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Abstract. We focus on the adaptation of boosting to representatiocespeomposed of different

subsets of features. Rather than imposing a single weakdetr handle data that could come from
different sources (e.g., images and texts and sounds), ggestithe decomposition of the learning
task into several dependent sub-problems of boostingetiday different weak learners, that will

optimally collaborate during the weight update stage. Toie® this task, we introduce a new
weighting scheme for which we provide theoretical resultgperiments are carried out and show
that our method works significantly better than any comlxameadf independent boosting procedures.

Keywords: Machine learning, boosting, heterogeneous featuresetsib§features, convergence
proofs.

1. Introduction

Ensemble methods aim to combine the predictions on a leatask of a set of classifiers in order to
improve the accuracy that would be obtained by a single ngsis. As mentioned in [8], an ensemble

*This work was supported in part by the IST Programme of theofesn Community, under theaBcaL 2 Network of
Excellence, IST-2006-216886.
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method will be efficient if it is able to generate some divigrén the learned hypotheses. On the one
hand, this can be achieved by combining homogeneous ctassifie., built using a single learning al-
gorithm, from various probability distributions of the @itlered learning problem, as donebimosting
[10, 11], bagging[1], or random forest§2]. Another possible approach consists in learning heeero
neous hypotheses (e.g., decision trees, neural netwargest-neighbor-based classifiers, etc.) from a
single learning distribution and combining them in an edfitifinal classifier, as done stacking[23]

for instance.

Note that in this latter case, the notionhafterogeneitynly characterizes the model nature and does
not concern the data themselves. In other words, what happkeen each example in the learning set is
described by strongly heterogeneous features such agsstpittures, symbolic values or trees? In fact,
in their original forms, ensemble methods become eithgrgr@priate or insufficient.

Indeed, consider a dataset that would describe personghwith features, their first name and their
height and weight, whereas the target to predict would bgdineler. It is clearly insufficient to use only
the first name (and omit the other features) to achieve thig ta particular because many first names,
such as “Dana”, “Taylor”, “Jordan”, or “Claude” are sharedrben and women. But on the other hand,
it would be unfortunate not to use the first name of the perswhamly learn the target from the two
numerical features, since this strategy would artificié@dlgd unfortunately) increase the Bayesian error
of the problem.

Heterogeneous features often occur in real world apptinati For instance, the databaseMeT
[13] describes people with their faces, voices, fingerpriliand-shapes and online signatures. If the
objective is to predict whether a given person is a forgeratr then the information provided by each
feature is important. Another example is provided by theabases of on-line marketplaces such as
http://www.ebay.com Where each article is described with a picture, a textuati@a@and a price.
To design an intelligent user interface, one could be isteckin predicting the interest of a specific
consumer with respect to the features of the articles. Agamitting one attribute would be problematic.

However, heterogeneous features cannot be easily hangl#ftebsame algorithm without taking
some risks to lose relevant information. For instance, tate of the art that allows one to learn from
strings (or trees) is often based nrgrams [14], Hidden Markov Models [9] or algorithms that aise
to model long-term dependencies. In the field of Grammatidarence [15], new techniques based on
Multiplicity Automata [7] or Partially Observable Markov ddiels (RomMm) [4] were recently proposed
and today constitute indisputable standards to learn ftamstsired data. But all these techniques cannot
be adapted to learn from numerical values.

On the other hand, very powerful algorithms have been pexpas learn from those numerical
features. This is the case, for instance, of the Supportovédachines (Sm) [3]. During the past
few years, many kernels have been presented in the literatiawing the use of ®v on structured data
such as strings and trees. However, those kernels (e.gtrsmekernel, mismatch kernel or subsequence
kernel [6]) require the transformation of the original det numerical feature vectors. Therefore, even
if, from a technical point of view, the use ofv® on heterogeneous features is possible, we claim that
such a manner to proceed leads to the loss of relevant infaimauch as sequentiality properties, long-
term dependencies or information on the tree structurettt®reason, we aim to keep the data in their
original representation space in this paper, even if thagsjis constituted of both structured or numerical
attributes.

More precisely, our objective is to use specific algorithm®ach type of features and combine them
in an optimal way by an ensemble method. Note that such a&gyrditas already been used in machine
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learning. For instance, in [5], Cherkauer proposes to leatapendently an efficient classifier for each
type of features and use their predictions in a global hygsith However, the main drawback of such
an approach is the lack of interaction between the classifi@ring the induction process. Another more
complex solution consists in using the so-called cascadergézation [12]. Level O of the cascade is
built using one set of attributes and a dedicated learnen ttevel 1 combines another set of features
with the output of the first learner, and so on ... In this cisere actually exists a collaboration between
the classifiers, but it is limited due to the fact that thirattion is bottom-up, thus only unilateral.

To allow a full interaction between the classifiers, we pnégethis paper an adaptation of boosting
to such a context of heterogeneous features. Let us reeafitthtegy of boosting and its well-known
algorithm ADABOOST [10] (see Algorithm 1). AABOOST consists in successively trainirig times
a learning algorithmwL (for weak learner) on varying probability distributiomg over a learning set
Ls composed ofn examples. The resulting base classifigysare combined into an efficient single
classifierHr. At each new round + 1, the current distribution exponentially favors the wegybf
examples misclassified by the previous classffier

Algorithm 1 Pseudo-code of BABOOST.

