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small-amplitude transient motions
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This paper deals with the transient motions experienced by an elastic circular cylinder in a cylindrical fluid domain 
initially at rest and subjected to small-amplitude imposed displacements. Three fluid models are considered, namely 
potential, viscous and acoustic, to cover different fluid–structure interaction regimes. They are derived here from the 
general compressible Navier–Stokes equations by a formal perturbation method so as to underline their links and 
ranges of validity a priori. The resulting fluid models are linear owing to the small-amplitude-displacement hypothesis. 
For simplicity, the elastic flexure beam model is chosen for the circular cylinder dynamics. The semi-analytical approach 
used here is based on the methods of Laplace transform in time, in vacuo eigenvector expansion with time-dependent 
coefficients for the transverse beam displacement and separation of variables for the fluid. Moreover, the viscous case is 
handled with a matched asymptotic expansion performed at first order. The projection of the fluid forces on the in vacuo 
eigenvectors leads to a fully coupled system involving the modal time-dependent displacement coefficients. These 
coefficients are then obtained by matrix inversion in the Laplace domain and fast numerical inversion of the Laplace 
transform. The three models, written in the form of convolution products, are described through the analysis of their 
kernels, involving both the wave propagation phenomena in the fluid domain and the beam elasticity. Last, the three 
models are illustrated for a specific imposed motion mimicking shock loading. It is shown that their combination permits 
coverage of a broad range of motions.
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Nomenclature

Cn
i nth fluid forces response to an impulsional

motion of the whole system

Cn
m nth fluid forces response to an impulsional

motion of the mth beam mode

cf speed of sound in the fluid at rest

E elastic modulus

F fluid loading in the ex-direction

f n nth modal time-dependent fluid force

coefficient

Hn beam response function related to the nth

modal displacement coefficient

I area moment of inertia

K Keulegan–Carpenter number

L beam length

M density ratio

Ma Mach number

p fluid pressure

R1 circular beam radius

R2 rigid outer circular cylinder radius

r radial coordinate

S beam cross section

s Laplace variable

t time

u fluid velocity field

W dimensionless frequency

x relative beam axis displacement in the ex-

direction

xi imposed motion on the whole system

xn nth time-dependent modal displacement

coefficient

z vertical coordinate

a confinement ratio

b Stokes number

g aspect ratio

� perturbation parameter

ln nth in vacuo eigenvalue of the beam axis

displacement

n kinematic fluid viscosity

r dynamic fluid density

rs beam density

rf fluid density at rest

f velocity potential

jn
m projection of the nth beam eigenfunction on

the mth vertical fluid mode

O compressibility number

on nth modal frequency
1. Introduction

When subjected to the effects of underwater explosions, naval propulsion devices can experience highly accelerated

high-frequency motions (Keil, 1961; O’Hara and Cunnif, 1993). These components can be in contact with a fluid, as is

the case for heat exchangers and nuclear propulsion reactors (Sigrist et al., 2006a, b; Sigrist and Broc, 2007). In order to

improve design margins and ensure safety and satisfactory operating performance of the shock-loaded components,

precise knowledge of their transient response is required. Since the body motion creates a fluid flow that in turn

influences the body motion, complex fluid–structure interaction problems must be taken into account. In a first

modelling step, design engineers must identify the meaningful physical phenomena in their particular geometry, such as

viscous damping or compressibility effects. This can be achieved by studying simple representative fluid–structure

problems for which analytical or semi-analytical solutions are available. The case of a circular cylinder confined in

cylindrical fluid domains has already attracted a lot of attention due to its recurrence in the design of naval and nuclear

components. However, the numerous studies available in (Gibert, 1986; Chen, 1987) focus on the harmonic dynamics.

The transient case, which is of major importance in shock loading, has received comparatively less attention. Although

the solution of a time-dependent problem can be formally obtained from the solution of the corresponding harmonic

problem using Fourier synthesis methods (Landau and Lifshitz, 1959) or series of resonance modes (Habault and

Filippi, 2003, 2004), time-domain methods are believed to provide more physical insight. In addition, these methods are

currently receiving renewed interest (Stepanishen, 1997; Iakovlev, 2002, 2004, 2006, 2007), in particular due to

increasing computer capabilities. The goal of the present paper is to formulate a time-domain method for a clamped-

free elastic circular cylinder, confined in a cylindrical fluid domain initially at rest and subjected to a transient motion

along a radial line; see Fig. 1. In addition to its industrial applications, this simple system is of academic concern since it

illustrates in a closed form numerous fluid–structure interaction phenomena, such as structural mode coupling by the

fluid, viscous damping, and some elasticity–compressibility interaction effects. The most restricting aspect of this study

lies in the small-amplitude motion hypothesis. This is nevertheless reasonable for the design of numerous structures and

helps lay the foundations for the understanding of more general fluid–structure interaction problems.

In order to cover a broad loading range, three fluid models are considered: potential, viscous and acoustic. Although

their corresponding equations are classic (Lamb, 1932), their links and ranges of validity are not always explicit when

used separately. In order to get some insight on their a priori limits, they are derived here from the compressible

Navier–Stokes equations by a formal perturbation method. Owing to the small-amplitude-displacement hypothesis, the

resulting fluid models are linear. The fluid forces, expressed for arbitrary motions of their boundaries and put into the
2



Fig. 1. Clamped-free beam in a cylindrically confined fluid domain.
form of convolution products, are derived by separation of variables. Moreover, for the viscous model, a first-order

matched asymptotic expansion (Kevorkian and Cole, 1996), also called the composite boundary-layer theory

(Schlichting, 1979), is performed. For simplicity, an elastic flexure beam is chosen to model the circular cylinder

dynamics even though a more advanced model could be used with the same approach. Its displacement field is

expressed by an in vacuo eigenvector expansion with time-dependent coefficients, which are the problem unknowns.

The right-hand side of the modal equations contains the projection of the fluid forces on the corresponding in vacuo

eigenvector. The resulting coefficients for the modal fluid forces take the form of an infinite sum of temporal

convolution integrals involving the time-dependent displacement coefficients. Finally, the problem is reduced to an

infinite number of fully coupled integro-differential equations. The linearity of this time-dependent fluid–structure

interaction problem suggests to employ the Laplace transform to turn it into a simple algebraic system. By truncating it

to a finite number of modes, the displacement coefficients can be obtained by matrix inversion in the Laplace domain.

A numerical inverse Laplace transform must then be performed to return to the temporal domain. Due to recent

developments involving FFT-based and quotient-difference algorithms (Brancik, 2001, 2003), this operation is now a

routine task and accurate Laplace transform inversions can be performed rapidly. Last, the transverse displacement

field is found by modal recomposition.

This approach therefore combines analytical methods (separation of variables, regular and singular perturbation

methods, Laplace transform, in vacuo eigenfunction decomposition) and numerical operations (matrix and Laplace

transform inversions). This is a strong coupling procedure that provides converged fluid–structure solutions in a

particular geometry. However, perturbation methods are used and the number of modes is truncated, so the solutions

cannot be seen as exact. Nevertheless, their accuracy is limited mainly by the modelling and not by the numerical steps.

The convergence analysis has been carried out for each case considered: keeping three to nine bending modes appears to

be sufficient to obtain the series convergence, depending on the imposed solicitation and geometrical parameters.

Furthermore, the solutions contribute to a physical understanding of the problem and can provide some elements

traditionally difficult to evaluate by direct numerical simulations, such as the order of magnitude of the viscous

damping in three-dimensional high-Stokes-number problems. It is thus hoped that these solutions be suitable for

validating more evolved numerical codes, useful in solving fluid–structure interaction problems in complex geometries.

In the first part, the structural dynamics is introduced. The modal decomposition is recalled for the sake of

completeness, although it could be found in classical textbooks (Blevins, 1984). In the second part, the fluid models are

derived from the compressible Navier–Stokes equations by means of a formal regular perturbation method. Then the

fluid–structure interaction problem is solved and described for each model. The effects of waves propagating in the fluid

domain are stressed, such as the damping caused by the evanescent viscous shear waves and the reloading due to the

acoustic pressure wave rebounds. Last, the solutions are illustrated for a specific imposed motion representative of a

shock loading. It is shown that their combination permits coverage of a broad range of motions.
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2. Beam dynamics

We consider a clamped-free slender circular beam of radius R1 and length L confined in a cylindrical

fluid domain limited by a rigid outer circular cylinder of radius R2. A schematic of the problem is shown in Fig. 1.

