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We give a geometric characterization of vectorial Boolean functions with differential uniformity ≤ 4. This enables us to give a necessary condition on the degree of the base field for a function of degree 2 r -1 to be differentially 4-uniform.

Introduction

We are interested in vectorial Boolean functions from the F 2 -vectorial space F m 2 to itself in m variables, viewed as polynomial functions f : F 2 m -→ F 2 m over the field F 2 m in one variable of degree at most 2 m -1. For a function f : F 2 m -→ F 2 m , we consider, after K. Nyberg (see [START_REF] Nyberg | Differentially uniform mappings for cryptography[END_REF]), its differential uniformity

δ(f ) = max α =0,β ♯{x ∈ F 2 m | f (x + α) + f (x) = β}.
This is clearly a strictly positive even integer.

Functions f with small δ(f ) have applications in cryptography (see [START_REF] Nyberg | Differentially uniform mappings for cryptography[END_REF]). Such functions with δ(f ) = 2 are called almost perfect nonlinear (APN) and have been extensively studied: see [START_REF] Nyberg | Differentially uniform mappings for cryptography[END_REF] and [START_REF] Carlet | Codes, bent functions and permutations suitable for DES-like cryptosystems[END_REF] for the genesis of the topic and more recently [START_REF] Berger | On almost perfect nonlinear functions over F 2 n[END_REF] and [START_REF] Budaghyan | Two classes of quadratic APN binomials inequivalent to power functions[END_REF] for a synthesis of open problems; see also [START_REF] Budaghyan | New constructions of almost perfect nonlinear and almost bent functions[END_REF] for new constructions and [START_REF] Voloch | Symmetric cryptography and algebraic curves[END_REF] for a geometric point of view of differential uniformity.

Functions with δ(f ) = 4 are also useful; for example the function x -→ x -1 , which is used in the AES algorithm over the field F 2 8 , has differential uniformity 4 on F 2 m for any even m. Some results on these functions have been collected by C. Bracken and G. Leander [START_REF] Bracken | New families of functions with differential uniformity of 4[END_REF][START_REF] Bracken | A highly nonlinear differentially 4-uniform power mapping that permutes fields of even degree[END_REF].

We consider here the class of functions f such that δ(f ) ≤ 4, called differentially 4-uniform functions. We will show that for polynomial functions f of degree d = 2 r -1 such that δ(f ) ≤ 4 on the field F 2 m , the number m is bounded by an expression depending on d. The second author demonstrated the same bound in the case of APN functions [START_REF] Rodier | Bornes sur le degré des polynômes presque parfaitement nonlinéaires[END_REF][START_REF] Rodier | Bounds on the degrees of APN polynomials[END_REF]. The principle of the method we apply here was already used by H. Janwa et al. [START_REF] Janwa | Hyperplane sections of Fermat varieties in P 3 in char. 2 and some applications to cyclic codes[END_REF] to study cyclic codes and by A. Canteaut [START_REF] Canteaut | Differential cryptanalysis of Feistel ciphers and differentially δuniform mappings[END_REF] to show that certain power functions could not be APN when the exponent is too large.

Henceforth we fix q = 2 m . In order to simplify our study of such functions, let us recall the following elementary results on differential uniformity; the proofs are straightforward: Proposition 1. (i) Adding a q-affine polynomial (i.e. a polynomial whose monomials are of degree 0 or a power of 2) to a function f does not change δ(f ).

(ii) For all a, b and c in F q , such that a = 0 and c = 0 we have

δ(cf (ax + b)) = δ(f ). (iii) One has δ(f 2 ) = δ(f ).
Hence, without loss of generality, from now on we can assume that f is a polynomial mapping from F q to itself which has neither terms of degree a power of 2 nor a constant term, and which has at least one term of odd degree.

To any function f : F q -→ F q , we associate the polynomial

f (x) + f (y) + f (z) + f (x + y + z).
Since this polynomial is clearly divisible by

(x + y)(x + z)(y + z),
we can consider the polynomial

P f (x, y, z) := f (x) + f (y) + f (z) + f (x + y + z) (x + y)(x + z)(y + z)
which has degree deg(f ) -3 if deg(f ) is not a power of 2.