Require: A weak learnemwL,
asamples = {(z1,v1), .- -, (Tm, ym)} Wherey; € {—1,+1},
the maximum number of iterations

Ensure: The (strong) combined hypothesisr

1. fori=1tomdo

wi () «— 1/m

3: end for

4: fort =1toT do

5. hy «— WL(LS,W;)

6 Y yoiey wi(ws)yihe ()

7.

8

9

N

e+ (1/2)In((1 + ) /(1 — 7))
Zy — > wi(x;) exp (—cpyihe (7))
for i = 1tomdo

10: Wiy 1(25) —— wi(x;) exp (—cpyihe(23)) /2
11: end for
12: end for

13: return Hp with Hp(z) = sign (Z,:T:1 Ctht(x)>

A first boosting solution to deal with heterogeneous featweuld consist in selecting for each
feature a relevant algorithm and in optimizing its perfonte by using AABOOST. At the end of all
the runs, one could combine the resulting hypotheses in sagento a global classifier. However, we
will experimentally show in this paper that this idea is nptimal. Indeed, boosting each weak learner
independently on the others does not allow us to take in axddbae relationships between the features.
So the main risk is to encounter an overfitting phenomenorrebier, from a theoretical standpoint, the
optimization of individual performances does not ensuregimization of the final classifier.

We think that a better way to proceed consists in learningsdiars in parallel at each step of boost-
ing, and so in taking into account all the information preddoy these classifiers in the weight update
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rule. This strategy requires the construction of a new weighscheme and the verification that it con-
serves the boosting convergence properties. Note thatiktlia new boosting scheme is intrinsically

dedicated to deal with heterogeneous features, its patarge in a more standard framework, where
features come from an unique source, is not challenged. ethdee claim that our new model can

overcome algorithmic drawbacks by splitting high-dimensil machine learning problems into several
smaller subtasks, but strongly collaborating during thestiag process.

This article is organized as follows. As mentioned before of our main motivations is to enable
the joint use of algorithms that are known to be efficientagitbn structured data (strings or trees) or
numerical features. Therefore, in Section 2, we considelblpms represented by two types of hetero-
geneous features. In this context, we present a hew bogstotgdure, called 2-80ST. In Sections
3 and 4, we prove that 2@0sT is actually a boosting algorithm that leads to the decreddwth
the empirical error and the generalization error. Then weyaaut experiments to show the interest of
our approach in Section 5; in particular, we show that ourhoetto combine classifiers outperforms
independently-boosted classifiers. Moreover, we expéttiatly demonstrate that 2#0sTremains ef-
ficient on homogeneous databases. We finally conclude ther pai$ection 6. As boosting more than
two weak learners in parallel is an interesting issue, we lzlded an Appendix where we discuss the
problem.

2. The Algorithm 2-BoosT

LetLs = {(z1,v1),-- ., (zm,ym)} be a finite set ofn learning examples. Each instancebelongs to
a domainX and is assigned to a boolean class {—1,+1}. We assume thats has been generated
according to some fixed but unknown distributiBrover ¥ x {—1,+1}.

Each example is described with strongly heterogeneousiresat So we assume that is some
Cartesian product’; x X,. For instance, in the first example given in Sectiomd s a set of persons
described by their first name, their weight and their heigbt}; is a set* of strings andt; = R x R
covers both the weight and height features. Let us assurhevéiaave two algorithms, denot&d ; and
WL, which will be used on their corresponding subset of featu@ur new boosting algorithm, called
2-BoosT, is presented in Algorithm 2.

At each step of 2-BoosT, a distributionw, is defined overs. Then, each learnewL;, j = 1,2,
uses its own view of the data (that is to say, the featuresibeadle) and the distribution; to produce
a hypothesish;;. Thenhy; andhy; are combined into a weighted classifier whose global respens
used to updatev;. Finally, the resulting hypothesiE is a combination of all the weighted hypotheses
produced by 2-BOST.

Concerning computation time issues, notice that®BTcan be run in parallel. Therefore, by using
two different machines, the total amount of running timewtimot exceed that required bypABOOST
on the worst algorithm amongL; andwL, (assuming a small communication time between processors).

3. Theoretical Results on the Empirical Error of 2-BOOST

The empirical errore(Hyr,LS) is the error of Hy computed on the learning sampls, that is, the
proportion of learning examples misclassified by the comiistrong hypothesis. In this section, we are
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Algorithm 2 Pseudo-code of 2-BOST.

Require: Two weak learnersvL,, WLo,
asamplaes = {(z1,91),- -, (Tm, Ym) },
the maximum numbeF of iterations

Ensure: The (strong) combined hypothesisr

1: for i = 1tomdo

wi () «— 1/m

3: end for

4: fort =1toT do

5 hip «— WL (LS, W)

6:  hot «— WLo(LS,Wy)

7

8

9

N

define function Z;(u1, ug) = Y ;% wi(x;) exp (—uryihie(x;) — uayihor(xi))
computecyy, ey € R that minimizes Z;(cy¢, cat)
: let Zy = Zt(clt7 Cgt)
10. fori=1tomdo

11: Wit (x;) «— wi(x;) exp (—crryihie(zi) — coyiho(:)) /2y
12: end for
13: end for

14: return Hp with Hp(z) = sign (Zthl 2521 cjthjt(x))

going to show that(Hy,LS) can be bounded by a quantity that decreases with the numibaosfing
iterations.

