − αijV
∗
j

enddo

V ∗
j =

qi

||qi||

enddo

These two acceleration techniques seem quite different, but they belong to
the same family of algorithms. Futhermore it has been proved [23] that, with
a proper choice of the projection vectors Yi, they become mathematically
identical. With the MMPE algorithm, the orthonormalization procedure could
be avoided and the possibility of choosing vectors Yi leads to more freedom to
optimize the procedure.
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2.3 A few comments and remarks

In this section, we discuss how the previous algorithms are managed. Firstly,
within the MMPE algorithm, we have to choose vectors Yi which are needed
to compute coefficients ai in the expression (19). In the literature, only the
fact that these vectors are arbitrary and linearly independent is mentionned.
There has been no discussion, to our knowledge, about the choice of these
vectors. Therefore in the presented iterative methods, these vectors are either
the residual vectors or the solution vectors ∆U i. In the following section, we
discuss this choice and the consequence of it on the final result.

Secondly, another important point, especially for MMPE, is to choose the
number of vectors in the sequence to be accelerated, i.e. the number k in (19).
If the solution obtained after acceleration is not sufficiently accurate, the whole
process will be restarted: actualisation of the initial point, computation of at
most k vectors, acceleration and so on.

Thirdly, the Vectorial Padé Approximants technique involves an orthonormal-
isation of the sequence. There are several algorithms to achieve this ortho-
normalisation and this can influence the efficiency of the procedure [17,18].
Hereafter, we shall use the so-called modified Gram-Schmidt algorithm. It is
possible to choose orthonormalized vectors Yi within MMPE. Of course, the
orthonormalisation can be expensive which is why we propose considering a
modified scalar product:

V.U =
nred
∑

i=1

ViUi (24)

with nred lower than the dimension n of the vectors.

All these points will be analysed in the next sections.

3 Numerical applications with a one-matrix algorithm

3.1 Two benchmarks from nonlinear structural mechanics

In this section, we apply the previous methods to some traditional numerical
tests in thin elastic shell analysis. The objective is to define an optimal method
for using accelerating methods in the finite element framework. In the second
part of this section we compare the performances of the high-order correctors
when associated with accelerating methods.

The first numerical test considered in this work is the classical geometrically
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Displacement Load parameter Norm of the residual

Point 1 21.8613803 0.521369466 0.27406086

Point 2 25.7580787 1.12485855 1.3698557

Point 3 28.3927706 1.79387442 2.8514333

Table 1
Cylindrical thick roof. Characteristics of the three trial points.

nonlinear cylindrical roof loaded by a single force [21,22]. The geometric and
material characteristics are given in Figure (1(a)). Only one quarter of the
roof is modelled by 200 triangular DKT elements (726 d.o.f.). On the nonlinear
curve obtained by ANM (method of reference [11], Padé approximants at order
25, see Figure 1(b)) we have chosen three trial points. The corresponding
displacement, load parameter and norm of the residual of these three trial
points are given in Table (1). One can note that the residual norm increases
from point 1 to point 3.

    P

 1000 N

Free

Clamped

L

L

R

θ

R = 2540  mm

h = 12.7 mm
θ = 

L = 254 mm

0.1 rd
Ε = 3102.75Mpa

ν = 0.3
P =

M

B

(a) Characteristics of the cylindrical
thick roof.
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(b) Response curve of the cylindri-
cal thick roof and the three trial
points.

Fig. 1. Characteristics of the cylindrical thick roof. Response curve of the cylindrical
thick roof and the three trial points.

The second example where the accelerating techniques are evaluated is an open
cylinder pulled by two diametrically opposite point loads. The geometric and
material characteristics, as well as the response curve, are given in Figure (2).
Only one octant of the cylinder is modelled by 900 quadrilateral elements with
8 nodes per element. The corresponding number of d.o.f. is roughly 17000. This
example has been chosen because the response curve is quite difficult to obtain
due to turning or bifurcation points. The correction method has to be very
efficient to converge to the desired solution. In the computation, the prediction
step is carried out with the help of the ANM and the correction is realized
with the Newton-modified method coupled with the MMPE method. In the
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Fig. 2. Characteristics and response curve of the pull-out of an open cylinder.

response curve, Fig. (2(b)), three trial points have been chosen to evaluate the
proposed corrector.

As the computational strategy is a key-point within nonlinear problems, due
to turning or bifurcation points, all the computations use an arclength control
(except for point 3 of the first example where the considered iterative methods
converge only with a fixed load parameter) in the correction scheme.