2. A characterization of functions with δ ≤ 4

We will give, as in [START_REF] Rodier | Bornes sur le degré des polynômes presque parfaitement nonlinéaires[END_REF], a geometric criterion for a function to have δ ≤ 4. We consider in this section the algebraic set X defined by the elements (x, y, z, t) in the affine space A 4 (F q ) such that

P f (x, y, z) = P f (x, y, t) = 0.
We set also V the hypersurface of the affine space A 4 (F q ) defined by

(1) (x + y)(x + z)(x + t)(y + z)(y + t)(z + t)(x + y + z + t) = 0.
The hypersurface V is the union of the seven hyperplanes H 1 , . . . , H 7 defined respectively by the equations x+y = 0, . . . , x+y +z +t = 0.

We begin with a simple lemma:

Lemma 2. The following two properties are equivalent: (i) there exist 6 distinct elements x 0 , x 1 , x 2 , x 3 , x 4 , x 5 in F q such that     

x 0 + x 1 = α, f (x 0 ) + f (x 1 ) = β x 2 + x 3 = α, f (x 2 ) + f (x 3 ) = β x 4 + x 5 = α, f (x 4 ) + f (x 5 ) = β
(ii) there exist 4 distinct elements x 0 , x 1 , x 2 , x 4 in F q such that x 0 + x 1 + x 2 + x 4 = 0 and such that

f (x 0 ) + f (x 1 ) + f (x 2 ) + f (x 0 + x 1 + x 2 ) = 0 f (x 0 ) + f (x 1 ) + f (x 4 ) + f (x 0 + x 1 + x 4 ) = 0. Proof. Suppose that (i) is true. Then we have x 0 +x 1 +x 2 = α+x 2 = x 3 and so f (x 0 ) + f (x 1 ) + f (x 2 ) + f (x 0 + x 1 + x 2 ) = f (x 0 ) + f (x 1 ) + f (x 2 ) + f (x 3 ) = 0.
The second equation holds true in the same way. Finally, we have

x 0 + x 1 + x 2 + x 4 = x 3 + x 4 = 0. Conversely, let us set α = x 0 + x 1 , β = f (x 0 ) + f (x 1 ) and x 3 = α + x 2 = x 0 + x 1 + x 2 . Then f (x 2 ) + f (x 3 ) = f (x 2 ) + f (x 0 + x 1 + x 2 ) = f (x 0 ) + f (x 1 ) = β. Furthermore, we have x 3 = x 0 because x 1 = x 2 and we have x 3 = x 1 since otherwise we would have x 2 = α + x 3 = α + x 1 = x 0 .
Setting

x 5 = α + x 4 = x 0 + x 1 + x 4 we have f (x 4 ) + f (x 5 ) = f (x 4 ) + f (x 0 + x 1 + x 4 ) = f (x 0 ) + f (x 1 ) = β. We have x 3 = x 4 since otherwise we would have 0 = x 3 + x 4 = x 0 + x 1 + x 2 + x 4
which is not the case by hypothesis.

Finally x 3 = x 5 since otherwise we would have x 2 = x 4 , and so all the six elements x 0 , x 1 , x 2 , x 3 , x 4 , x 5 are different.

We can now state a geometric characterization of differentially 4uniform functions: Theorem 3. The differential uniformity of a function f : F q -→ F q is not larger than 4 if and only if:

X(F q ) ⊂ V
where X(F q ) denotes the set of rational points over F q of X.

Proof. The differential uniformity is not larger than 4 if and only if for any α ∈ F * q and any β ∈ F q , the equation

f (x + α) + f (x) = β
has at most 4 solutions, that is to say

♯{x ∈ F q |f (x) + f (y) = β, x + y = α} ≤ 4.
But this is equivalent to saying that we cannot find 6 distinct elements

x 0 , x 1 , x 2 , x 3 , x 4 , x 5 in F q such that      x 0 + x 1 = α, f (x 0 ) + f (x 1 ) = β x 2 + x 3 = α, f (x 2 ) + f (x 3 ) = β x 4 + x 5 = α, f (x 4 ) + f (x 5 ) = β.
By the previous lemma, this is equivalent to saying that we cannot find 4 distinct elements x 0 , x 1 , x 2 , x 4 in F q such that x 0 + x 1 + x 2 + x 4 = 0 and such that

f (x 0 ) + f (x 1 ) + f (x 2 ) + f (x 0 + x 1 + x 2 ) = 0 f (x 0 ) + f (x 1 ) + f (x 4 ) + f (x 0 + x 1 + x 4 ) = 0.
But this can be reformulated by saying that the rational points over F q of the variety X are contained in the variety V , that is to say X(F q ) ⊂ V .