3.1. Conditions of the Empirical Error Minimization

Let us define

m

e(Hr,18) = (1/m) Y [Hr(x;) # yil,

i=1

where[r] is 1 if predicater holds and 0 otherwise.
Running 2-BbOsT, we obtain the following result:

Lemma 3.1, e(Hr,LS) < (]‘[tT:1 Zt> , where
Zy =Y wi(wi) exp (—cuyihi (i) — coyihon (i) - )
i=1
Proof:

LetA; = — Zthl (c1ryihie(z;) + caryiho(z;)). Unraveling the update rule of 2€BST, we get
wri1(x;) = wi(x;)exp(4;)/ <HtT:1 Zt). wy1 is a distribution overs andwi(z;) = (1/m), so

summinguwy 1 (x;) forall 1 < i < m yields <HtT:1 Zt) = (1/m) Y ", exp(A4;). On the other hand,
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[Hr(x:) # yi] = 1iff Hr(x;)y; = —1, that is to sayA; > 0. Thereforeexp(A;) > [Hr(z:) # yi.-
So we deduce that Hr, LS) < (1/m) > exp(4;) = (Ht 1Zt) 0

As a consequence of Lemma 3.1, the smdligr. . ., Zr, the smaller the empirical error. Therefore,
as for ADABOOST, 2-BoosTaims to compute, at each round, the values pndcy; that minimizeZ;.
To solve this problem, we first establish a technical result:

Lemma 3.2. Z; is a convex function.

Proof:

The convexity of functionZ, can be established by showing that its Hessian matrix igipesemi-
definite (see [21, Appendix A]). Below, we provide a direco@ir by using the definition of a convex
function. Letu = (u1,uz), V= (vi,v2) € RZand0 < 6 < 1.

Zi(Ou+(1—0W) = Z (Ouy+(1— 9)?)1, Ous + (1 — 0)vs)

= Zwt x;) exp(— Z (Ouj + (1 — 0)v;) yihje(x;))
7=1

— Zwt(:ci) exp (AU (z) + (1 — 0)V(z)) (2)

i=1

with J V@) =~ >0 wiyihe(a:)

2
Viz) = =3 25-1 viyihe(w:)
Since exp is a convex function, we have
exp (AU (z) + (1 — 0)V(z)) < Oexp(U(zx)) + (1 — 0) exp(V (x)).
Combining this inequality with Equation (2) yields
Zy (Qu+ (1 —0)) < 0Z;(u) + (1 — 0)Z(v),

that is the statement of the Lemma. O

Therefore, by Lemma 3.1, reducing the empirical error cgigasn minimizing Z;, and thanks to
Lemma 3.2, the minimization consists in finding andcy; that zero the two first-order derivatives of

.
07, 0Z;
) (222 = . 3
< 80” ) < 802t > 0 ( )
Let us investigate this problem.

We first decomposg; by separating the elements of the sum with respect to théymand negative
values ofy;hi¢(z;) andy;hat(x;). So we define the sets:

Ei(++) = {1 <i <m: (yihi(wi) = +1) A (yihat(xi) = +1)
t(+=) = {1 <i<m: (yihu(ri) = +1) A (yiha(x:) = —1)
t(—+) = {1 <i<m: (yihu(wi) = —1) A (yiha (i) = +1)
E(—=)={1<i<m: (yih1(z;) = =1) A (yihot(z;) = —1)}.

&
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For instanceE,(++) denotes the set of examples;, y;) which are correctly classified by both; and
hot, whereast, (+—) is the set of examples correctly classifiediyy and misclassified bi,. We also
introduce the corresponding weights:

Wi(++) = Z wi (),

t€R(++)

and weightdV;(+—) andW;(—+) andW,(——) similarly.
These weights allow us to rewrite Equation (1) and compugefitist order derivatives of; with
respect ta:y; andey;:

Zi(cr,car) = Wi(d4)e 72 4 Wy(4—)e c1ete

+ Wiy(—)et ™2 4 Wy (——)etitrez, 4)
(0Z;)0c1y) = —Wi(++)e 2t _ W (—)e ez

+ Wi(—4)e ™2+ Wi(——)e e =, (5)
(0Z;)0cat) = —Wi(++)e 72 L Wy (4—)e e

— Wi(—H)e ™2 - Wy(——)erer = 0. (6)

In order to solve Equation (3), we add and substract Equatfghand (6), that yield:

1 Wi(++)

ciy t+co = §1H<Wt(——)> ) (7)
1 Wi(+-)

C1t — Cot 3 In (Wt(—+)> . (8)

So we finally deduce the following result:

Theorem 3.1. The empirical error of 2-BosTis minimal when for alll <t <T"

1 Wi (++)Wi(+-)
o = 30 (W) ©
B ln Wi(++)Wi(—+)
= i (WEowE ) (10)
Moreover, the minimal value of; is:
20/ Wi(++)Wi(—=) + 2/ Wi(+—) Wi (—). (11)

Note that Equations (9) and (10) are meaningful onlWif(++) # 0 and Wy(+—) # 0 and
Wi(—+) # 0 andW;(——) # 0. We assume these relations in the following but they may ofat im
practice. In this cas@-BoosTwill have to stop and returf/;_;, as AbABoosTdoes wheiV;(+) = 0
or W(—) = 0, that is, when the current hypothegis produced by the learner perfectly classifies (or
miclassifies) the learning examples [19].
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3.2. The Characteristic Parameters of 200ST

It is well-known that the empirical error of BABOOST exponentially converges towards 0 with the
number of iterationg” [20]. The usual way to prove it consists in showing that edgcts significantly<
1forall t > 1. In this case, the product df;’s gets closer and closer to 0, at each round DABOOST,
thus the empirical error gets closer and closer to 0 too, grha 3.1.