3.2 A first comparison

In this part, we compare the performances of the two convergence accelerating
methods presented in the previous section. This comparison is achieved by
considering the Newton modified method (8) and the two previous examples.

In Figure (3) the decimal logarithm of the residual norm is plotted versus the
iteration number for the three trial points (point 1 in Figure 3(a) and so on)
for the example of the cylindrical thick roof. For each trial point, three iter-
ative correctors are evaluated: the classical Newton modified algorithm, the
Newton modified algorithm associated with MMPE and finally the Newton
modified algorithm associated with VPA. In the case of the MMPE accel-
erating convergence method, vectors Yi of expression (18) are the residual
vectors computed at the previous iterates. These Figures show several inter-
esting features. Firstly, a better convergence is obtained when an accelerating
convergence method is associated to the modified Newton corrector. For in-
stance, for trial point 1 (Figure 3(a)), if the desired accuracy is fixed and
equal to 10−8 (dashed line in Figure 3(a)), the convergence is reached with
10 iterations without acceleration and 7 iterations with MMPE and VPA. For
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Fig. 3. Cylindrical thick roof. Logarithm of the residual versus iteration number.
MMPE with Yi = Ri. In parenthesis the number of iterations to get a residual lower
than 10−8 with a ’pure’ Newton corrector and the logarithm of the residual vector
after convergence of the Newton algorithm.

trial point 2, the number of iterations to get the required accuracy is 28, 11,
10 respectively without acceleration, with MMPE and VPA. As for the third
trial point (Figure 3(c)), the results obtained with the accelerating conver-
gence techniques are very interesting. Indeed, without acceleration, the norm
of the residual obtained after 30 iterations is close to 10−1. Whereas, when
the VPA is used, the required accuracy (10−8) is reached with 23 iterations.
With MMPE, the residual norm after 30 iterations is 10−5. Similar results
are obtained when considering the second example. These results are given in
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Newton Modified Newton Modified with MMPE or VPA ’pure’ Newton

Point 2 ( PR

D
= 88, W

R
= 0.5) 6 4 3

Point 3 ( PR

D
= 116, W

R
= 0.52) 15 7 4

Table 2
Pull-out of an open cylinder. Comparison of the number of iterations to get the

desired accuracy 10−5. Arc-length scheme.

Figure (4) for point 1 (see Figure 2) and in Table (2) for the two other points.
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Fig. 4. Pull-out of an open cylinder. Logarithm of the residual vector versus the
iteration number. Point 1, (PR

D
= 105, W

R
= 0.46). A pure Newton corrector requires

4 iterations to get a norm of the residual vector lower than 10−5. Arc-length scheme.

The second interesting feature concerns the MMPE or the VPA algorithms.
One can remark in Figures (3) and (4) that when these two accelerating tech-
niques are used with a low number of iterations (lower than 10), the evolution
of the residual versus the number of iterations are nearly the same for the
two techniques. In a recent work [23], the authors have established the math-
ematical equivalence between these two techniques when a specific choice of
vectors Yi is made but some differences are observed in the numerical practice,
especially when a large number of vectors is used.

The third feature concerns the MMPE techniques. In Figure (3), one can see
that when the number of iterations is high the MMPE technique becomes
unstable. Indeed, in this case, an increase of the number of vectors leads to
a divergence of the method, see Figure (3(b)). In the following section, we
discuss this particularity and try to define the best way to use the MMPE
algorithm.
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3.3 What is the best way to use MMPE?

Several computational strategies have been tested to avoid these convergence
problems with MMPE. The first point is the choice of the projection vectors
Yi. Two strategies have been evaluated: projection on the residual (Yi = Ri)
or on the increments (Yi = ∆U i). The results in Figure 5(a) show that there
are no significant differences and the process does not converge if the number
of vectors is greater than 10. From Figure 5(b), it appears that the processes
converge very well if these vectors Yi = Ri or Yi = ∆U i are orthonormalized.
Hence, orthonormalization seems to help avoid the numerical instabilities and
the convergence is about the same as with Padé approximants. In a recent work
[23], the authors have proved the mathematical equivalence between VPA and
MMPE, with the choice of Yi.

