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Abstract— This paper deals with a new analysis of the
stability of linear systems with sampled-data inputs. Inspired by
the input-delay approach and the stability of impulsive systems,
the proposed method provides novel stability conditions. The
stability analysis concerns both constant and time-varying
sampling periods. More precisely, this article focus on ensuring
stability of systems under two successive sampling periods.
This result allows considering one of the periods greater
than the theoretical bound, based on an estimation of the
convergence rate. The delay-dependent conditions are expressed
using computable simple linear matrix inequalities. Several
examples show the efficiency and the limitation of such stability
criteria.

I. INTRODUCTION

In the last decades, a large attention has been taken to
Networked Control Systems (NCS) (see [5], or [15]). Such
systems are a control systems containing several distributed
plants which are connected through a communication net-
work. In such applications, a heavy temporary load of
computation in a processor can corrupt the sampling period
of a certain controller. Nevertheless, the sampling period can
be scheduled in the design in order to avoid this load. In
both cases, the variation of the sampling period will affect
the stability properties.

Sampled-data systems have already been studied in the
literature [2], [16], [17] and the references therein. It is
now reasonable to design controllers which guarantee the
robustness of the solutions of the closed-loop system un-
der periodic samplings. However the case of asynchronous
samplings still leads to several open problems. Recently,
several articles drive the problem of time-varying periods
based on a discrete-time approach, [4], [13]. Recent papers
considered the modelling of continuous-time systems with
sampled-data control in the form of continuous-time systems
with delayed control input. In [3], a Lyapunov-Krasovskii
approach is introduced. Improvements are provided in [8],
using the small gain theorem and in [9] by an impulsive
systems approach. Nevertheless, these results are still more
conservative than the ones from discrete-time approaches.
However a discrete-time approach is less interesting in the
case of uncertain or time-varying parameters.

The article proposes novel stability conditions to ensure
stability of linear and time-varying systems. Improved stabil-
ity conditions based on the continuous-time approach and the
stability of impulsive systems developed in [9] is provided.

More especially, this paper cope with both stability and
performances of the systems.

This article is organized as follows. the next section formu-
late the problem. Section III and IV respectively deals with
the analysis of asymptotic and exponential stability. Section
V cope with the stability of a systems under two sampling
periods. Some examples and simulations are provided and
show the efficiency of the method in Section VI.

Notations. Throughout the article, for a n-dimensional
state vector x and a non-negative delay τ , xt denotes a
function such that xt(θ) = x(t − θ) for all θ ∈ [−τ, 0].
The superscript ’T ’ stands for the matrix transposition.
The notation P > 0 for P ∈ Rn×n means that P is a
symmetric and positive definite matrix. The symbols I and 0
represent the identity and the zero matrices of the appropriate
dimension.

II. PROBLEM FORMULATION

Consider the linear system with a sampled-data input:

ẋ(t) = Ax(t) + Bu(tk) (1)

where x ∈ Rn and u ∈ Rm represent the state variable and
the input vector. The matrices A and B are constant and
of appropriate dimension. We are looking for a piecewise-
constant control law of the form u(t) = ud(tk), tk ≤ t <
tk+1, where ud is a discrete-time control signal and 0 = t0 <
t1 < ... < tk < ... are the sampling instants. Our objective
is to ensure the stability of the system together with a given
state-feedback controller of the form:

u(t) = Kx(tk), tk ≤ t < tk+1. (2)

Assume that the difference between two successive sam-
pling instants satisfies

0 < tk+1 − tk ≤ τm ∀k ≥ 0. (3)

Several authors investigated in guaranteing the stability
of such a system. In [3], a first approach was introduced.
It allows assimilating sampling effects as the ones of a
particular delay. Substituting (2) into (1), we obtain the
following closed-loop system:

ẋ(t) = Ax(t) + Adx(t− τ(t)),
τ(t) = t− tk, tk ≤ t < tk+1.

(4)

where Ad = BK.