Monomial functions with δ ≤ 4

If the function f is a monomial of degree d > 3:

f (x) = x d
then the polynomials P f (x, y, z) and P f (x, y, t) are homogeneous polynomials and we can consider the intersection X of the projective cones S 1 and S 2 of dimension 2 defined respectively by P f (x, y, z) = 0 and P f (x, y, t) = 0 with projective coordinates (x : y : z : t) in the projective space P 3 (F q ). Even if X is now a projective algebraic subset of the projective space P 3 (F q ), Theorem 3 tells us also that:

δ(f ) ≤ 4 if and only if X(F q ) ⊂ V,
where V is the hypersurface of P 3 (F q ) defined by Equation [START_REF] Aubry | A Weil theorem for singular curves, Arithmetic, Geometry and Coding Theory[END_REF].

Indeed, the algebraic sets X and V in this section are closely related to but not equal to the sets X and V of the previous section. The set X of this section (resp. V ) is the set of lines through the origin of the set X (resp. V ) of the previous section which is invariant under homotheties with center the origin. For convenience, we keep the same notations.

Lemma 4. The projective algebraic set X has dimension 1, i.e. it is a projective curve.

Proof. We have to show that the projective surfaces S 1 and S 2 do not have common irreducible components. Since S 1 and S 2 are two cones, it is enough to prove that the vertex of one of the cones doesn't lie in the other cone. The coordinates of the vertex of the cone S 2 is (0 : 0 : 1 : 0). To show that it doesn't lie in S 1 , we will prove that P f (0 : 0 : 1 : 0) = 0. Indeed, S 1 is defined by the polynomial

P f (x, y, z) = x d + y d + z d + (x + y + z) d (x + y)(x + z)(y + z) •
Setting x + y = u, we obtain:

P f (x, y, z) = x d + (x + u) d + z d + (u + z) d u(x + z)(x + u + z) ,
which gives

P f (x, y, z) = x d-1 + z d-1 + uQ(x, z) (x + z)(x + u + z) ,
where Q is some polynomial in x and z. This expression takes the value 1 at the point (0 : 0 : 1 : 0). Now we know that X is a projective curve in P 3 (F q ), and in order to estimate its number of rational points over F q , we must determine its irreducibility. We will prove that the curve C 7 , defined as the intersection of S 2 with the projective plane H 7 of equation x+y+z+t = 0, is an absolutely irreducible component of X, and hence that X is reducible.

Proposition 5. The intersection of the curve X with the plane H 7 with the equation x + y + z + t = 0 is equal to the curve C 7 := S 2 ∩ H 7 .

Proof. Since X = S 1 ∩ S 2 , it is enough to prove that C 7 ⊂ S 1 . Since t = x + y + z the points of intersection of the cone S 2 with the plane x + y + z + t = 0 satisfy:

0 = P f (x, y, t) = x d + y d + t d + (x + y + t) d (x + y)(x + t)(y + t) = x d + y d + (x + y + z) d + z d (x + y)(y + z)(x + z) = P f (x, y, z),
so they belong to S 1 . Proposition 6. The projective plane curve C 7 is isomorphic to the projective plane curve C with equation

P f (x, y, z) = x d + y d + z d + (x + y + z) d (x + y)(x + z)(y + z) = 0.
Proof. The projection from the vertex of the cone S 1 defines an isomorphism of the projective plane H 7 with equation x + y + z + t = 0 onto the plane with equation t = 0, and it maps C 7 onto the curve C with equation P f (x, y, z) = 0.