Showing thatZ; < 1 is usually done by introducing a characteristic parameteA DABOOST,
denotedy; and called theedgeof the hypothesid; [19]. Parametery; plays a central role in theseak
learning assumptiofil6] that is used to prove the convergence afB00sST. Note that in Algorithm 1,
we gave the pseudo-code 0DABOOST using parametet;, rather than the historical parameter called
e; [11]; both are of course related (thatig,= 1 — 2¢;).

The aim of this section is to display the proper characiergrameters of 2-BosT. Let X; and
X5 be two random variables that specify the correctness ofthgges:;; andhs; respectively.X; takes
two values, either-1 whenh;y, correctly classifies an example (thatdgshi:(x;) = +1), or —1 when
hi1; makes an error (that ig;h1:(z;) = —1). Similarly, X, takes either-1 whenhy, correctly classifies
an example, or-1 whenho, makes an error.

In this context, the sets of weight; describe the joint distribution oX; and X5:

= P[X;=+1AXy=+]]
= P[X;=+1AXy=—1]
= P[X;=—-1AX,=+]]
= PX;=-1AX,=—1].

Now let us focus or¥;. By Equation (4), we get:
Zi(cipycr) = E[e-ntXimeniz) (12)

so Z, is theLaplace transfornof the random paif X, X2). DevelopingZ, in power series yields:

Z(cit, cat)

Z 8p+th 0.0 sztcgt
5p01t3q62t " (p+aq)!
and for such a transform, it is known that for ally € N,

iz,
80%8 Cgt

(0,0) = (-PHME[XTX]], (13)

whereE[X? X{] is a joint moment ofX; and X5.

In other words,Z, is a moment-generating function that determines completetl uniquely the
distribution of (X, X3). Let us use Equation (4) to compute the different derivatoeZ; in (0,0) and
plug the results into Equation (13). We get, foraly > 0:

E[X;"X3Y = E[1] =1,
EXH XY = E[X),
EX7 X3 = E[X),

E[x2PH! x 29t E[X|X5)].
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In consequence?; can be totally described with only three paramet&sy; |, E[X;] andE[X; X5]
(plusE[1] = 1), since every higher-order moment(of;, X3) is equal to one of these values.

In terms of boostingE[X;] andE[X;], that we shall now denotg;; and~.;, are the edges of the
hypothesesi,; andhy;. They quantify the relevance of both classifiésg and hy; with respect to the
class of examples. Indeegh; and~,; are the expected values of the correctness of the answérs of
andhy;, thus real numbers i1, +1] that measure the difference between the proportions oécibyr
classified and misclassified examples:

e =E[X1] =) wi(w)yihae(w:), (14)
i—1
vor = E[Xo] = Zwt(wi)yz’hzt(ﬁﬂz’)- (15)

i=1

ConcerningE[X; X»|, we transform it into more natural quantities: twvarianced; of X; and X,
and thecorrelation coefficienp; of X; and X5:

(St = (COV[X17X2]
E[X1Xo] — E[X4]E[X>]

= Z we () hag(z5) hor () — Y1evts (16)
i—1

(COV[Xl, XQ]

Vv VarX;]y/VariXa)]
¢

\/1 - W%t\/l — 5
Since the classifiers,; and ho; collaborate for updatingv;, it is not surprising to findp; as an

important parameter of 2®0sT. It denotes the level of independence betwéénand X,. Other

measures of independence could be used, for instance #relass correlation coefficient of; with

respect taX;, or they?-distance betweeX; and X, but these measures are basically relateg tdue

to the fact thatX; and X, take only+1 and—1 as values.

Hence,Z; is totally determined by¢, vo: andd; (or equivalentlyp;). So let us rewrite the minimal
value ofZ;, given by Equation (11), in function of these parameteraudfigns (4) and (13) yields:

pt =

17

Wi(++) + Wi(+—) + Wie(—+) + Wi (——) = 1,
Wi(++) + Wi(+—=) = Wi(—+) = Wi(—=) = 71
Wi(++) = Wi(+=) + Wi(—+) = Wi(—=) = 72,
Wi(+4) = Wi(+=) = Wi(—+) + Wi(—=) = 0 + Y1yt
Wi(++) = (0 + (1 +y1)(1 +72)) /4,
Wi(+=) = (=6 + (1 +71)(1 —v2)) /4,
T Wil = Ch =)/, (9
Wi(==) = (0 + (1 —y1)(1 —2))/4,
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Finally, plugging Equations (18) and (17) in Equation (1Blgs:

1
Z; = 5\/6? + 204 (1 4+ y1720) + (1= 73) (1 = 73)
1
+ 5\/5? —20,(1 — y1ev2e) + (1 = 73) (1 — 43,
whered; = p; \/ 1- V%f\/ =5 (19)

3.3. Convergence of the Empirical Error

The aim of this section is to provide a bound4f that allows us to show the exponential convergence
of the empirical error of 2-BosTtowards 0. We first establishvaeak learning assumptiofi6, 19],
that is to say, conditions under which bath ; andwL, areweak learners

Definition 3.1. LetLs = {(z1,v1), .., (zm, ym)} be afinite set ofn learning examples. An algorithm
WL is aweak learnemith respect ta_s iff there exists a constart > 0 such that for all distributiond
overLs and all hypotheses = wL(LsS,d),

m

Z d(x;)y;h(z;) > T.

i=1

Assuming thatwvL; andwL, are both weak learners implies that there exist two corsiant’s such
that for allt > 1, v1; > 'y > 0andyy; > I's > 0.