From (3), it follows that τ(t) ≤ τm since τ(t) ≤ tk+1−tk.
We will further consider (4) as the system with uncer-
tain and bounded delay. However the stability conditions
were designed to deal with all kind of delay functions. As
sampled-data systems are systems subject to a particular
delay, this approach was finally conservative. In [9], the
authors introduce a new type of Lyapunov-Krasovskii which
depends linearly on the delay function. This allows obtaining
less conservative results but some conservatism remains. In
this article, a new Laypunov functional was introduced to
especially consider sampled delays. This method leads to
less conservative result.

III. ASYMPTOTIC STABILITY ANALYSIS

A. Time-varying sampling period

Consider system (1) with a time-varying sampling period
satisfying (3). The following theorem holds:

Theorem 1: Assume that there exist symmetric positive
definite matrices P , R and S ∈ Rn×n and a matrix N ∈
R2n×n such that satisfy:

Π1 + τmΠ2 < 0,

[
Π1 τmN
∗ −τmR

]
< 0,

(5)

where

Π1 = MT
1 PM3 + MT

3 PM1 −MT
2 SM2

−NM2 −MT
2 NT ,

Π2 = MT
2 SM3 + MT

3 SM2 + MT
3 RM3

and the matrices Mi, for i = 1, 2, 3 are given by:

M1 =
[

I 0
]
, M2 =

[
I −I

]
,

M3 =
[

A Ad

]
,

The system (1) is thus asymptotically for any time-varying
period less than τm.

Proof: Inspired from the technic introduced in [9],
consider the following form of functional:

V (xt) = xT (t)Px(t) + (τm − τ(t))ζT
0 (t)Sζ0(t)

+(τm − τ(t))
∫ t

tk
ẋT (s)Rẋ(s)ds

(6)

where ζ0(t) = x(t) − x(tk), consequently, ζ̇0(t) = ẋ(t).
Just before the sampling instant tk, the Lyapunov-Krasovskii
functionals V (tk) is strictly greater than x(tk)T Px(tk). Just
after the sampling instant, the two last terms of the functional
are zero (since t = tk and τ(tk) = 0). Then it means that
the functional is decreasing discontinuously at each sampled
intervals (see [9] for more details). To prove the stability of
the system, one has to ensure that V is decreasing within
each period. An expression of the derivative of V during
one sampling period is derived:

V̇ (xt) = 2xT (t)Pẋ(t) + 2(τm − τ(t))ζT
0 (t)Sẋ(t)

+(τm − τ(t))ẋT (t)Rẋ(t)− ζT
0 (t)Sζ0(t)

− ∫ t

tk
ẋT (s)Rẋ(s)ds

The next step of the proof consists in rewriting the expres-
sion of V̇ using the vector ξ(t) =

[
xT (t) xT (tk)

]T . It is

easy to see that x(t) = M1ξ(t), ẋ(t) = Ax(t) + Bx(tk) =
M3ξ(t) and x(t)− x(tk) = M2ξ(t). This leads to:

V̇ (xt) = ξT (t)
[
2MT

1 PM3 −MT
2 SM2

+τm(2MT
3 SM2 + MT

3 RM3)
+τ(t)(−MT

3 RM3 − 2MT
3 SM2)

]
ξ(t)

− ∫ t

tk
ẋT (s)Rẋ(s)ds

We introduce the following term 2ξT (t)NM2ξ(t) =
2ξT (t)N

∫ t

tk
ẋ(s)ds. Using a classical bounding ensuring

that:

2ξT (t)NM2ξ(t) ≤ τ(t)ξT (t)NR−1NT ξ(t)
+

∫ t

tk
ẋT (s)Rẋ(s)ds,

the following inequality is obtained:

V̇ (xt) ≤ ξT (t) [Π1 + τmΠ2

+τ(t)(NR−1NT −Π2)
]
ξ(t)

This inequality has to be satisfied for all values of the
delay τ(t) ∈ [0, τm[. As this equation depends linearly on
the delay function, it is necessary and sufficient to ensure
the negativity of the matrix at τ(t) = 0 and τm. Applying
the Schur complement on the vertice τ(t) = τm leads to the
stability conditions of Theorem 1.