S+ MMPE  y=Newton modified

Newton modified + MMPE y=Res
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Fig. 5. Cylindrical thick roof. Newton modified corrector with MMPE. Evolution of
the logarithm of the residual vector versus iteration number for several choices of
vectors Yi, trial point 2

Another efficient way of using the MMPE technique is to restart the accelerat-
ing technique after k iterations, as explained in paragraph 2.3. This technique
is evaluated in Figure 6, for trial point 3, where the parameter k is equal to 5,
10 or 15. The results obtained with this technique are compared to the ones
obtained with the Padé approximants (considered here as the reference) and
with the MMPE algorithm without restart (with k = ∞). Let us remark that
these results are obtained with non-orthonormalized vectors Yi. These curves
show a better convergence when the number of iterations is fixed. Indeed,
when the residual criterion is equal to 10−8, the Padé approximants need 23
iterations to reach the desired accuracy, whereas if k is equal to 15, 10 and 5,
the MMPE algorithm demands respectively 21, 20 and 15 iterations. Hence,
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Fig. 6. Cylindrical thick roof. Logarithm of the residual versus iteration number.
Trial point 3. Newton modified algorithm. Several ways to use MMPE (k=5, 10, 15,
∞).

the best results are obtained when the parameter k is low. This emphasizes
once more that MMPE is a very efficient algorithm, but that it can become
unstable when the number of vectors is high. In fact, these results show that
when associated with a restart procedure, the MMPE algorithm is efficient
and robust, even with a high number of iterations. For instance, let us as-
sume that 23 iterations are needed: one must first compute k = 10 iterates
and apply MMPE to these ten vectors, then a second sequence of 10 vectors
should be computed and accelerated in the same way and finally, a sequence
of 3 vectors.

3.4 About computation time

Our last topic of discussion is the amount of CPU time needed by the MMPE
algorithm. Here, two examples are considered: the pull-out of an open cylinder
and the cylindrical thick roof but with a greater number of unknowns: 39.366
d.o.f.. For the pull-out of an open cylinder, we take the convergence results
presented in Figure (4). In this case, a pure Newton method needs 4 iterations
to reach the required accuracy whereas 8 iterations are needed when using a
modified Newton method coupled with the MMPE technique. The correspond-
ing CPU time for each method is given in Table (3). The CPU time given for
the pure Newton method corresponds to the 4 iterations and more precisely:
4 tangent matrices to build, 4 matrix triangulations and 4 forward and back-
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CPU times (s)

Newton pure 51.4 (4*12.85)

(4 iterations)

Newton modified 16.7 (1*12.85 + 7*0.55)

(8 iterations)

MMPE nred = 40 d.o.f. 0.04

MMPE nred = 400 d.o.f. 0.04

MMPE nred = 4000 d.o.f. 0.05

MMPE nred = 17000 d.o.f. 0.07

Table 3
CPU Times. Pull-out of an open cylinder, convergence results from Figure (4). In

parenthesis, the details of the CPU time are given. The nred parameter represents
the number of components used in the modified scalar product (24).

ward substitutions. For the modified Newton method, the CPU time given in
Table (3) corresponds to 8 forward and backward substitutions and one tan-
gent matrix construction and triangulation (for the first iteration). As for the
MMPE method, the indicated CPU time is the total amount of CPU time for
the 8 iterations of the modified Newton method. The results presented in this
Table show that the CPU cost of one iteration of the modified Newton method
is lower than 5% of the CPU time required for an iteration of a pure Newton
scheme. Moreover, the CPU time of the MMPE step (the convergence accel-
eration of the 8 iterations) is nearly equal to 10% of a single modified Newton
iteration and 1% of the 8 modified Newton iterations. Hence, the CPU time
for the MMPE method is insignificant compared to what is needed for one
iteration of a pure Newton algorithm. For problems with a large number of
unknowns, the amount of CPU time for the MMPE could increase due to the
orthonormalisation step in this algorithm. Therefore, to avoid the increase of
the CPU time we propose to orthonormalize the sequence with respect to a
smaller number of degrees of freedom (see nred in equation 24 or reference
[23]). One can remark in Table (3) that for the considered problem, the nred
parameter has no influence on the total amount of CPU time. Nevertheless,
one has to evaluate the influence of the nred parameter on the accuracy of the
convergence acceleration method.

Thus, in Figure (7), we have plotted the evolution of the residual vector versus
the iteration number for several values of nred. Hence, even if nred is small (for
example 40 d.o.f.), MMPE is efficient except if the number of iterations is too
large. For a larger number of vectors (k > 10), it seems that the instabilities
described in the previous section happen earlier, if nred = 40. Thus, a good
way to apply MMPE is to restart after a few iterations (k≤10) and to consider
orthonormalized vectors with a modified scalar product (nred being not too
large).