Let us now study the conditions of convergence of the engligcror. To achieve this goal, we use
Equation (19) and study; as a function ofp; assuming that;; and~-; are constants. Omitting the
technicalities, we can show that;

)
1. when0 < vy < 79 < 1, Z; reaches a maximum,/1 — ygt, inp; = %, /1_—1%’5 and
1t

. . _ A2
2. wheno < 4 < 711 < 1, Z; reaches a maximum,/1 — 7%, in p, = 22 17—3
2t

In other words, we get:

Zy < /1 — max(7ig, Y21)2. (20)

Note thatp; does not appear in this bound: The empirical error of@BT is not influenced by the
correlation betweeh, andhsy; (that will not be the case of the generalization error).

We now assume that’L; and wLs are both weak learners. Therefore, there exist two corsstant
I'1,Ty such that for alk > 1, vy, > T’y > 0 andvyy, > I'y > 0. LetT'y = max(I'y,I'y). We deduce that:

FZ
Zy <4/1—-T3 <exp <—70> < 1.

Therefore, by Lemma 3.1, we can conclude that:
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Theorem 3.2. Under the weak learning assumptiar{Hr,LS) < exp (—7T3/2). So, the empirical
error of 2-BoosT converges to 0 whelfi — +oo.

Note that Definition 3.1 specifies a weak learmar with respect tall the distributionsd that may
be defined overs. Basically, one should only be interested in the distriimgiv;. In fact, this definition
allows us to compare the convergence speedmiBoosTand 2-BbosT. Indeed, let17 (resp.car)
be the empirical error of the classifier produced byaBoosTwhen run ornLs with wiL, (resp.wLs).
Itis easy to show that;r < exp(—7T%/2) andear < exp(—TT13/2). Ase(Hr,LS) < exp(—TT3%/2)
with I’y = max(I'y,T'2), we conclude that:

Theorem 3.3. The convergence speed of 23BsT, run with bothwL; andwLy, cannot be worse than
the worst convergence speed abABOOST, run withwL; andwL independently.

4. Convergence of the Generalization Error

The generalization error of any learnt classiffés the probability thalf misclassifies any new example.
Concerning MABOOST, one often observes that the generalization error of thédiassifier decreases
with the numbelT of iterations. In [20], the authors explained this phenoamehy relating the gener-
alization error and the margins of the learning examplesreéMphisticated but realistic bounds were
proposed in order to provide quantitative explanationg.[18 this section, we recall these results and
extend them to 2-BosT.

4.1. Decomposition of the Generalization Error

LetH = {hi, hs,...} be aclass of binary classifiers of VC-dimensibp. Let co(H) denote the convex
hull of H, that is, the set of all finite convex combinations of hypet

CO(H) = {f = Zazhz oy > 0and ZO&Z‘ = 1}

Notice that given a particulaf € co(H) and an instance, f(xz) = ), o;hi(x) is a real number in
[—1,+1]. Its sign,+1 or —1, determines the class assignedbto =. Themargin|f(z)| is a measure
of the confidence thaf gives on its prediction of the class of

It was proved in [18] that, given a sample = {(x1,41),- .., (Tm,ym)} Of m learning examples,
drawn independently from some distributiBhover X’ x {—1,+1}, and with probability at least — ¢,
forall f € co(H) andé > 0, thegeneralization errorof f, that is,Pp[f(x) # y], is smaller than:

S(fi18)+ O (%@) +0 ( w> . (21)

The first term above;? (£, Ls), is theempirical margin-errorof f onLs. It denotes the proportion
of learning examples that are either misclassified, or ctyrelassified but with a small margih

L) = > [ ) < 6]
=1
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The remainder of Expression (21) is a complexity penaltyntelhe bound presented in [18] im-
proves that given in [20] by removing a factgflog m. It is rather clear that if is able to achieve large
margins orLs, thenf andé can be chosen large, so that Expression (21), thus the djgatoa error of
f itself, is small.

4.2. The Case of BOOST

The previous result holds for all voting methods, thus atsd®?fBoosT. Indeed, the global hypothesis
returned by 2-BosTis Hy(z) = sign(fr(z)) with

5 — Yoy (c1thie(z) + cathoy ()
frte) = ST (e +cz) 22

thus Hy = sign(f) for somefr € co(H).

However, 2-B>0sT has remarkable properties. On the one hand, it uses a sppeaicd’{ of hy-
potheses, that is the union 8f; and,, the respective spaces from whowm ; andwL, select their
hypotheses. By the definition of the VC-dimension [22], wdulte thail;, = min(dy,, dy,). SO, up
to constants, the penalty term in Expression (21) is the s#srbat of the best run of BaBoosTon
WLy andwLs.

On the other hand, we claim that the empirical margin-eremrelases with the number of iterations.
Indeed, we get:

Lemma 4.1. &%(fr,Ls) < <HtT:1 Zg’t), whereZy ; = Z,W,; (++4)2 Wy (——)9/2.