The beam is assumed uniform along the span and composed of a linear, homogeneous, isotropic elastic material of

density rs. A transient motion xiðtÞ is imposed in the ex-direction on the whole system so that the beam is put into

motion through the clamped boundary condition and influence of the surrounding fluid. The imposed

motion is assumed to be of sufficiently small amplitude that the induced transverse flexural beam displacement is

negligible in relation to both its radius and the radial clearance. Neglecting shear deformations and considering only

those normal to the undeformed beam axis gives the classical dynamics equation of flexure beams (Axisa, 2001).

Normalizing the variables according to Table 1(a), where Ui and oi are the characteristic velocity and frequency

of the imposed motion and rf the fluid density, gives the following dimensionless equation with the clamped-free

boundary conditions:

q2x

qt2
ðz; tÞ þW2 q

4x

qz4
ðz; tÞ ¼ � €xiðtÞ þMF ðz; tÞ, (1)

xjz¼0 ¼ 0;
qx

qz

����
z¼0

¼ 0;
q2x

qz2

����
z¼1

¼ 0;
q3x

qz3

����
z¼1

¼ 0, (2)

where xðz; tÞ is the relative beam axis displacement, z the vertical coordinate, t the time and F ðz; tÞ the fluid loading in

the ex-direction. The two dimensionless numbers, W and M, are defined by

W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

rsSL4o2
i

s
; M ¼

rf

rs

, (3)

with S the cross-section, E the elastic modulus and I the area moment of inertia. W will be called the dimensionless

frequency and quantifies the beam stiffness in relation to the imposed motion frequency. M is the density ratio. The

beam axis displacement is sought in the form

xðz; tÞ ¼
X1
n¼1

xnðtÞjnðzÞ, (4)
Table 1

Normalization factors for the beam and fluid variables

Variable Normalization factor

(a) For the beam variables

Horizontal length R1

Vertical length L

Time 1=oi

Displacement Ui=oi

Acceleration Uioi

Fluid loading rf pR2
1Uioi

(b) For the fluid variables

Length R1

Time 1=oi

Displacement Ui=oi

Velocity Ui

Pressure rf c2f
Density rf

4



where xnðtÞ are the time-dependent modal displacement coefficients and the functions jnðzÞ the in vacuo eigenfunctions

of the beam axis displacement. These eigenfunctions can effectively be used without loss of generality for a

fluid–structure interaction problem since they form a complete set; they are thus independent of the fluid model and can

easily be derived by classical numerical methods. In vacuo and for the considered geometry, they satisfy the problem,

W2 d
4jn

dz4
ðzÞ ¼ o2

njnðzÞ; jnjz¼0 ¼ j0njz¼0 ¼ j00n jz¼1 ¼ j000n jz¼1 ¼ 0, (5)

where on is the nth dimensionless modal frequency defined by on ¼Wl2n with ln the nth eigenvalue. An analytical

solution (Blevins, 1984) takes the form, for nX1,

jnðzÞ ¼ coshðlnzÞ � cosðlnzÞ þ
cos ln þ cosh ln

sin ln þ sinh ln

½sinðlnzÞ � sinhðlnzÞ�, (6)

where the first eigenvalues are given by l1 ¼ 1:8751, l2 ¼ 4:6941, l3 ¼ 7:8548, l4 ¼ 10:9955, l5 ¼ 14:1372 and the

following ones by ln ¼ p=2þ pðn� 1Þ with good accuracy. The eigenfunctions satisfy the orthogonality relation,Z 1

0

jnðzÞjmðzÞdz ¼ dnm. (7)

Substitution of the modal decomposition, Eq. (4), for the displacement in Eq. (1), followed by the use of Eq. (5),

multiplication of the resulting relation by jmðzÞ, and integration along the beam length, yield the modal equation for

the time-dependent displacement coefficient:

€xnðtÞ þ o2
nxnðtÞ ¼ �j0

n €xiðtÞ þMf nðtÞ; f nðtÞ ¼

Z 1

0

F ðz; tÞjnðzÞdz. (8)

The quantity f nðtÞ is the projection of the fluid forces on the nth eigenfunction and is called the modal fluid force

coefficient. The coefficient j0
n weights the inertial force and is a particular case of the following coefficients:

jq
m ¼

Z 1

0

jmðzÞ cosðqpzÞdz; mX1; qX0. (9)

In order to solve the modal Eq. (8) for all nX1, the fluid forces must be expressed explicitly. This is the purpose of the

following sections.
3. Fluid dynamics

3.1. General equations

The fluid medium is assumed continuous, homogeneous, Newtonian and without thermal effects. The mass and

momentum conservation laws provide the compressible Navier–Stokes equations governing the fluid dynamics (Landau

and Lifshitz, 1959). Normalizing the variables according to Table 1(b) with cf the isentropic sound velocity, and

assuming a constant kinematic viscosity n, the dimensionless system takes the form:

qr
qt
þ Kr � ðruÞ ¼ 0, (10)

qðruÞ
qt
þ Kr � ðru� uÞ ¼ �KM�2

a rpþ b�1r � r ruþ rTu�
2

3
r � u

� �� �
, (11)

where r is the fluid density, u the velocity field and p the pressure. The dimensionless numbers are defined in Eq. (16).

The energy conservation law is not recalled since it is not useful for the simplified models derived in the following. In

order to simplify the notation and without loss of generality, the vertical length and velocity are here normalized with

the same quantities as the horizontal ones. They are renormalized by L and UiR1=L, respectively, in Section 4 so as to

be consistent with the notations used for the beam dynamics. The system of Eqs. (10) and (11) contains more unknowns

than equations but can be closed by employing further hypotheses and introducing relations between the variables such

as the dimensionless state equation,

dp ¼ drþ
qp

qs

� �
r
ds, (12)
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with s the entropy. The dimensionless no-slip boundary conditions on the moving boundaries take the form

ujCint
¼ ½ _xðz; tÞ þ _xiðtÞ�ex � cos y

q _x
qz
ðz; tÞez; ujCext

¼ _xiðtÞex, (13)

where Cint and Cext denote the surfaces of the inner and outer cylinders, see Fig. 1. The dimensionless position of the

inner boundary is geometrically characterized by

OM ¼ fcos yþ K½xðz; tÞ þ xiðtÞ�gex þ sin yey þ z� K cos y
qx

qz
ðz; tÞ

� �
ez, (14)

with O the point corresponding to the beam base and M a point belonging to the inner surface Cint. As for the other

boundary, it is characterized by

OM ¼ ½a cos yþ KxiðtÞ�ex þ a sin yey þ zez (15)

for a point M belonging to the outer surface Cext. Moreover, the vertical fluid velocity is equal to zero at z ¼ 0 and 1=g.
Therefore, the system of Eqs. (10)–(15) is governed by the five dimensionless numbers:

a ¼
R2

R1
; g ¼

R1

L
; K ¼

Ui

R1oi

; b ¼
R2

1oi

n
; Ma ¼

Ui

cf

, (16)

where a and g are the confinement and aspect ratii and appear only in the boundary conditions; K, often called the

Keulegan–Carpenter (1958) number, quantifies the cylinder displacements in relation to the beam radius and weights

both the advection term in Eqs. (10) and (11) and the geometrical deformations in Eqs. (14) and (15). The Stokes

number b is the ratio between the unsteady and viscous effects, and the Mach number Ma is the ratio between the

velocity imposed on the whole system and the speed of sound in the fluid at rest. All the models used in this article focus

on small-Mach-number problems. For a steady flow, this condition is sufficient for neglecting compressible effects;

however, for unsteady cases, it is not sufficient, and another dimensionless parameter must be introduced to

characterize the influence of compressibility (Landau and Lifshitz, 1959). Anticipating Section 3.3, this number can be

formed with the Mach and Keulegan–Carpenter numbers and is defined by

O ¼
Ma

K
¼

R1oi

cf

. (17)

Several approximations and the asymptotic behaviour of the system of Eqs. (10)–(15) are considered in the following.