The stability conditions of Theorem 1 are very similar
to the ones from [9]. The only difference comes from the
integral term with the matrix R. In [9], the authors base
the functional on the classical double integral term of a
Lyapunov-Krasovskii function

∫ 0

−τ(t)

∫ t

t+θ
ẋT (s)Rẋ(s)dsdθ.

By an integration by part, this term is expressed as
∫ t

tk
(τm−

t + s)ẋT (s)Rẋ(s)ds or equivalently as
∫ t

tk
(τm − τ(t) +

τ(s))ẋT (s)Rẋ(s)ds. To understand the difference between
this functional and the one used in Theorem 1, two aspects
are considered. The first one is that the term ẋT (t)Rẋ(t)
in the derivative of V is multiplied by the constant gain
τm in [9] while it is multiplied by τm − τ(t). This is less
conservative since it depends on the delay variations. The
second aspect to see the reduction of the conservatism is to
split the integral into two terms. First, the one use in Theorem
1 and the second one

∫ t

tk
τ(s)ẋT (s)Rẋ(s)ds. The derivative

of the second term is τ(t)ẋT (t)Rẋ(t) which is only positive
definite. This term makes the conditions more conservative
than the ones from Theorem 1.

B. Constant sampling period

Following the line of [9], Theorem 1 can be improved in
the case of constant sampling period.

Theorem 2: Assume that there exist symmetric positive
definite matrices P , R and S ∈ Rn×n and a matrix N ∈
R2n×n such that satisfy:

Π̄1 + τmΠ̄2 < 0,

[
Π̄1 τmN
∗ −τmR

]
< 0 (7)

where

Π̄1 = Π1 − (M1 −M2)T UM2 −MT
2 UT (M1 −M2)

Π̄2 = Π2 + (M1 −M2)T UM3 −MT
3 UT (M1 −M2)



The system (1) is thus asymptotically stable for the
constant sampling period less than τm.

Proof: The proof follows the line of Theorem 1.
Consider the functional:

V1(xt) = V (xt) + 2(τm − τ(t))xT (tk)Uζ0(t)

Note that the additional terms of the functional are not
necessary positive. However the fact that the sampling
period is known allows ensuring that the term 2(τm −
τ(t))xT (tk)Uζ0(t) is continuous and equal to zero at all
sampling instants. This is the reason why this term can only
be considered in the particular the case of constant sampling
period. The differentiation of V1 along the trajectories of (1)
leads to:

V̇1(xt) = V̇ (xt)+2(τm−τ(t))xT (tk)Uζ̇0(t)−2xT (tk)Uζ0(t)

Noting that x(tk) = (M1 −M2)ξ(t), the derivative of V1

satisfies:

V̇1(xt) = ξT (t)
[
Π̄1 + τmΠ̄2 + τ(t)(NR−1NT − Π̄2)

]
ξ(t)

Applying the same technic as in Theorem 1, system (1) is
asymptotically stable for all constant sampling periods, τm,
that satisfy (7).

C. System with polytopic type uncertainties

An extension to the case of uncertainties in the system
parameters can be dealt by considering system (1) and with
A and Ad from the uncertain polytope given by ∀t ∈ R+,
Ω(t) =

∑M
k=1 λi(t)Ωi where ∀t ∈ R+,

∑M
k=1 λi(t) =

1, ∀k = 1, .., M, 0 ≤ λi(t). The Ω vertices of the
polytope are described by Ωk = [A(k) Ad(k)]. Since
the conditions of Theorems 1 and 2 are non linear with
respect matrices A and Ad because of the term MT

3 RM3,
a direct extension to the case of polytopic systems is not
straightforward. However they can be easily adapted as it is
exposed in the following theorem:

Theorem 3: Assume that there exist symmetric positive
definite matrices P , R and S ∈ Rn×n and a matrix N ∈
R2n×n such that satisfy:

[
Πi

1 + τmΠi
2 τmM i

3
T
R

∗ −τmR

]
< 0,

[
Πi

1 τmN
∗ −τmR

]
< 0,

(8)

where Mi, for i = 1, 2 are given in Theorem 1 and

Πi
1 = MT

1 PM i
3 + M i

3
T
PM1 −MT

2 SM2

−NM2 −MT
2 NT ,

Πi
2 = MT

2 SM i
3 + M i

3
T
SM2

and M i
3 = [Ai Ai

d]. The system (1) is thus asymptotically
stable for the sampling period less than τm.

Proof: First note that the second condition of Theorem
1 is linear with respect to the system parameters A and
Ad. The application to polytopic systems is straightfor-
ward. However the first inequality is not linear. Noting that

MT
3 RM3 can be rewritten as (MT

3 R)R−1(RM3), the Schur
complement allows obtaining the first condition Theorem 3.
As both conditions become linear with respect to the matrices
A and Ad, one has to solve simultaneously the LMIs for all
the Ω vertices.

Remark 1: Theorem 3 can be extended to the case of
constant sampling period by considering:

Π̄i
1 = Πi

1 − (M1 −M2)T UM2 −MT
2 UT (M1 −M2)

Π̄i
2 = Πi

2 + (M1 −M2)T UM3 −MT
3 UT (M1 −M2)

IV. EXPONENTIAL STABILITY OF SYSTEMS WITH
SAMPLED INPUTS

In this section, a study of the convergence rate of the
solutions of sampled-data systems is provided. The objective
is to ensure that the solutions are bounded by a decreasing
exponential function and to estimate the exponential rate
α of convergence. Consider the definition of exponential
convergence dedicated to time-delay systems:

Definition 1: [10] For given α > 0 and β > 1, the closed-
loop system (1) is said to be α−stable, or ‘exponentially
stable with the rate α’, if its solution x(t; t0, φ) satisfies:

|x(t, t0, φ)| ≤ K|φ|e−α(t−t0). (9)
As a comment, this definition can be extended to the case

of negative α. In this situation, α corresponds to the rate
of divergence of the solutions of system (1). The following
theorem holds:

Theorem 4: For a given α > 0, assume that there exist
symmetric positive definite matrices P , R and S ∈ Rn×n

and a matrix N ∈ R2n×n that satisfy:

Πα
1 + τmΠα

2 < 0,

[
Πα

1 τmN
∗ −τm(1 + 2ατm)R

]
< 0,

(10)

where
Πα

1 = Π1 + 2α(MT
1 PM1 −MT

2 RM2),
Πα

2 = Π2 + 2αMT
2 SM2

and where the matrices Mi, for i = 1, 2, 3 are given in
Theorem 1. The system (1) is thus exponentially stable with
a decay rate α for any time-varying period less than τm.

Proof: Consider V as in (6). To prove the exponential
stability, the requirement on V becomes V̇ (xt)+2αV (xt) <
0, where α is a scalar. Note that if α is a positive scalar,
then the solutions of the systems which satisfies the previous
inequality are exponentially stable with the decay rate α. If
α is negative, the system is not necessarily unstable, but the
solutions of the systems are bounded by an exponential func-
tion. Denoting Wα(xt) = V̇ (xt) + 2αV (xt), the following
equality is provided:

Wα(xt) = ξT (t)
[
2MT

1 PM3 −MT
2 SM2 + 2αMT

1 PM1

+τm(2MT
3 SM2 + MT

3 RM3 + 2αMT
2 SM2)

−τ(t)(MT
3 RM3 + 2MT

3 SM2 + 2αMT
2 SM2)

]
ξ(t)

− ∫ t

tk
ẋT (s)(1− 2α(τm − τ(t))Rẋ(s)ds

Consider the integral term of the equation
above. It is split into two terms. The first one is