Proposition 7. Let C be a plane curve of degree deg(C) and which is not contained in V . Then:

♯(C ∩ V )(F q ) ≤ 7 deg(C).
Proof. The variety V is the union of seven projective planes. Each plane cannot contain more than deg(C) points, therefore V contains at most 7 deg(C) rational points in C.

In order to get a lower bound for the number of rational points over F q on the curve C, hence on the curve X, we need to know if C is absolutely irreducible or not. This question has been discussed by H. Janwa, G. McGuire and R. M. Wilson in [START_REF] Janwa | Double-error-correcting cyclic codes and absolutely irreducible polynomials over GF(2)[END_REF] and very recently by F. Hernando and G. McGuire in [START_REF] Hernando | Proof of a conjecture on the sequence of exceptional numbers, classifying cyclic codes and APN functions[END_REF]. Proposition 8. If d = 2 r -1 with r ≥ 3, then the projective curve X has an absolutely irreducible component C ′ defined over F 2 in the plane x + z + t = 0 and this component C ′ is isomorphic to the curve C.

Proof. One checks that the intersection of the cone S 1 with the plane x + z + t = 0 is the same as the intersection of the cone S 2 with that plane. Hence one can show, as in Proposition 6, that the intersection of the curve X with the plane x + z + t = 0 is isomorphic to the curve C. Furthermore, it is proved in [START_REF] Janwa | Double-error-correcting cyclic codes and absolutely irreducible polynomials over GF(2)[END_REF] that the curve C is absolutely irreducible since, deg(C) = 2 r -1 ≡ 3 (mod 4).

Hence we can state Theorem 9. Consider the function f : F q -→ F q defined by f (x) = x d with d = 2 r -1 and r ≥ 3. If 5 ≤ d < q 1/4 + 4.6 , then f has differential uniformity strictly greater than 4.

Proof. The curve C ′ is an absolutely irreducible plane curve of arithmetic genus π C ′ = (d -4)(d -5)/2. According to [START_REF] Aubry | A Weil theorem for singular curves, Arithmetic, Geometry and Coding Theory[END_REF] (see also [START_REF] Aubry | On the characteristic polynomials of the Frobenius endomorphism for projective curves over finite fields[END_REF] for a more general statement), the number of rational points of the (possibly singular) absolutely irreducible curve C ′ satisfies

|#C ′ (F q ) -(q + 1)| ≤ 2π C ′ q 1/2 . Hence #C ′ (F q ) ≥ q + 1 -2π C ′ q 1/2 .
The maximum number of rational points on the curve C ′ on the surface V is 7(d -3) by Proposition 7. If q + 1 -2π C q 1/2 > 7(d -3), then C ′ (F q ) ⊂ V , therefore X(F q ) ⊂ V , and δ(f ) > 4 by Theorem 3. But this condition is equivalent to

q -2π C ′ q 1/2 -7(d -3) + 1 > 0.
The condition is satisfied when

q 1/2 > π C ′ + 7(d -3) -1 + π 2 C ′ hence when q ≥ d 4 -18d 3 + 121d 2 -348d + 362 or 5 ≤ d < q 1/4 + 4.6.

Polynomials functions with δ ≤ 4

If the function f is a polynomial of one variable with coefficients in F q of degree d > 3, we consider again as in section 3 the intersection X of S 1 and S 2 , which are now cylinders in the affine space A 4 (F q ) with equations respectively P f (x, y, z) = 0 and P f (x, y, t) = 0 and which are of dimension 3 as affine varieties.

Lemma 10. The algebraic set X has dimension 2, i.e. it is an affine surface. Moreover, it has degree (d -3) 2 .