In order to appreciate the underlying hypotheses, the simple models are obtained from a formal perturbation method

applied to the general system. Since small-Mach-number flows are studied here and the Mach number appears only with

the pressure-gradient term, a regular expansion involving the powers ofMa seems reasonable. Further analysis suggests

taking as perturbation parameter � the quantity,

� ¼ K�1M2
a. (18)

Thus the dimensionless fluid variables are sought in the form

r

u

p

8><
>:

9>=
>; ¼

r0
u0

p0

8><
>:

9>=
>;þ �

r1
u1

p1

8><
>:

9>=
>;þ Oð�2Þ. (19)

The substitution of this expansion for the fluid variables into the dimensionless compressible Navier–Stokes equations

together with different orders of magnitude for the parameters K and b allow us to obtain the simplified models.

3.2. Incompressible behaviour: potential and viscous models

3.2.1. General incompressible limit

In a first step, no assumption is made about the Stokes number. The Keulegan–Carpenter number is taken such that

the perturbation parameter �, defined by Eq. (18), tends to zero as the Mach number tends to zero, hence M2
a5K.

The regular expansion (19) is substituted into the system of Eqs. (10) and (11). Assuming that r0 is constant in space

and time (so that its dimensional value is the fluid density at rest rf and r0 ¼ 1), the leading-order equations can be

written as

r � u0 ¼ 0 and rp0 ¼ 0. (20)
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Therefore, the leading-order pressure p0 is constant in space and does not contribute to the fluid forces. The first-order

equation is the classical incompressible Navier–Stokes equation, in a dimensionless form particularly adapted to the

case of interest here, a fluid flow induced by moving boundaries:

qu0
qt
þ Kðu0 � rÞu0 ¼ �rp1 þ b�1r2u0. (21)

Hence the first-order pressure p1 is not constant and interacts with the leading-order velocity field. This differs from

flows that are not induced by moving boundaries, for instance Poiseuille flow, for which even the first-order pressure is

null and only the second-order pressure interacts with the leading-order velocity field (Schmid and Henningson, 2001).

By bringing together the normalization factor for the pressure term in Table 1(b) with expansion (19), the effective

normalization factor for the pressure is found to be rf R1Uioi, which explains the fluid loading factor used in

Table 1(a). In shock loading, the internal structures are mainly subjected to small-amplitude, high-frequency motions.

Hence the Keulegan–Carpenter number is small (which implies here M2
a5K51) and both the advection term in the

Navier–Stokes Eq. (21) and the geometrical deformations in Eqs. (14) and (15) can be disregarded. The resulting

governing equations are given by

r � u0 ¼ 0;
qu0
qt
¼ �rp1 þ b�1r2u0, (22)

with the no-slip boundary conditions, now expressed at fixed positions,

u0jr¼1 ¼ ½ _xðz; tÞ þ _xiðtÞ�ex � cos y
q _x
qz
ðz; tÞez; u0jr¼a ¼ _xiðtÞex. (23)

This system of equations is the starting point of both the potential and the viscous boundary-layer models.

3.2.2. Potential model

The potential model is derived from the system of Eqs. (22) and (23) by taking the limit of an infinite Stokes number

ðb!1Þ. Since the second-order space derivative is lost in Eq. (22), all the boundary conditions cannot be satisfied.

Physical arguments suggest conserving those normal to the boundaries, resulting in slip boundary conditions. Assuming

that the flow is initially irrotational, it remains irrotational at later times (Lamb, 1932) and a velocity potential f can be

introduced so that its leading order satisfies u0 ¼ rf0. Then, a straightforward derivation shows that the flow is

governed by the Laplace equation for the velocity potential,

r2f0 ¼ 0, (24)

with the Neumann-type boundary conditions

qf0

qr

����
r¼1

¼ ½ _xðz; tÞ þ _xiðtÞ� cos y;
qf0

qr

����
r¼a
¼ _xiðtÞ cos y;

qf0

qz

����
z¼0;1=g

¼ 0. (25)

Once the system of Eqs. (24) and (25) is solved, the first-order fluid pressure can be found from the simplified

Bernoulli equation,

qf0

qt
þ p1 ¼ cðtÞ, (26)

where cðtÞ is constant in space and time-dependent. Since only the gradients of f0 contribute to the integrated fluid

forces for a fixed z, cðtÞ can be absorbed without loss of generality in the velocity potential definition and thus taken as

null in the above equation.

3.2.3. Viscous boundary-layer model

The beam displacement is assumed sufficiently small that no boundary-layer separation occurs (Schlichting, 1979).

Hence, there is neither wake formation nor its force-related modifications (Sarpkaya, 1986; Koumoutsakos and

Leonard, 1986). The fluid damping on a rigid oscillating cylinder in an infinite fluid domain was derived exactly by

Stokes (1851) assuming laminar two-dimensional flow and neglecting the advection term. Approximate solutions have

been derived by Stuart (1963) and Wang (1968), among others, in order to identify higher-order phenomena. These

studies showed that a first-order boundary-layer theory is sufficient to characterize the viscous damping for high-

Stokes-number laminar two-dimensional flows. However, it is now known that the attached boundary-layer, i.e.

without separation, is subjected to three-dimensional centrifugal and transient instabilities (Honji, 1981; Hall, 1984;

Sarpkaya, 2002). Their influence is manifested by the increase of the viscous damping by a factor of two over the Stokes
7



theory (Sarpkaya, 2001), which does not significantly change its order of magnitude. Neither experimental nor

theoretical stability analysis has been reported for confined fluid flow. Here, a matched asymptotic expansion of the first

order is performed to build a laminar viscous boundary-layer on the transiently moving elastic beam in a confined fluid

domain. By analogy with an infinite fluid domain and for high-Stokes-number flow, it is expected to give the order of

magnitude of the viscous damping or at least a lower bound, even though it does not take into account any instabilities.

The resulting fluid model is thought useful for cases where the viscous boundary layer is much smaller than the radial

clearance, i.e.
ffiffiffiffiffiffiffiffiffiffi
n=oi

p
5R2 � R1, or in dimensionless form, b1=2ða� 1Þb1. This condition is more restricting than that in

first-order boundary-layer theory for an infinite fluid domain given by b1=2b1.

The beam motion is assumed of sufficiently low amplitude and high frequency that the fluid domain can be divided

into two parts, one far from the boundaries, where viscous effects can be neglected, and the other closer to the

boundaries, where the viscous dissipation is a leading-order term (Kevorkian and Cole, 1996). Hence, far from the

boundaries, the following outer expansion in powers of b�1=2 is introduced into the nondimensional Eqs. (22) and (23),

u0

p1

( )
¼

u00

p01

( )
þ b�1=2

u10

p11

( )
þ Oðb�1Þ. (27)

The leading-order equations are given by

r � u00 ¼ 0;
qu00
qt
¼ �rp01. (28)

Assuming that u00 is initially irrotational, a velocity potential f0
0 can be introduced such that u00 ¼ rf

0
0. Therefore, f

0
0

satisfies the same system of equations as f0 in the potential model, i.e., Eqs. (24) and (25). Since we are interested in the

beam displacement, the boundary-layer is created only near its surface, not near that of the outer cylinder. In effect, at

this order the outer cylinder viscous boundary-layer for a high-Stokes-number flow is not expected to go through the

potential flow separating the two surfaces. Hence the outer boundary is taken into account only in its effect on the

potential flow. Higher-order phenomena such as steady streaming (Riley, 2001) must include more complex interactions

among the two boundaries, the potential flow and the advection term.

Close to the beam, the radial boundary layer variable Z ¼ b1=2ðr� 1Þ is introduced in the system of Eqs. (22) and (23).