−(1 − 2ατm)
∫ t

tk
ẋT (s)Rẋ(s)ds. The second one

is −2ατ(t)
∫ t

tk
ẋT (s)Rẋ(s)ds. Applying the Jensen’s

inequality, this last term is bounded by:

−τ(t)
∫ t

tk
ẋT (s)Rẋ(s)ds ≤ − ∫ t

tk
ẋT (s)dsR

∫ t

tk
ẋ(s)ds

≤ −ξ(t)MT
2 RM2ξ(t)

The term 2ξT (t)NM2ξ(t) = 2ξT (t)N
∫ t

tk
ẋ(s)ds is intro-

duced. Using a classical bounding ensuring that

2ξT (t)NM2ξ(t) ≤ τ(t)ξT (t)N{(1− 2ατm)R}−1NT ξ(t)
+(1− 2ατm)

∫ t

t−τ(t)
ẋT (s)Rẋ(s)ds,

Combining the previous inequalities, the following in-
equality is obtained

Wα(xt) ≤ ξT (t) [Πα
1 + (τm − τ(t))Πα

2

+τ(t)N{(1− 2ατm)R}−1NT
]
ξ(t)

This inequality has to be satisfied for all values of the
delay τ(t) ∈ [0, τm[. As this equation depends linearly on
the delay function, it is necessary and sufficient to ensure
the negativity of the matrix at τ(t) = 0 and τm. Applying
the Schur complement on the vertice τ(t) = τm leads to the
stability conditions of Theorem 4. Integrating the differential
inequality over a sampling interval leads to

V α(xt) < xT (tk)Px(tk)e2α(t−tk)

The previous expression implies the definition of the
exponential stability (9).

Remark 2: This theorem can be also extended to the cases
of constant sampling period and polytopic systems. For a
space limitation, the details of the theorems are not presented
here but are straight forward.

V. SYSTEM WITH TWO SAMPLING PERIODS

In this section, the system is assumed to have to sampling
periods T1 and T2, i.e. the sampling input is sampled first
with T1 then with T2 and so on. Figure 2 presents an example
of sampling delay τ(t) corresponding to this problem. This
systems has been already exposes in [17] and dealt in [6].
The objective is to prove that system (1) for these two
sampling periods even if one of them is greater than the
maximum allowable sampling period. Exponential stability
conditions from Theorem 4 allows to quantify the conver-
gence and divergence of the solutions within each sampling
periods. As suggested in [11], combine this convergence
and divergence rates, stability conditions care derived. The
following theorem is proposed:

Theorem 5: Consider system (1) subject to the two sam-
pling periods T1 and T2. If there exist λ1, λ2, α1 and α2 ∈ R,
symmetric positive definite matrices Pi, Ri and Si ∈ Rn×n

and a matrix Ni ∈ R2n×n that satisfy for i = 1, 2:

Παi
1i + TiΠαi

2i < 0,

[
Παi

1i TiNi

∗ −Ti(1 + 2αiTi)R

]
< 0,

(11)

P1 < λ2P2, P2 < λ1P1, (12)

and such that

c = λ1λ2e
−2(α1T1+α2T2) < 1, (13)

where

Παi
1i = MT

1 PiM3 + MT
3 PiM1 −MT

2 SiM2 −NiM2

−MT
2 NT

i − (M1 −M2)T UiM2 −MT
2 UT

i (M1 −M2)
+2αi(MT

1 PiM1 −MT
2 RiM2),

Παi
2i = MT

2 SiM3 + MT
3 SiM2 + MT

3 RiM3

+(M1 −M2)T UiM3 −MT
3 UT

i (M1 −M2)
2αi(MT

2 SiM2 + 2(M1 −M2)T UiM3)

and where the matrices Mj , for j = 1, 2, 3 are given in
Theorem 1. The system (1) with the two sampling periods
T1 and T2 is thus asymptotically stable.