A third acceleration convergence method has been tested, the so-called ǫ-
algorithm[1–3]. The convergence acceleration obtained with this ǫ-algorithm
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is nearly the same as with the other two techniques. Nevertheless, the amount
of CPU time needed to build an accelerated sequence with the ǫ-algorithm
is very large. Consequently, the latter is not an attractive method for a large
scale problem. This very substantial amount of CPU time has already been
mentioned in reference[13] and is due to the construction of a ’ǫ-table’ at each
iteration. The construction of this ’ǫ-table’ needs the computation of a great
number of vectors, the ǫ-vectors, which leads to a large amount of CPU time.
A solution to this drawback is the storage at each iteration of the already
computed ǫ-vectors. Unfortunately, this solution cannot be used in a finite
element framework because of the large number of unknowns.
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Fig. 7. Cylindrical thick roof (39.366 d.o.f., ‖R(U0) = 0.31‖). Evolution of the
logarithm of the residual vector versus the iteration number. Influence of the scalar
product for the MMPE method.

4 Numerical applications with matrix less algorithms

The numerical results presented in the previous section show that the MMPE-
restart algorithm seems to be the most efficient accelerating technique. In this
section, the MMPE technique will be used to accelerate the convergence of
high-order iterative correctors presented in [7,9] and also the iterative algo-
rithm, presented in section (2.1), for viscoelastic structures. As these iterative
techniques use a preconditioner matrix, the number of iterations to reach the
desired accuracy can be high. The use of a convergence accelerating method,
in this case, is then an interesting prospect.
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without MMPE with MMPE

Point 2 10 (20) 8 (14)

Point 3 14 (26) 10 (14)

Table 4
Cylindrical thick roof. Number of iterations to get the desired accuracy 10−4 (in

parenthesis 10−8) with or without MMPE. The order of truncature of the matrix
less algorithm (eq. 10) is equal to 5.

L∗-algorithm L∗-algorithm

with MMPE

Order 5 10 15 5 10 15

Point 2 100 110 165 70 80 105

Point 3 130 160 240 70 90 135

Table 5
Cylindrical thick roof. Number of vectors to get the required accuracy (10−8) for

several orders of truncature and with or without convergence acceleration

4.1 Numerical evaluation in thin shell problems

We will now analyse the performances of the L∗-algorithm, defined by expres-
sion (10) when it is coupled with an accelerating technique (MMPE).

In the following numerical tests, the operator L∗ is the tangent matrix at the
origin (figure 1(b), U = 0). We only consider trial points 2 and 3 of the example
of the cylindrical roof. In Table (4), the number of iterations to obtain the
desired accuracy, 10−4, is given for both trial points. The order of truncature
of the series (11) is chosen to be equal to 5.

Firstly, Table (4) shows that the MMPE method increases the convergence of
the L∗-algorithm. Indeed, for point 2, the L∗-algorithm needs 10 iterations to
get the required accuracy (10−4), whereas when using MMPE, 8 iterations are
necessary (respectively 20 and 14 with an accuracy equal to 10−8).

For trial point 3, the number of needed iterations is equal to 14 without MMPE
and 10 when using the latter method (respectively 26 and 14 with an accuracy
equal to 10−8).

So the use of the L∗-algorithm with a small order of truncature decreases
the number of iterations. Even if this decrease is less than with the modified
Newton algorithm, it leads to a reduction of the total computational cost.
Indeed, in this iterative procedure, the computational cost is more or less
proportional to the number of vectors to be computed. These numbers of
vectors are given in Table (5) for several orders of truncature of the polynomial
approximations (11). The demanded accuracy is, in this case equal, to 10−8.
Table (5) shows that the use of the MMPE method generally reduces the
cost by about 40 %. Moreover, associating the MMPE with a small order of
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without MMPE with MMPE

Re=5.8, ‖R(U0)‖ = 0.24 diverge 13

Re= 230, ‖R(U0)‖ = 0.015 > 30 17

Table 6
Flow around a cylinder. Number of iterations to get the desired accuracy 10−4 with
or without MMPE. The order of truncature of the matrix less algorithm (equation
10) is equal to 6.

truncature (order 5) is very attractive. Smaller orders (order 2,3 and 4) have
also been tested. In this case, the convergence acceleration of the L∗-algorithm
is not very efficient.

4.2 Numerical evaluation in fluid mechanics

In this section, the L∗-algorithm and the MMPE are coupled within a fluid
mechanics framework. The presented numerical test is the flow around a cylin-
der [20]. The mesh is composed of 496 quadrilateral elements which lead to
4120 d.o.f.. We consider two trial points: the first one at a low Reynolds num-
ber (Re = 5.8) and the second one at Re= 230. The data of the algorithm are
as follows: the preconditioner L∗ is the prediction matrix, order of truncature
of the L∗ algorithm equal to 6, restart parameter k = 10, vectors Yi are the
residuals Ri.