Furthermore the following inner expansion is performed:

ūZ

ūy

ūz

p̄

8>>>><
>>>>:

9>>>>=
>>>>;
¼

0

ū0y

ū0z

p̄0

8>>>><
>>>>:

9>>>>=
>>>>;
þ b�1=2

ū1Z

ū1y

ū1z

p̄1

8>>>><
>>>>:

9>>>>=
>>>>;
þ Oðb�1Þ, (29)

where ūZ, ūy, ūz and p̄ denote, respectively, the radial, azimuthal and vertical velocities and the fluid pressure inside the

boundary-layer and depend on Z, y, z, and t. The introduction of the boundary-layer variable Z together with the inner

expansion Eq. (29) take into account the different orders of magnitude of the radial and azimuthal boundary-layer

velocities: the radial velocity is normalized by the viscous diffusion velocity
ffiffiffiffiffiffiffi
noi
p

and the azimuthal velocity by the

velocity imposed on the whole system. Thus the leading-order equations are given by

qp̄0

qZ
¼ 0 and

qū0y
qt
¼ �

qp̄0

qy
þ
q2ū0y
qZ2

. (30)

Since evaluation of the fluid forces at a fixed z requires only knowledge of the azimuthal component, ū0
y, the equations

governing the vertical and axial velocity components, ū0z and ū1Z, are not expressed here. The first relation of Eq. (30)

states that the leading-order boundary-layer pressure is constant across the viscous boundary-layer. Hence it can be

linked to the outer variables, typically by considering the limit, as r tends to 1, of the azimuthal component of Eq. (28).

Substituting the resulting relation in Eq. (30) yields the boundary-layer equation:

q
qt
�

q2

qZ2

� �
ū0y ¼

qu0y;0

qt

�����
r¼1

, (31)

where u0
y;0 is the azimuthal component of u00. The boundary layer velocity ū0y must satisfy the no-slip boundary

conditions on the beam surface, Eq. (23), and following the limit-matching principle (Van Dyke, 1964), must match as

Z!1, the outer azimuthal velocity evaluated on the boundary, i.e., at r ¼ 1:

ū0yjZ¼0 ¼ �½ _xðz; tÞ þ _xiðtÞ� sin y and lim
Z!1

ū0yðZ; y; z; tÞ ¼ u0y;0jr¼1. (32)
8



Therefore, the boundary-layer azimuthal velocity can be derived using Eq. (31) together with the boundary conditions,

Eq. (32), once the outer potential problem has been solved.

3.3. Compressible behaviour: acoustic model

Here modelling of fluid compressibility is investigated. This section differs from Section 3.2 in the order of magnitude

used for the Keulegan–Carpenter and Stokes numbers:

K ¼ OðMaÞ51 and b!1. (33)

Hence the parameter � defined by Eq. (18) behaves as OðMaÞ. Since small-Mach-number flows are considered, � is
expected to be small enough to be used as a perturbation parameter and the expansion given by Eq. (19) is substituted

into the system of dimensionless (10) and (11). Retaining terms of the same order and assuming that leading-order

density r0 is initially constant in space yield the following equations:

qr1
qt
þ

K

�
r � u0 ¼ 0 and

qu0
qt
¼ �rp1. (34)

A relation between r1 and p1 is required to close this system. Since the viscous dissipation is neglected at this order

and thermal effects are not considered, the flow is isentropic. Hence, substituting the expansion, Eq. (19), in the

dimensionless state Eq. (12) gives p1 ¼ r1. It is convenient to introduce the velocity potential f so that its leading order

satisfies u0 ¼ rf0. Its substitution into the second relation of Eq. (34) and integration according to the space variables

give a Bernoulli relation identical to that obtained in the potential model, Eq. (26). Then, its substitution into the first

relation of Eq. (34) provides the wave equation for the velocity potential,

r2f0 � O2 q
2f0

qt2
¼ 0 with O ¼

ffiffiffiffi
�

K

r
¼

R1oi

cf

. (35)

The compressibility number O appears to be the meaningful dimensionless parameter to quantify fluid compressibility

effects. The Neumann-type boundary conditions are given by Eq. (25).
4. Fluid–structure interaction

4.1. Resolution method

The potential, viscous boundary layer and acoustic models discussed in Section 3 are linear, owing to the hypothesis

of small beam displacements in relation to both the beam radius and the radial clearance. Furthermore, the modal

Eqs. (8) are expected to be coupled by the fluid presence. These remarks suggest that the modal time-dependent fluid

force coefficients f nðtÞ, can be formulated as

f nðtÞ ¼

Z t

0

Cn
i ðt� tÞ €xiðtÞdt�

X1
m¼1

Z t

0

Cn
mðt� tÞ €xmðtÞdt. (36)

The function Cn
i ðtÞ denotes the fluid influence on the nth flexural beam mode, induced by an impulsional imposed

motion and without relative motions, i.e. for €xiðtÞ ¼ dðtÞ and €xðz; tÞ ¼ 0. The function Cn
mðtÞ is the fluid influence on the

nth mode induced by an impulsional motion of the mth mode, i.e., for €xiðtÞ ¼ 0 and €xðz; tÞ ¼ dðtÞjmðzÞ. The convolution

products reflect that the fluid response is not instantaneous, except in the potential model, since wave-propagation

phenomena in the fluid domain are involved. The fluid response functions Cn
i ðtÞ and Cn

mðtÞ and their physical

interpretation are described for each fluid model in the following sections. Once the modal fluid force coefficients are

put into the form of Eq. (36), the fluid–structure interaction problem can be solved by the same approach for the three

fluid models. The substitution of Eq. (36) into the modal Eq. (8) yields an infinite number of fully coupled integro-

differential equations. By truncating to a finite number of modes, the resulting system could be solved by a time-

marching scheme. However, its linearity suggests the Laplace transform use to turn it into a simple algebraic system.

Thus, employing the convolution theorem and introducing the complex functions ŵn
mðsÞ and ŵn

i ðsÞ as

ŵn
mðsÞ ¼

s2MĈn
mðsÞ

s2½1þMĈn
nðsÞ� þ o2

n

; ŵn
i ðsÞ ¼

MĈn
i ðsÞ � j0

n

s2½1þMĈn
nðsÞ� þ o2

n

, (37)
9



each modal equation can be written in the form,

x̂nðsÞ þ
X1

m¼1;man

ŵn
mðsÞx̂mðsÞ ¼ ŵn

i ðsÞ €̂xiðsÞ, (38)

where s is the complex Laplace variable. Without fluid, i.e., forM ¼ 0, the modes are uncoupled and Eq. (38) reduces to

x̂nðsÞ ¼ � €̂xiðsÞj0
n=ðs

2 þ o2
nÞ. By using some Laplace transform formulas, its solution in the temporal domain is simply

given by xnðtÞ ¼ �j0
n=on

R t

0 sin½onðt� tÞ� €xiðtÞdt. The system memory, reflected by the kernel sinðontÞ, is due only to the

nth beam mode elasticity and illustrates the nondissipative character of the system. The functions ŵn
mðsÞ and ŵn

i ðsÞ

quantify, in the complex plane, respectively, the mth mode influence on the nth mode dynamics and the way in which

the imposed motion €xiðtÞ is felt by the nth mode. Keeping only the first N modal Eq. (38) lets us write the resulting

truncated system in the matrix form

1 ŵ21ðsÞ � � � � � � ŵN
1 ðsÞ

ŵ12ðsÞ 1 . .
. ..

.

..

. . .
. . .

. . .
. ..

.

..

. . .
.

1 ŵN
N�1ðsÞ

ŵ1N ðsÞ � � � � � � ŵN�1
N ðsÞ 1

2
6666666664

3
7777777775

x̂1ðsÞ

x̂2ðsÞ

..

.

x̂N�1ðsÞ

x̂N ðsÞ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼ €̂xiðsÞ

ŵ1i ðsÞ

ŵ2i ðsÞ

..

.