Proof. We have to show that the hypersurfaces S 1 and S 2 do not have a common irreducible component. Since these hypersurfaces are two cylinders, it is enough to prove that the polynomial defining S 1 does not vanish on the whole of a straight line (x 0 , y 0 , z, t 0 ) where x 0 , y 0 , t 0 are fixed and satisfy P f (x 0 , y 0 , t 0 ) = 0. Indeed, S 1 is defined by the polynomial P f (x, y, z), which takes the value

P f (x 0 , y 0 , z) = f (x 0 ) + f (y 0 ) + f (z) + f (x 0 + y 0 + z) (x 0 + y 0 )(x 0 + z)(y 0 + z)
at the point (x 0 , y 0 , z, t 0 ). If we set x 0 + y 0 = s 0 , the homogeneous term of degree d i in P f (x, y, z) becomes

d i (x d i -1 0 + z d i -1 ) + s 0 Q i (x 0 , z) (z + s 0 + x 0 )(z + x 0 )
where Q i is a polynomial in x 0 and z of degree d i -2. If d i is odd, the numerator of this term is of degree d i -2, and hence does not vanish, so it is the same for the polynomial P f (x 0 , y 0 , z). Hence, X has dimension 2. Moreover, X is the intersection of two hypersurfaces of degree d -3, thus it has degree (d -3) 2 .

The surface X is reducible. Let X = i X i be its decomposition in absolutely irreducible components.

We embed the affine surface X into a projective space P 4 (F q ) with homogeneous coordinates (x : y : z : t : u). Consider the hyperplane at infinity H ∞ defined by the equation u = 0 and let X ∞ be the intersection of the projective closure X of X with H ∞ . Then X ∞ is the intersection of two surfaces in this hyperplane, which are respectively the intersections S 1,∞ and S 2,∞ of the cylinders S 1 and S 2 with that hyperplane. The homogeneous equations of S 1,∞ and S 2,∞ are

P x d (x, y, z) = x d + y d + z d + (x + y + z) d (x + y)(x + z)(y + z) and P x d (x, y, t) = x d + y d + t d + (x + y + t) d (x + y)(x + t)(y + t) •
By Proposition 8, the intersection of the curve X ∞ with the plane x+ z + t = 0 (inside the hyperplane at infinity) is an absolutely irreducible component C ′ of the curve X ∞ of multiplicity 1, defined over F 2 . So the only absolutely irreducible component of X, say X 1 , which contains C ′ is defined over F q . Proposition 11. Let X be an absolutely irreducible projective surface of degree > 1. Then the maximum number of rational points on X which are contained in the hypersurface

V ∪ H ∞ is ♯(X ∩ (V ∪ H ∞ )) ≤ 8(deg(X )q + 1).
Proof. As deg(X ) > 1, the surface X is not contained in any hyperplane. Thus, a hyperplane section of X is a curve of degree deg(X ). Using the bound on the maximum number of rational points on a general hypersurface of given degree proved by Serre in [START_REF] Serre | Lettre à M. Tsfasman[END_REF], we get the result.

Theorem 12. Consider a function f : F q -→ F q of degree d = 2 r -1 with r ≥ 3. If 31 ≤ d < q 1/8 + 2, then δ(f ) > 4. For d < 31, we get δ(f ) > 4 for d = 7 and m ≥ 22 and also if d = 15 and m ≥ 30.

Proof. From an improvement of a result of S. Lang and A. Weil [START_REF] Lang | Number of points of varieties in finite fields[END_REF] proved by S. Ghorpade and G. Lachaud [11, section 11], we deduce |#X 1 (F q ) -q 2 -q -1| ≤ ((d -3) 2 -1)((d -3) 2 -2)q 3/2 + 36(2d -3) 5 q ≤ (d -3) 4 q 3/2 + 36(2d -3) 5 q.

Hence #X 1 (F q ) ≥ q 2 + q + 1 -(d -3) 4 q 3/2 -36(2d -3) 5 q.

Therefore, if q 2 + q + 1 -(d -3) 4 q 3/2 -36(2d -3) 5 q > 8((d -3)q + 1), then #X(F q ) ≥ #X 1 (F q ) > 8((d-3)q+1), and hence X 1 (F q ) ⊂ V ∪H ∞ by Proposition 11. As X is the set of affine points of the projective surface X, we deduce that X(F q ) ⊂ V and so the differential uniformity of f is at least 6 from Theorem 3. This condition can be written q -(d -3) 4 q 1/2 -36(2d -3) 5 -8(d -3) > 0. This condition is satisfied when q 1/2 > d 4 -12d 3 + 54d 2 + 1044d + 5265 + 25920/d if d ≥ 2, or d < q 1/8 + 2 if d ≥ 31.
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