The numbers of iterations to get the desired accuracy (in this case 10−4 ) for
these two points are given in Table (6). These results show that the acceleration
of convergence by MMPE is also very attractive for fluid mechanics. Indeed,
the convergence is achieved even when the initial sequence (3) is divergent.
In the latter case, parameter k is equal to 10 and is necessary to obtain the
required accuracy after 13 iterations. This value is also used for the second
trial point. In this case, the convergence with the MMPE algorithm is reached
after 17 iterations, whereas with the matrix less algorithm the convergence is
not reached after more than 30 iterations.

4.3 Numerical applications for vibration of viscoelastic beams

In this part, the iterative algorithm presented in section (2.1) is applied to
sandwich beams. The considered example is a cantilever beam with small or
moderate damping (see [25]). The beam dimensions and the material charac-
teristics are presented in Table 7. The complex eigenvalue problem has been
solved by the iterative algorithm (14), with an acceleration by MMPE. The
parameters for the algorithm are the following: the preconditioner K∗ is the
real matrix (14), restart parameter k=6, the vectors Yi are the residuals Ri.
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Material properties Elastic layers Viscoelastic layer

Young’s Modulus 6.9 1010 N/m2 1.794 106 N/m2

Poisson’s ratio 0.3 0.3

Density 2766 kg/m3 968.1 kg/m3

Thickness 1.523 mm 0.127 mm

Table 7
Material properties for the cantilever beam. Length = 177.8 mm, width =12.7 mm.

ηc eigenvalue Proposed algorithm algorithm from [25]

0.1 1 6 8

2 6 6

3 4 6

4 4 6

5 4 5

0.6 1 14 18

2 12 10

3 10 10

4 9 10

5 9 10

1.5 1 28 > 40

2 22 28

3 16 27

4 17 18

5 16 15

Table 8
Vibration of a cantilever viscoelastic beam. Five complex modes are computed.

The proposed iterative algorithm is the one given in section 2.1 with acceleration
by MMPE (k=6). Number of computed vectors to get a final residual lower than
10−6.

The proposed algorithm has been compared with an algorithm, that is rather
similar, and has been presented in [25]: it is a sort of L∗-algorithm using the
same preconditioner and it is accelerated by Vectorial Padé approximants. Fif-
teen calculations, which correspond to the three values of the core loss factor
(ηc=0.1, 0.6, 1.5) and to the first five modes in each case, have been done.
The computations have been done until the euclidian norm of the residual is
lower than 10−6. We have checked that the two algorithms lead to the same
results. We have also compared the number of vectors that have been com-
puted (see Table 8). With the proposed algorithm, each vector corresponds to
an iteration. With the one in [25], each vector is a term in series (11).

The proposed algorithm converges for all 15 cases, and the number of com-
puted vectors is generally less than with the algorithm Homotopy-Perturbation
Padé of [25]. The algorithm especially converges in the case of a large damping
(ηc=1.5), where matrix K∗ is far from the consistent tangent matrix. This test
establishes the robustness of the MMPE accelerator.
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5 Conclusion

In this work, two numerical methods are used to accelerate the convergence
of iterative methods. From the numerical results one can conclude that the
MMPE method is attractive for computational mechanics. This method is very
simple and easy to use with any iterative corrector. Moreover, this method does
not increase the computational time. These accelerating convergence methods
are efficient when the iterative corrector shows slow or poor convergence. The
iterative methods, that have been applied in this work, require one matrix
(Newton modified) or zero matrix triangulation. However, convergence accel-
eration is generally not necessary with a classical Newton algorithm or with a
high-order Newton corrector [7,9].

In this paper, we have tried to show that some convergence acceleration tech-
niques lead to simple tools to build efficient and reliable algorithms that are
much cheaper than Newton type algorithms. This is the main result of the pa-
per. Various physical examples have been considered for this numerical evalu-
ation, mainly in the field of thin shell analysis. Nevertheless, the same features
have been observed for a test from fluid mechanics which suggests that our
conclusions can be upheld for other nonlinear partial differential problems. For
instance, the results of Assidi for applications of Padé approximants within
elasto-plasticity suggest that convergence acceleration can also work well in
this field [27]. By considering the numerical tests, our advice is to use MMPE
with at most ten vectors and to partially orthonormalise the projection vectors
for a better stability of the algorithm. Some other points are also new, to the
author’s knowledge, including the association of Vectorial Padé approximants
and the modified Newton corrector, the iterative algorithm for viscoelastic
eigenvalue problems introduced in Part 2, the comparison between MMPE
and Vectorial Padé Approximants.
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