ŵN�1
i ðsÞ

ŵN
i ðsÞ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
. (39)

By denoting ½M̂ðsÞ� and fx̂ðsÞg, the matrix and vector of the left-hand side, respectively, and fŵiðsÞg, the right-hand side

vector, the first N displacement coefficients can be found by matrix inversion, with the Laplace variable s as a

parameter, and by performing an inverse Laplace transform to return to the temporal domain:

fxðtÞg ¼L�1ð €̂xiðsÞ½M̂ðsÞ�
�1fŵiðsÞgÞðtÞ, (40)

where L�1ð:ÞðtÞ denotes the Laplace transform inversion. This operation is carried out by a FFT-based algorithm

together with a quotient-difference algorithm to accelerate the FFT series convergence and thus enhance solution

accuracy (Brancik, 2001, 2003). If we denote by fjðzÞg the vector containing the first N bending modes, the displacement

field, xðz; tÞ, is deduced from the modal decomposition as

xðz; tÞ ¼ hxðtÞifjðzÞg. (41)

For further physical interpretation, it can be fruitful to use the convolution theorem during the Laplace transform

inversion. Moreover, by denoting ĤnðsÞ the nth component of the vector ½M̂ðsÞ��1fŵiðsÞg and HnðtÞ its corresponding

temporal function, the nth modal displacement coefficient xnðtÞ, and the displacement field xðz; tÞ can be written as

xnðtÞ ¼

Z t

0

Hnðt� tÞ €xiðtÞdt; xðz; tÞ ¼
XN

n¼1

jnðzÞ

Z t

0

Hnðt� tÞ €xiðtÞdt. (42)

The kernel HnðtÞ is the response function of the nth modal displacement coefficient. It involves the elasticity of the nth

mode and the influence of the N � 1 others as a result of the fluid coupling. It also reflects the influence of the wave

propagation phenomena in the fluid domain. Since it is independent of the imposed motion, some characteristics of the

fluid–structure interaction problem can be assessed from a general viewpoint. The fluid response functions Cn
i ðtÞ and

Cn
mðtÞ and the beam response functions HnðtÞ are still to be expressed explicitly. They are derived and described for each

fluid model in what follows.

4.2. Interaction with potential flow

Assuming that b!1, M2
a5K51 and O51, the fluid dynamics is governed by the Laplace Eq. (24) for the velocity

potential with the Neumann-type boundary conditions, Eq. (25). The vertical length and velocity are now renormalized,

respectively, by L and UiR1=L instead of R1 and Ui so as to be consistent with the notations used for the beam

dynamics. Expressing the Laplace equation in a cylindrical coordinate system, using separation of variables and Eqs. (4)

and (25) yield the velocity potential

f0ðr; y; z; tÞ ¼ r _xiðtÞ cos y�
X1
m¼1

X1
q¼0

jq
mcqðrÞ cosðqpzÞ

" #
_xmðtÞ cos y, (43)
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where the functions cqðrÞ are given by

c0ðrÞ ¼
1

a2 � 1

a2

r
þ r

� �
, (44)

cqðrÞ ¼ �
2

kq

Y01ðkqaÞJ1ðkqrÞ � J01ðkqaÞY1ðkqrÞ

J01ðkqÞY
0
1ðkqaÞ � J01ðkqaÞY01ðkqÞ

for qX1, (45)

with J1 and Y1 the Bessel functions of order 1 of the first and second kind, respectively (Abramowitz and Stegun, 1970),

kq defined by kq ¼ iqpg and jq
m given by Eq. (9). In the potential flow model, the dimensionless integrated fluid forces at

a fixed position z are due to the fluid pressure alone. At this order, only its ex-direction component is nonzero. The first-

order fluid pressure p1 can be deduced from the velocity potential Eqs. (43)–(45) and the Bernoulli relation, Eq. (26). Its

evaluation on the beam surface and integration according to y yield the expression for the fluid forces. Then, their

projections on the nth eigenfunction give the modal time-dependent coefficients

f nðtÞ ¼ j0
n €xiðtÞ �

X1
m¼1

X1
q¼0

jq
mj

q
ncq

" #
€xmðtÞ, (46)

where cq ¼ cqð1Þ. The first term on the right-hand side weights the inertial effect. The second involves all the beam

modes; it is proportional, for each m, to the modal acceleration €xmðtÞ. Hence the coefficient
P

qj
q
mj

q
ncq can be seen as

the added mass induced by the mth mode motion and transmitted on the nth mode by the fluid. The modal fluid force

coefficients can also be put into convolution-product form, Eq. (36), with the kernels,

Cn
i ðtÞ ¼ j0

ndðtÞ and Cn
mðtÞ ¼

X1
q¼0

jq
mj

q
ncqdðtÞ. (47)

The Dirac distribution dðtÞ reflects the obvious result that a potential flow responds instantaneously and everywhere to

the beam motion, without history effect. The function Cn
mðtÞ, which is the fluid influence on the nth mode induced by an

impulsional motion of the mth mode, contains the contribution of all the vertical fluid modes. The beam response

functions, HnðtÞ, can now be described. They are illustrated in Fig. 2(a) for n ¼ 1 with dimensionless parameters

W ¼ 1, M ¼ 1
8
, a ¼ 2, and g ¼ 0:2. The dotted lines correspond to the response functions obtained without fluid and

simply given by �j0
n=on sinðontÞ. The major effect of the fluid is to reduce for each mode both the displacement

amplitude and frequency. Although H1ðtÞ involves the elasticity of all the bending modes due to the fluid coupling, that

of the first mode is strongly dominant.

4.3. Interaction with viscous flow

Assuming that b1=2ða� 1Þb1, M2
a5K51 and O51, a viscous boundary-layer is formed near the beam surface. To

solve the boundary-layer Eqs. (31) and (32), the azimuthal velocity of the outer flow, u0y;0, is needed. Since the flow far
Fig. 2. The first response function H1ðtÞ for W ¼ 1, M ¼ 1
8
, a ¼ 2 and g ¼ 0:2. (a) —, potential; � � �, in vacuo and (b) � � �, potential;

viscous with – –, b ¼ 1000; —, b ¼ 250.
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from the boundaries is potential at the leading order, the velocity potential f0
0 is equal to that obtained in Eqs. (43)–(45)

and u0y;0 can then be deduced,

u0y;0ðr; y; z; tÞ ¼ � _xiðtÞ �
1

r

X1
m¼1

X1
q¼0

jq
mcqðrÞ cosðqpzÞ

" #
_xmðtÞ

( )
sin y. (48)

By expressing the boundary-layer Eqs. (31) and (32) in the Laplace domain and by using the above expression, the

boundary-layer solution is obtained with separation of variables:

^̄u0yðZ; y; z; sÞ
sin y

¼ � _̂xiðsÞ þ
X1
m¼1

ð1� e�Z
ffiffi
s
p

Þ
X1
q¼0

jq
mcq cosðqpzÞ � e�Z

ffiffi
s
p

jmðzÞ

" #
_̂xmðsÞ. (49)

The solution, uniformly valid in the fluid domain and denoted by ûy, is derived by summing the above relation with

the outer one given in Eq. (48) and removing the common limit, which is counted twice (Kevorkian and Cole, 1996).