Proof:

LetA4; = — 25:1 (Cltyihlt(xi) + C2tyih2t(55z’)) andB = 92?:1(0115 + C2t)- From Equation (22), we
deduce thafly; fr(z;) < 0] = 1ifand only if A; + B > 0, that bringsexp (4; + B) > [yifr(xz;) <
0]. Therefore,c?(fr,Ls) < (1/m)> 1", exp(A;)exp(B) = exp(B) <HtT:1 Zt), by the proof of
Lemma 3.1. Finally, sincey; + co: = (1/2) In(Wy(++)/Wi(——)), we deduce thatxp(B) =

<HtT:1 Wt(++)9/2Wt(——)—9/2), that yields the result. O

Let us assume for the moment that the hypothésesnd ho; are independentpf{ ~ 0). Such an
assumption is often formulated in order to prove the efficyesf ensemble methods [8]. In such a case,
by Equations (18) and (19), we have:

Zy = \/(1 - 'Y%t)(l - 72215)7
Wi(++) (14 71e) (1 + v2e) /4,
Wi(—-) (1= y1e) (1 —v2e)/4.

12

12

So by Lemma 4.1, we get:

146 1 146 1-6

)
Zor ~(14+7v1)2 (1 —v1e)2 (T472)2 (1 —ry2)72 .

140 1-6

It can be shown [20] that if < ~1;/2, then(1 + 1) 2 (1 —v1¢) 2 < 1 (and the same fofy;). So
using Lemme 4.1, we conclude:
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Theorem 4.1. Given a fixed margir® > 0, if at each iteration of 2-BosT, the hypotheses produced
are (1) independenp( ~ 0) and (2) their respective edges and~y,; are> 26, thenZ,; < 1. So the
empirical-margin erroe? (f7, LS) of 2-BoosT converges towards 0 with the number of iterations.

The generalization error ofr will thus decrease with the number of iterations, by Expoes§21),
that will be confirmed from an experimental standpoint intieecs.

4.3. Discussion on the Independence Assumption

By assuming the independence of the hypotheses at each@b@r8lo0sT, we have shown thaty ; <
1, and we have deduced thet( fr, LS) converged towards 0. This independence assumption could be
perceived as being too strong from a practical point of viéavthis section, we justify that it can be
discarded without challenging the convergence of the gdimation error.

In Figure 1, we show the shape&f ; as a function of the correlation coefficigmtfor fixed values of
~1¢, Y2r andé. Note here that we tested several values confirming a sitmélaavior as the one observed
in Figure 1.

1.004 T T T T T T T T T

1.002 |- N

0.998 - B

0.996 B

0.994 H

0.992 -

0.99 ! ! ! ! ! ! ! ! !
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 1. Zy . as a function op; when~;; = 0.05, y2; = 0.07 andd = 0.02; notice thatZy , becomes infinite
when the correlation coefficiept is strongly negative.

We can make the following remarks. Firstly, it is rather clibat whenp; is around 0, as we assumed
in Theorem 4.17, , is smaller than 1. Moreover, we can notice that @& Twill also behave well on
new data ifp; is often strongly positive. Indeed, in such a cdsg,andhs; agree on the label of alImost
all the learning examples, so these classifiers will proballe the same behavior in the presence of
new examples. However, the interest of using Qe T is limited in this case, since it has the same
behavior as AABoosTworking with eitherwL; or wis.
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The only case which challenges our framework occurs wheis strongly negative. Actually, in
such a context, we can observe tigt, > 1. This is not surprising, sincg; ~ —1 means that the
hypothesesi;; and hy; disagree on the class of almost all learning examples. $f dften happens
during the iterations of 2-BosT, then the global hypothesif-, that results of the combination of all
h1+ andhs;, will certainly perform randomly on any new data. Howevertice that in practice, we never
faced a so strongly negative correlation between the hyseth

5. Experimental Results

We present in this section the experiments we carried outdardo assess the generalization abilities
of 2-BoosT. In particular, we aim to show that the global hypothesisdpo®d by 2-BosT from two
learning algorithmsvL, andwL is better on average than any combination of hypothesesipeodby
ADABoOOSTfrom wL; andwLs independently run. To achieve this task, we will test two boration
methods:

Method A: Both weak learners are boosted individually witm#BoosT. We consider the resulting

classifiersfr(z) = (X[ crhu(2)) /(3 e) and fi(x) = (.2, ¢hi(x))/ (i ¢})- Method
A consists in returning the sign gt (x) + f5(z).

Method B: The same as Method A, except that the voting method retumsitn of the weighted
combination(3>/_; ;) fr(x) + (1=, &) ().

Note that, of course, many other combinaisons of classifieatd be studied, methods A and B being
the most natural.

5.1. Results on theSTUDENTS Database

The aim of this section is to show the relevance of our appréaat¢he presence of data described with
strongly heterogeneous features. To achieve this taskw2-BoosTon the databaseT®DENTS, that
contains the marks obtained by 1877 students during spent&vEach instance is described by:

e astring that is the first name of the student,

e anominal attribute that encodes the selected sport (Dance, Tenieawer) by the student,
e anordinal feature that represents the obtained mark and

e abooleanvalue that encodes the gender of the individual for females,—1 for males).

The learning task consists in building a classification nhpdedicting the gender of a person in func-
tion of his first name, selected sport and mark. Some of thestares seem to be partially discriminative
to learn the target concept. Indeed, it is well-known thatc®o is often chosen by boys while Dance is
usually selected by girls. However, Tennis can be equalbseh by both genders. On the other hand,
the boys are often more interested in the practice of spand,we can wonder if there is a statistical
dependence with the obtained mark. Finally, the first nartezglg give a lot of information about the
gender of the individuals. However, this is insufficient &rfectly discriminate the two classes, due to
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the overlap of the two considered distributions, as we éxpthin the introduction of this paper. So, this
database is clearly interesting to test the ability of @B Tto deal with heterogeneous features.