Proof: The proof is based on the discrete-time Lya-
punov theory together with Theorem 4 applied to the case
of constant sampling period. The notations V i, for i = 1, 2,
denote the functional derived by Pi, Ri, Si and Ui. Each
functional Vi corresponds to a sampling period. Consider the
kth sampling instant. Without loss of generality, it is assumed
that tk+1 − tk = T1 and tk+2 − tk+1 = T2. According to
Theorem 4, the conditions of Theorem 5 implies that:

∀t ∈ [tk tk+1[, V̇1(xt) + 2α1V1(xt) < 0
∀t ∈ [tk+1 tk+2[, V̇2(xt) + 2α2V2(xt) < 0

Integrating this differential inequality and noting
that V1(xtk

) = xT (tk)P1x(tk) and V2(xtk+1) =
xT (tk+1)P2x(tk+1), the following bounds are obtained:

V1(xtk+1) ≤ xT (tk)P1x(tk)e−2α1T1

V2(xtk+2) ≤ xT (tk+1)P2x(tk+1)e−2α2T2
(14)

Consider now the sampling instant k = 2k′. Without loss
of generality, after this sampling instant, the input is sampled
with the period T1. So at time tk+2, we consider V1(xtk+2) =
xT (tk+2)P1x(tk+2). By vertu of (12) and of the definition
of V2, one has:

V1(xtk+2) ≤ λ2x
T (tk+2)P2x(tk+2) ≤ V2(xtk+2)

Using (14), the following inequality is satisfied:

V1(xtk+2) ≤ λ2x
T (tk+1)P2x(tk+1)e−2α2T2

≤ λ2V2(xtk+1)e
−2α2T2

Applying the same bounded method yields:

V2(xtk+1) ≤ λ1x
T (tk)P1x(tk)e−2α1T1

≤ λ1V1(xtk
)e−2α1T1

Combining the two previous inequality leads to:

V1(xtk+2) ≤
(
λ1λ2e

−2(α1T1+α2T2)
)k′+1

V1(x0)

and V2(xtk+1) ≤
(
λ1λ2e

−2(α1T1+α2T2)
)k′

V2(xt1)

Then if condition (13) is satisfied, the terms V1(xtk+2)
tends to 0 as k is going to infinity. From the conditions
from Theorem 5, the variation of V1 are bounded by an
exponential function between the sampling tk and tk+2. The
same property also holds for V2. Finally, V1 and V2 converges
asymptotically to zero and the solutions of system (1) are
stable.



Time-varying period - -
Theorems τm NDV

[3] 0.8696 5n2 + 2n
[14] 0.8696 7n2 + n
[12] 0.8871 16n2 + 3n
[1] 1.009 8n2 + 4n
[9] 1.1137 3.5n2 + 1.5n
[7] 1.3659 0.5(n2 + n) + 1

Th.1 1.6894 3.5n2 + 1.5n

Constant period - -
Theorems τm NDV

[9] 1.3277 5n2 + n
[7] 1.3659 0.5(n2 + n) + 1

Th.2 1.7198 5n2 + n
Theoretical bound 1.72 -

TABLE I
MAXIMAL ALLOWABLE SAMPLING PERIOD τm

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

τ
2

 

 
α with Theorem 3
α with Theorem 4

Fig. 1. Relation between the exponential decay rate α and the sampling
period τm with the cases of constant and time-varying periods for Example1

Remark 3: Condition (13) can be easily adapted to other
sequences of sampling. For example, if the repeated sampling
sequence is T1, T2 and T1 once more, the conditions to
ensure stability becomes:

c′ = λ1λ2e
−2(2α1T1+α2T2) < 1

Remark 4: By taking U = 0 in Theorem 5, is is possible
to consider time varying sampling periods for T1 and T2.
However the condition should be rewritten differently:

c′′ = λ1λ2e
−2(2α1T1min+α2T2max) < 1

where T1min is the smallest stabilizing sampling period and
T2max is the largest unstable sampling periods.