Moreover, performing the change of variable Z ¼ b1=2ðr� 1Þ and employing the usual inverse Laplace transform

relations, let us express the solution in the form

uyðr; y; z; tÞ ¼ � sin y _xiðtÞ þ
X1
m¼1

Z t

0

Qmðr; y; z; t� tÞ €xmðtÞdt, (50)

where the function Qmðr; y; z; tÞ is the fluid velocity response to an impulsional motion of the mth flexure beam mode,

defined by

Qmðr; y; z; tÞ ¼ uðtÞ
X1
q¼0

jq
mcqðrÞ cosðqpzÞ sin y� erfc

r� 1

2

ffiffiffi
b
t

r !
jmðzÞ þ

X1
q¼0

jq
mcq cosðqpzÞ

" #
sin y, (51)

with uðtÞ and erfcðtÞ the Heaviside and complementary error function (Abramowitz and Stegun, 1970), respectively. The

first term on the right-hand side describes the potential flow contribution, while the second is due only to the first-order

viscous correction and vanishes as r increases. The fluid velocity response induced by the impulsional motion of the

third flexure beam mode, Q3, is illustrated in Fig. 3. The fields are displayed in the ðr; zÞ plane at y ¼ p=2, for half the
radial clearance and with dimensionless parameters a ¼ 2, g ¼ 0:2, and b ¼ 500. The dotted lines in Fig. 3(b) and (c)

denote the positions in the ðr; zÞ plane at which the relative error between the viscous azimuthal velocity and that

obtained with the potential model is 1%. An evanescent shear wave generated on the beam surface at t ¼ 0 is seen to

propagate in the fluid domain as t increases. In parallel, the shear at the boundary, initially infinite, decreases as the

wave propagates. Obviously, the viscous velocity field matches the potential flow for large radial positions r. This effect

occurs more quickly as the Stokes number is large and the time is short. Apart from the discontinuities around the
Fig. 3. (a) Third bending mode. (b) and (c) The kernel Q3ðr; y; z; tÞ at y ¼ p=2, with a ¼ 2, g ¼ 0:2 and b ¼ 500. The dotted lines denote

the position where the relative error between the viscous azimuthal velocity and that obtained with the potential flow model is one

per cent. The arrows denote the waves propagation direction.
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points z where the third eigenfunction equals zero (see Fig. 3(a)), the evanescent shear-wave propagation appears to be

nearly the same for all z.

The integrated fluid forces can now be expressed. From symmetry considerations, only their ex-components are

nonzero. By keeping only the meaningful terms, i.e. those scaled after evaluation as Oð1Þ and Oðb1=2Þ, the dimensionless

fluid forces are given by the formula

F ðz; tÞ ¼ �
1

p

Z 2p

0

p1jr¼1 cos yþ b�1
quy

qr

����
r¼1

sin ydy. (52)

The pressure term in the integral can be evaluated by performing an integration by part and substituting the azimuthal

component of the momentum Eq. (22) in the resulting relation. The shear term in the integral can be obtained from

Eq. (50). Once the dimensionless fluid forces are obtained, their projections on the nth flexure beam mode yield the

modal fluid force coefficients:

f nðtÞ ¼ j0
n €xiðtÞ �

X1
m¼1

X1
q¼0

jq
mj

q
ncq

" #
€xmðtÞ �

2ffiffiffiffiffiffi
pb

p Z t

0

1ffiffiffiffiffiffiffiffiffiffi
t� t
p €xnðtÞ þ

X1
m¼1

X1
q¼0

jq
mj

q
ncq

" #
€xmðtÞ

( )
dt. (53)

The first two terms on right-hand side are the same as those obtained from the potential model, Eq. (46).

They correspond to the contribution of the fluid part, which responds instantaneously to the boundary motions. The

third term, inversely proportional to the square root of the Stokes number, is the first-order viscous rectification. It

involves the total history of the relative beam motions through a convolution product. Its kernel, scaled as t�1=2,

indicates that a motion at time t has decreasing influence on the fluid forces at time t as t� t increases. This reflects the
decrease in shear and the loss of memory induced by propagation in the fluid domain of the evanescent viscous wave

created at the beam surface as it is put into motion. The kernel t�1=2, well known for a flat plate, can be found in

classical textbooks (Basset, 1888; Lamb, 1932). The modal fluid force coefficients can also be put into the general

form, Eq. (36):

Cn
i ðtÞ ¼ j0

ndðtÞ, (54)

Cn
nðtÞ ¼ dðtÞ

X1
q¼0

ðjq
nÞ

2cq þ
2ffiffiffiffiffiffi
pb

p 1ffiffi
t
p 1þ

X1
q¼0

ðjq
nÞ

2cq

" #
, (55)

Cn
mðtÞ ¼ dðtÞ þ

2ffiffiffiffiffiffi
pb

p 1ffiffi
t
p

!X1
q¼0

jq
mj

q
ncq for man. (56)

There is no viscous correction linked to the fluid response function Eq. (54) since this term corresponds to the

irrotational motion imposed to the whole system, which does not create any flow. The contribution of the mth mode to

the nth mode involves both potential and viscous effects. Obviously, as b!1, the viscous model solution tends to the

potential one since a stable viscous boundary layer is assumed.

The beam response function H1ðtÞ is illustrated in Fig. 2(b) for the dimensionless parameters W ¼ 1, M ¼ 1
8
, a ¼ 2,

and g ¼ 0:2 and different Stokes numbers b. The dotted line corresponds to the response function obtained with the

potential model. In addition to the potential flow/elasticity interaction phenomena already described in Section 4.2, the

response functions contain the influence of fluid viscosity. At early times, since the viscous shear wave is still very

close to the boundary, the loss of energy induced by its propagation in the fluid domain is negligible and the curves

coincide with those obtained with the potential model. As time increases, the evanescent waves are continuously

generated on the boundary and dissipated as they propagate in the potential flow, which produces the damping effect.

This phenomenon obviously occurs all the faster since the Stokes number is low.

4.4. Interaction with an acoustic flow

Assuming now that b!1, K ¼ OðMaÞ and O ¼ Oð1Þ, the flow is governed by the wave Eq. (35) for the velocity

potential with the Neumann-type boundary conditions, Eq. (25). The vertical length and velocity are renormalized,

respectively, by L and UiR1=L so as to be consistent with the beam normalization factors. The velocity potential is

obtained by expressing the wave equation in a cylindrical coordinate system in the Laplace domain, using separation of
13



variables and the relations (4) and (25):

f̂0ðr; y; z; sÞ ¼ ĉiðr; sÞ _̂xiðsÞ cos y�
X1
q¼0

ĉqðr; sÞ
X1
m¼1

jq
m _̂xmðsÞ

!
cosðqpzÞ cos y, (57)

where the coefficients ĉiðr; sÞ and ĉqðr; sÞ take here the form

ĉiðr; sÞ ¼
1

k0

½Y01ðk0aÞ �Y01ðk0Þ�J1ðk0rÞ � ½J01ðk0aÞ � J01ðk0Þ�Y1ðk0rÞ

J01ðk0ÞY
0
1ðk0aÞ � J01ðk0aÞY01ðk0Þ

,

ĉqðr; sÞ ¼ �
Dq

kq

Y01ðkqaÞJ1ðkqrÞ � J01ðkqaÞY1ðkqrÞ

J01ðkqÞY
0
1ðkqaÞ � J01ðkqaÞY01ðkqÞ

, (58)

with Dq ¼ 1 for q ¼ 0 and Dq ¼ 2 for qX1. The prime denotes the derivative according to the function argument,

J1 and Y1 are the Bessel function of order 1 of the first and second kind, respectively (Abramowitz and Stegun, 1970),

and kqðsÞ is defined by kqðsÞ ¼ i½ðOsÞ2 þ ðqpgÞ2�1=2. The first-order fluid pressure can then be deduced from the Bernoulli

relation, Eq. (26), and evaluated in the temporal domain by using the convolution theorem:

p1ðr; y; z; tÞ ¼
Z t

0

Kiðr; y; t� tÞ €xiðtÞdtþ
X1
m¼1

Z t

0

Kmðr; y; z; t� tÞ €xmðtÞdt, (59)

where the kernels Kiðr; y; tÞ and Kmðr; y; z; tÞ are the fluid pressure responses induced by the impulsional motion,

respectively, of the whole system and of the mth flexure beam mode:

Kiðr; y; tÞ ¼ �ciðr; tÞ cos y; Kmðr; y; z; tÞ ¼
X1
q¼0

jq
mcqðr; tÞ cosðqpzÞ cos y, (60)

with ciðr; tÞ and cqðr; tÞ the inverse Laplace transforms of ĉiðr; sÞ and ĉqðr; sÞ. Their analytical expressions are not

straightforward, but they can be efficiently evaluated by a numerical inverse of the Laplace transform. The kernel

K2ðr; y; z; tÞ is illustrated in Fig. 4 at y ¼ 0 with dimensionless numbers a ¼ 2, O ¼ 1 and g ¼ 0:2. It appears from

Eq. (60) that all the fluid vertical modes are involved. At t ¼ 0, the impulsional motion of the second bending mode,