We consider two weak learners in this experimental study dibcrete features (selected sport and
mark) are tackled with a decision stump. Concerning the fiashes, we used a bigram-based learner
[14]. Roughly speaking, two bigrams are built, one per classand—1), that allows us to assess the
probability of any string relatively to each gender. Theelabf any new string is then assigned by the
bigram that maximizes this probability.

Figure 2 presents the results we obtained (with a 5 fold evaBdation procedure [17]) over 50
iterations with (i) 2-B>osT, (ii) the two single boosted weak learners, and (iii) th@mbinations by
Methods A and B. We can make the following remarks. First, wierthat both Methods A and B
outperform each single boosted algorithm, not only in teofngeneralization accuracy but also of em-
pirical accuracy, that means that each type of featureseit® learn a subpart of the target concept.
Moreover, 2-BbosToutperforms both Methods A and B, that proves the interestiohoosting scheme
with respect to combining independently-run algorithnts.advantage is statistically significant using a
Student paired t-test.

5.2. Results on UCI Repository Databases

In a second series of experiments, we verified that the behalsserved in the previous section was not
an artefact due to the specificity of the database. Theref@eised 13 databases coming from the UCI
Repository. Since most of them are homogeneous (i.e., composed ofrésati the same type), we
have simulated heterogeneity by randomly splitting theo$étatures into two disjoint subspace¥; (

X>) of equal size. We have ruirBoosTwith 2 weak learners: A decision stump algorithm and a naive
Bayesian learner.

Table 1 shows the results we get in this setting. For eaclbdsgga we present its sifes|, its number
of original features #Feat, and the generalization acguiac5 fold cross-validation) we obtained for 2-
BoosT, Method A and Method B. Moreover, we indicate in underlinedtf the method which reached
the best result. From this table we can make the followingarks

First, for 9 databases (over 13), our boosting procedureth@best behavior, versus 4 times for
Method B and none for A. Moreover, we have computed the aeeaaguracy, by weighting each indi-
vidual accuracy by the learning set size. 2®sTreaches a rate @&2.70%, that is much higher than
75.97% of Method A (+6.73 pourcentage points in favor of 2e®sT) and significantly higher (using a
Student paired t-test) thai.19% of Method B (+1.51 points).

By analyzing the results according to the learning set simecan also remark that the advantage
of 2-BoosT in comparison with Method B (which is the closest) seems tdiigber on average for
small databases. Actually, the average accuracy for degabeontaining less than 2000 instances is
about77.8% for 2-BoosT and 75.6% for Method B (2.20 points), while this difference is only of
+1.30 points for databases with more than 2000 instances. Thist teréngs to the fore the necessity,
particularly on small datasets, of a collaboration betwaath classifiers.

thttp:/www.ics.uci.edubmlearn
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90 T T T T
2-boost
Boosted bigram -------
Boosted stump --------
Method A
Method B ——--~

85 -

75 -
70 .

65 | -

60 1 1 1 1

0 10 20 30 40 50
Algo Empirical Accuracy | Generalization Accuracy
2-BoosT 97.73% 85.10%
Boosted stump 66.11% 64.10%
Boosted bigram 90.20% 79.22%
Method A 90.26% 81.57%
Method B 92.12% 80.87%

Figure 2. The curves represent the evolution over 50 itmatof the generalization accuracy using 8dsT, a
Boosted stummBoosted bigram, Method &ndMethod B The table shows the average results after 50 iterations
of the empirical accuracy and the generalization accuracy.

5.3. Behavior of 2BoosTon Homogeneous Databases

In this last series of experiments, we wanted to verify if @ Tremains efficient, relatively to Methods
A and B, in the case diomogeneoudata. In other words, what happens when the whole set ofrésatu
is used by both learning algorithms? Is it still relevant $8 2-BoosT1?

Table 2 shows the results we obtained by 5 fold cross-vididatising the same format as that of
Table 1. First of all, we can note that the difference, in favbour approach, between 2e®sT and
Methods A and B is considerably reduced. This behavior isagirising since the three methods have
now access to the entire database, thus to more informaliom.advantage of collaborating during the
learning is reduced. However, despite this, note that tfierdhce remains statistically significant using
a Student paired t-test between &®8sTand methods A and B.

Moreover, these results confirm the relevance and the isyatiilour method since 10 times over 13
it obtains the best result. Finally, as we did before, we astenh the average accuracy according to the
size of the databases. The previously mentionned behanaains the same. Actually, despite the fact
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Table 1. Comparison af-BoosTtwith Methods A and B on 13 databases. Each weak learningigigois run
from a subset of the original features.

Base ILs| | #Feat || 2-BoosT | Method A | Method B
Austral 2756 15 86.97 73.00 86.39
Balance 2496 5 92.05 71.39 89.51
Bigpole 1996 5 67.59 62.32 63.48

Breast 2792 10 96.24 95.88 96.67
German 1004 25 73.10 73.30 73.60

Glass 167 10 74.40 72.81 72.61

Heart 274 14 79.19 79.17 79.91

Horse 1468 23 79.90 73.50 78.68

lonosphere | 736 35 98.91 92.67 93.08
Pima 3068 9 73.01 72.62 72.62
TicTacToe | 2396 10 78.96 71.62 74.96
WhiteHouse | 439 17 96.89 95.80 95.05

xd6 604 11 74.83 70.86 75.33
Average 1728 14 82.70 75.97 81.19

that the differences are slightly reduced, the average Bb2sT is higher (+0.59 points) for datasets
containing less than 2000 instances, while its advantagelisof +0.28 points when there are more
than 2000 examples.