VI. EXAMPLES

A. Example 1

Consider system (1) from [3], [9] with

A =
[

0 1
0 −0.1

]
, Ad =

[
0 0

0.375 −1.15

]

The results are summarized in Table I for time-varying
sampling and constant samplings periods. It can be seen
that the results from Theorem 1 and 2 are less conservative
than the one from the literature. Figure 1 shows the relation
between the maximal convergence rate α and the sampling
period in the constant and time-varying case. It shows that
the conditions from Theorem 4 also holds for negative values
of α.
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Fig. 2. Simulation of the states, input (continuous and sampled) and the
sampling delay τ(t) for Example 2 with two sampling periods

Consider now the same system with two different sampling
periods T1 = 1 and T2 = 1.9. From Theorem 2 (see Table I),
the system is not stable if only the period T2 is employed in
the sampler. However, based on the conditions of Theorem 5
with α1 = 0.21 and α2 = −0.11, choosing λ1 = 1 and using
the principle of the generalized eigenvalues to minimize λ2

under LMI constraints, we obtain λ2 = 1.0004, (which
finally means that P1 and P2 are approximatively the same
matrices). The last condition (13) holds since c = 0.998,
which ensure the stability of the system with one stabilizing
sampling period and an unstable one. Figure 2 shows the
simulation of the states, input (continuous and sampled)
and the sampling delay τ(t). In [6], the authors obtain less
conservative result based on a discrete-time approach. They
prove the system can be stable for instance when T1 = 1
and T2 = 2.5. Even if Theorem 5 do not ensure stability for
such sampling periods it is still interesting since it can deal
with system with parameter uncertainties.

B. Example 2

Consider the process model from [3] with

A =
[

1 0.5
g1 −1

]
, B =

[
1 + g2
−1

]

where |g1| ≤ 0.1, and |g2| ≤ 0.3. With the state feedback
gain K = −[2.6884 0.6649], in [3] and in [9], it was
respectively proven that the system is stable for any sampling
interval smaller than 0.35, 0.4476. In this article, Theorem 3
ensures that the system is stable for all samplings sequence
whose period is less than 0.602. Theorem 3 adapted to the
case of constant period ensures that the system is stable all
periods less than 0.703. It is clear that the stability conditions
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Fig. 3. Relation between the exponential decay rate α and the sampling
period τm with the cases of constant and time-varying periods for Example2

Theorems τm NDV
[3] 0.8696 5n2 + 2n

[14] 0.8696 7n2 + n
[12] 0.8871 16n2 + 3n
[9] 1.9999 3.5n2 + 1.5n
[1] 2.034 8n2 + 4n

Th.1&2 1.9999 3.5n2 + 1.5n

TABLE II
MAXIMAL ALLOWABLE SAMPLING PERIOD τm FOR EXAMPLE 3

are less conservative than the two others. Figure 3 shows
the evolution of the convergence rate with respect to the
maximum allowable sampling period τm for the cases of
constant and time-varying periods.

C. Example 3

Consider system (1) from [3], [9] with

A =
[
−2 0
0 −0.9

]
, Ad =

[
−1 0
−1 −1

]

The results on asymptotic stability are summarized in
Table II. It can be seen that the maximal allowable sampling
periods provided by Theorem 1 and 2 are the same as the
ones from [9]. In [1], the authors derive less conservative
result. This comes from the consideration of particular tools
dedicated to time-delay systems. Nevertheless, this example
show the limits of the approaches in such case since the
systems remain stable for some τm greater than 3.

VII. CONCLUSION

In this article, an analysis of linear invariant and time-
varying systems with constant and time-varying sampling
periods is provided. Tractable conditions are derived to
ensure asymptotic stability and also to obtained an estimate
of the convergence rate of the solutions. The examples
shows the efficiency of the method and the reduction of the
conservatism compared to others results from the literature.
Moreover the article cope with the stability analysis of
systems under several sampling periods. One of the periods
can be greater than the allowable sampling delay. This
has been treated by a continuous-time approach and allows
considering uncertain or time varying systems. Futur works
would focus on a reduction of the conservatism.
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