Fig. 4(a), generates a pressure wave on the inner cylinder boundary that consists of both a compression and a

rarefaction wave, depending on the sign of j2ðzÞ along the vertical coordinate z. This case is equivalent to a problem in

which both the radial clearance and the propagation velocities are equal to one. So the pressure wave is reflected back

on the boundaries at each t ¼ k, k 2 N. This phenomenon recurs indefinitely since the acoustic model in a confined fluid

domain does not contain any damping mechanism.
Fig. 4. (a) Second bending mode. (b) and (c) The kernel K2ðr; y; z; tÞ at y ¼ 0, with a ¼ 2, g ¼ 0:2 and O ¼ 1. The arrows denote the

waves propagation direction.
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Fig. 5. Time-dependent coefficients of the modal fluid forces. (a) Influence of the impulsional motion of the whole system for O ¼ 1

and different a: —, a ¼ 2; – –, a ¼ 1:5. (b) Influence of the impulsional motion of the first, second and third bending modes on the

second mode, for O ¼ 1, a ¼ 2 and g ¼ 0:2. —, C2
2ðtÞ; – –, C2

1ðtÞ and � � �, C2
3ðtÞ.
The expression for the fluid forces on the beam surface at a given z can be deduced by integrating the fluid pressure

Eq. (59) according to y. Only its ex-direction component is nonzero and its projection on the nth flexure beam mode

yields the expression for the modal fluid force coefficients,

f nðtÞ ¼ j0
n

Z t

0

ciðt� tÞ €xiðtÞdt�
X1
m¼1

Z t

0

X1
q¼0

jq
mj

q
ncqðt� tÞ

" #
€xmðtÞdt, (61)

where ciðtÞ ¼ cið1; tÞ and cqðtÞ ¼ cqð1; tÞ. These forces can also be expressed into the general form, given by Eq. (36), as

Cn
i ðtÞ ¼ j0

nciðtÞ and Cn
mðtÞ ¼

X1
q¼0

jq
mj

q
ncqðtÞ. (62)

The coefficients for the modal fluid forces associated with the impulsional motion of the whole system, Cn
i ðtÞ, differ

from each other by the geometrical constant j0
n, and they can therefore be described through the analysis of ciðtÞ only.

This function is displayed in Fig. 5(a) for O ¼ 1 and different a. These curves have points of finite discontinuity that

account for the reflections of pressure waves in the fluid domain. For instance, for O ¼ 1 and a ¼ 2, the compression

wave induced by the impulse motion of the inner cylinder at t ¼ 0 is reflected back on the outer cylinder at t ¼ 1 and

influences the integrated fluid forces on the inner cylinder at t ¼ 2. During this time, the rarefaction wave generated by

the impulse motion of the outer cylinder at t ¼ 0 arrives on the inner cylinder at t ¼ 1 and creates a discontinuity in the

fluid forces. Hence, the time interval between the discontinuities is equal to half the time for a wave to travel back and

forth from one cylinder to the other. Furthermore, the more confined the fluid domain, the more discontinuities the

kernel contains. At the beginning of the process, that is before the rarefaction wave comes into contact with the beam

surface, the kernel is seen to be independent of the confinement ratio, a consequence of the finite propagation velocity:

the inner cylinder is not ‘‘informed’’ yet of the presence of the outer boundary. In addition to the finite discontinuities,

the curves in Fig. 5(a) display a low frequency modulation, nearly independent of the confinement ratio. Deriving the

power spectrum of ciðtÞ for O ¼ 1 shows that the frequency of this modulation tends to 1 as a! 1, which is exactly the

frequency linked to the time for a wave of velocity 1 to cover a distance of 2p. Therefore, the low-frequency modulation

is associated to azimuthal propagation of pressure waves.

The time-dependent modal coefficients Cn
mðtÞ, illustrated in Fig. 5(b) for n ¼ 2 and m ¼ 1, 2 and 3, represent

the contribution of the impulsional motion of the first, second and third bending modes on the fluid forces felt by the

second one. The curve of C2
2ðtÞ displays finite discontinuities due to the multiple reflections of the pressure wave

generated at t ¼ 0 by the impulsional motion of the second bending mode. The interval between the discontinuities is

equal to the time for this wave to travel back and forth from the beam to the outer cylinder. The other curves, namely

C2
1ðtÞ and C2

3ðtÞ, are more regular and only their time derivatives contain discontinuities. They are equal to zero at t ¼ 0

and their contributions remain negligible at early times. This behaviour is a consequence of the in vacuo eigenfunctions

orthogonality: the wave generated at t ¼ 0 by the impulsional motion of the nth bending mode has the shape of this
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Fig. 6. The first impulse function H1ðtÞ obtained with the acoustic model—for the dimensionless parameters W ¼ 1, M ¼ 1
8
, a ¼ 2,

g ¼ 0:2 and different compressibility numbers O: (a) —, O ¼ 0:05; � � �, potential model and (b) —, O ¼ 1; � � �, in vacuo model.
mode. Hence its influence on the other modes is null, they are uncoupled. As the wave propagates in the cylindrical

domain, it loses its initial shape with the result that its projection on the other modes becomes significant, they are fully

coupled. Unlike the viscous case, in order to evaluate the fluid forces at a time t, the motion of the boundaries at a

previous time t is as important as that at time t, even though t� t is large: there is no loss of fluid memory, since the

outgoing pressure waves are reflected back and are not affected by any damping mechanism.

The beam response function H1ðtÞ is illustrated in Fig. 6 for the dimensionless parameters W ¼ 1, M ¼ 1
8
, a ¼ 2,

g ¼ 0:2 and different compressibility numbers O. For O ¼ 0:05, Fig. 6(a), the frequencies linked to the pressure-wave

propagation in the fluid domain are above that of the first bending mode, and hence the response function is close to

that obtained with the potential model, with only a high-frequency modulation due to the multiple rebounds of the

pressure waves. On the other hand, for O ¼ 1 (see Fig. 6(b)), the first frequency linked to the pressure wave propagation

is lower than that of the first bending mode. Hence at early times, the fluid has not had the time to manifest itself and

the bending mode, not informed of the fluid presence, responds as if in vacuo. As time increases, an

elasticity–compressibility coupling appears, resulting in a low-frequency modulation of the curve.
5. The models for an imposed sine-wave shock

5.1. Sine-wave shock

The fluid–structure interaction models obtained in Section 4 are now illustrated and compared for a specific motion

imposed on the whole system. This motion consists of an unique sinusoidal period of acceleration. Their dimensional

and dimensionless expressions (using the normalization factors in Table 1(a)) take, respectively, the form,

~€xið~tÞ ¼

Uioi

2
sinoi ~t 8~t 2 ½0; 2p=oi�;

0 8~t42p=oi;

8<
: €xiðtÞ ¼

1

2
sin t 8t 2 ½0; 2p�;

0 8t42p;

8<
: (63)

where Ui and oi are the characteristic velocity and frequency of the shock. Hence the maximum acceleration is given by

Uioi=2 and its dimensionless expression is 1
2
. Even though this function is partly composed of a harmonic function, it

can be considered a purely transient motion since it starts from rest at t ¼ 0 and stops at t ¼ 2p. It consists of a simple

imposed translation and is representative of the early residual motion undergone by equipment during shock loading

(Keil, 1961; O’Hara and Cunnif, 1993). Employing usual Laplace transform relations, its expression in the Laplace

domain is given by

€̂xiðsÞ ¼
1� e�2ps

2ðs2 þ 1Þ
. (64)
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Substituting this relation in the truncated system, Eq. (39), performing the numerical matrix and Laplace transform

inversions, Eq. (40), and doing the modal recomposition, Eq. (41), yield the dimensionless relative displacement xðz; tÞ.
From the design point of view, knowledge of the absolute beam acceleration, €xaðz; tÞ, is also useful. Its dimensionless

form is derived from the relative beam displacement thanks to the relation €xaðz; tÞ ¼ €xðz; tÞ þ €xiðtÞ. Since the parameter

space (M, W, a, g, b, O) is quite large, all the system characteristics cannot be easily assessed and synthesized, so only a

few general behaviours are illustrated below.