6. Conclusion

As far as we know2-BoosTis the first boosting procedure able to deal with heterogenésatures. We
provided exact theoretical results in the case of@BT1and the experiments confirmed that it allows
dramatic improvements in terms of accuracy with respechtolesic combinaison of the two learned
classifiers.

Even if we think that 2-B0sTis sufficient to tackle a large range of machine learning lerol, the
case oft > 2 weak learners remain to be studied. In Appendix (see beleashow that the convergence
proofs require the call of complex approximation methodadsess the confidence parameters used in
final linear combination of the hypotheses.

Why so many efforts to prove the convergencé&-d00sT1? In fact, while several numerical vectors
can be actually concatenated into a single vector, thengigsuess clear as soon as one considers several
strings and trees. Hencke;BoosT could be able to approach any problem with heterogeneotigrésa
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Table 2. Comparison af-BoosTwith Methods A and B on 13 databases. Each weak algorithmmisvith the
entire set of features.

Base ILs| | #Feat | 2-BoosT | Method A | Method B
Austral 2756 15 87.26 87.84 87.45
Balance 2496 5 98.10 97.14 97.46
Bigpole 1996 5 68.04 67.53 67.48

Breast 2792 10 97.39 96.10 96.45
German 1004 25 73.10 73.30 73.60
Glass 167 10 81.65 79.95 81.03
Heart 274 14 81.02 81.02 78.81
Horse 1468 23 85.35 76.63 84.60
lonosphere | 736 35 92.26 91.03 91.03
Pima 3068 9 73.01 72.62 72.62
TicTacToe | 2396 10 91.95 90.19 92.41
WhiteHouse | 439 17 98.30 97.12 97.41

xd6 604 11 75.82 75.49 75.49
Average 1728 14 85.60 84.34 85.22

Appendix: From 2-Bo0osSTto k-BOOST

All the results we have established above aim at boostingiteak learners in parallel. Recall that the
advantage of our approach is that learners collaborate @mtdlmute to the definition of the reweighting
rule, at each step. We have shown in the experiments thatauepproach was more relevant than
any combinaison, computedposteriorj of strong hypotheses resulting of two independent (thinsibl
boosting procedures.

In this section, we investigate the problem of boostingeak learners in parallel rather that “only”
two. Basically, this leads us to study Algorithm 3 below. Aefdre, we consider a sampies =
{(x1,11),-- ., (Tm,ym)} drawn from a fixed but unknown distributioP over X x {—1,+1}. We
assume that each example is described with strongly heteeogis features, st is some Cartesian
productX; x Xy x ... x X} and we assume that we hakalgorithms, denote@Lq, ..., WL, which
will be used to learn from on their specific subset of features

As ADABoOOSTand 2-BbosT, k-BoosTaims at minimizing the empirical error of the final (strong)
hypothesis:

e(Hr,Ls) = (1/m) Z [Hr(z:) # yi].-

=1

It is not difficult to show that minimizing this error conssin minimizing theZ, function. Indeed,
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Algorithm 3 Pseudo-code df-BOOST.

Require: A set of weak learnerg/L, ..., WL,
asamplaes = {(z1,91),- -, (Tm, Ym) },
the maximum numbeF of iterations

Ensure: The (strong) combined hypothesisr

1: for i = 1tomdo

wi () «— 1/m

3: end for

4: fort =1toT do

5. forj=1tokdo

6: hji «— WL;(LS, W)

7

8

9

N

end for
define function Z;(u1, ..., ug) = > " we(z;) exp (— Zle ujyihjt(xi)>
;. computecyy, ..., ck € Rthat minimizes Z;(ci¢, ..., crt)
10: let Z; = Zt(clt, .. ,th)
11: fori=1tomdo
12: W1 () —— wi(z;) exp (— Sk ciyihi(z )> /Z
13: end for
14: end for
15: return Hp with Hp(x) = sign (Zthl Z§:1 cjthjt(x))

extending Lemma 3.1, we get:
k

m
e(Hr,LS) (H Zt> , whereZ; = Zwt(aﬁi) exp Z —cjtyihe(z;)
i=1 Jj=1
Moreover, a global minimum of; exists, because Lemma 3.2 generalizes, that;iss still a convex
function. However, contrary to what happens in the dase 2, an analytic expression of the optimal
coefficientscyy, . . . , ¢k that minimizeZ; cannot be found. They can only be approximated by using a
standard Newton-Raphson method, for instance.
The probabilistic interpretation df; as a Laplace transform (see Section 3.2) also generalizes:

k
Zy(crts---rce) = E |exp Z—Cthj ;
=1
and
opit--tpk Zy

ETINET

Once computed, the derivatives&fand the previous relations show tét-1 momentE[ X1 ... X7*]
are necessary to descritlg. So proving thatZ; < 1 under the standard weak learning assumption is
clearly intricate, although probably correct.

At last, concerning the generalization error, the analgsthe penalty term still holds, but of course,
showing that the margin-error is 1 is impossible using Schapire & Freund’s standard technigj0p

(0,...,0) = (=1)PrF-FPREXP . XPF],
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