5.2. Variation of the beam as a function of the dimensionless frequency W

From the design point of view, the maximum absolute acceleration experienced by the shock-loaded structures as a

function of the system stiffness is of interest. For a clamped-free beam, the maximum occurs at its free end, i.e. z ¼ 1.

Hence, the variation of the maximum absolute beam acceleration, maxtj €xað1; tÞj, normalized by the maximum imposed

acceleration, i.e. 1
2
, as a function ofW is particularly meaningful. Such curves are shown in Fig. 7(a) for a beam in vacuo

and in a potential flow with dimensional parameters a ¼ 2, g ¼ 0:2 andM ¼ 1
8
. For largeW, the beam is stiff in relation

to the imposed shock, so the relative displacement tends to zero and the maximum absolute acceleration tends to that

imposed on the whole system. As W decreases, pseudo-resonances between the imposed shock frequency and the

characteristic elastic beam frequencies are observed. The mean influence of the potential flow is to reduce significantly

the amplitude of the peaks as a result of inertial and added-mass effects. While the maximum acceleration in vacuo,

encountered for the first bending mode pseudo-resonance, is more than five times that of the imposed shock, it is

reduced to barely four times with a potential flow for M ¼ 1
8. Unlike the case of a single-degree-of-freedom spring-mass

system in vacuo, where the maximum acceleration tends rapidly to zero as the spring stiffness tends to zero (Lalanne,

1999), here the pseudo-resonance with each bending mode prevent this rapid decrease as W! 0.

The maximum absolute beam accelerations obtained with the viscous model is illustrated in Fig. 7(b) for a ¼ 2,

g ¼ 0:2, M ¼ 1
8
and b ¼ 1000. The main influence of viscosity is to slightly reduce the amplitude of the pseudo-

resonance peaks in relation to those obtained with the potential model. This decrease is not always the same: for

instance, the fifth bending mode pseudo-resonance is almost unaffected whereas the fourth is greatly reduced in relation

to the first three. The reason for these discrepancies lies in the different times at which the peaks are attained: the

influence of viscosity is more pronounced as the maximum is reached at large time.

The influence of fluid compressibility is illustrated for O ¼ 1 in Fig. 8(a) and for O ¼ 0:4 in Fig. 8(b), with a ¼ 2,

g ¼ 0:2 and M ¼ 1
8
. As in the viscous case, no meaningful difference from the potential model can be observed for

large W. On the contrary, the curves display contrasting behaviours in the resonant zone. For O ¼ 1, all peaks are

higher than those obtained in vacuo. Furthermore, the high-frequency in vacuo flexure modes cannot be clearly

identified in a compressible flow, since they are fully coupled with the acoustic waves: the pseudo-resonant peaks occur

near the characteristic frequencies of the coupled elastic acoustic system. For O ¼ 0:4, the maximum acceleration is

lower than that obtained with a potential flow, while the other peaks are slightly higher. Further numerical simulations
Fig. 7. Maximum absolute beam acceleration j €xaðz; tÞj at z ¼ 1, normalized by the maximum imposed acceleration, for a ¼ 2, g ¼ 0:2,
M ¼ 1

8
, as a function of the dimensionless frequency W: (a) - - -, in vacuo model; —, potential model and (b) - - -, potential model,

b ¼ 1000.
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Fig. 8. Maximum absolute beam acceleration j €xaðz; tÞj at z ¼ 1, obtained with the in vacuo, potential and acoustic models, normalized by the

maximum imposed acceleration, for a ¼ 2, g ¼ 0:2 andM ¼ 1
8
, as a function of the dimensionless frequencyW: (a) —, O ¼ 1; - - -, in vacuo

model and (b) —, O ¼ 0:4; - - -, potential model.

Fig. 9. Maximum nondimensional relative beam displacement jxðz; tÞj at z ¼ 1 normalized by the maximum value of the potential

model, for g ¼ 0:2, M ¼ 1
8
, W ¼ 0:3 and different confinement numbers: —, a ¼ 2; – –, 1.5: (a) with the viscous boundary-layer model

as a function of the Stokes number and (b) with the acoustic model as a function of the compressibility number. The dash–dot lines –�–

denote the maximum normalized displacement in vacuo.
for different O show other characteristics, with the result that it may be difficult to extract general trends, and they must

be analysed individually. Some elements can nevertheless be obtained by looking at the variation of the maximum

relative displacement as a function of the compressibility number at a fixed W.

5.3. Variation of the beam response as a function of the stokes and compressible numbers

The response of the fluid–structure system to a sine-wave shock can also be studied by analysing the maximum

relative displacement, maxtjxðz; tÞj at z ¼ 1, as a function of the Stokes and compressibility numbers for fixed a, g, M
andW, and normalized by the maximum value obtained with a potential flow. This yields a complementary view of the

system behaviour and highlights the influence of fluid viscosity and compressibility. Such curves are given in Fig. 9 for

g ¼ 0:2, M ¼ 1
8
, W ¼ 0:3, and a ¼ 2 and 1:5. Note that W ¼ 0:3 corresponds approximately to the highest pseudo-

resonant peak in Figs. 7 and 8. For the viscous case, Fig. 9(a), the maximum displacement is smaller than that obtained
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Fig. 10. Maximum relative beam displacement jxðz; tÞj at z ¼ 1, obtained with the viscous and acoustic models and normalized by the

maximum of the potential model, as a function of the dimensional imposed motion frequency oi. The parameters are R1 ¼ 0:2m,

n ¼ 10�6 m2 s�1, cf ¼ 1500m2 s�1, g ¼ 0:2, M ¼ 1
8
, W ¼ 0:3 and —, a ¼ 2; -�-�-, a ¼ 1:5.
with a potential flow. Obviously, this effect becomes more pronounced as the Stokes number decreases. As bX4� 104,

the viscous rectification is less than 0.5% of that for the potential flow. The acoustic case is illustrated in Fig. 9(b). For

low compressibility numbers, Oo0:1, the maximum displacements tend to the maximum potential values while for high

compressibility numbers, O410, they tend to the values obtained without fluid. Between these two limits, as O
increases, the maximum relative displacements decrease regularly to a minimum well below the potential value and

lower for a ¼ 1:5 than for a ¼ 2. Then, the maximum relative displacements show a sharp increase to a peak well above

the maximum value obtained without fluid and more pronounced for a ¼ 2.

5.4. Use of the models

The viscous and compressible models, described independently in the previous section as functions of their

corresponding dimensionless numbers, can be grouped on a single figure for a particular geometry. Hence the

significant fluid effects in a particular case can be identified. For instance, by fixing the dimensional parameters R1, n
and cf , and the dimensionless numbers g, a, M and W, the maximum relative displacements, maxtjxðz; tÞj at z ¼ 1, can

be displayed as a function of the dimensional shock frequency oi. SinceW is defined by o�1i ðEI=rsSL4Þ
1=2, the quantity

ðEI=rsSL4Þ
1=2 must be adjusted for each oi so as to maintain W constant. Hence, increasing oi makes the Stokes

number and the compressibility number to increase. Such curves are given in Fig. 10 with R1 ¼ 0:2m, n ¼ 10�6 m2 s�1,

cf ¼ 1500m s�1, g ¼ 0:2, a ¼ 1:5 and 2, M ¼ 1
8
and W ¼ 0:3. For oio50 s�1, the curves are obtained with the viscous

fluid model, and with the acoustic one for 50 s�1ooi. All the curves are then normalized with the maximum

displacement obtained with the potential fluid model (which is independent of the frequency oi) for each confinement

ratio. A smooth transition is observed between the curves obtained with the viscous and acoustic fluid models. It

constitutes a check of the correctness of the derivation, in which each effect are treated independently. From this single

graph, the bounds of the ranges corresponding to the three regimes can be defined subjectively. When the curve tends to

unity, this means that the flow is dominated by potential effects. The bounds are defined such that deviations from unity

exceeds approximately 2%. This occurs for the viscous model when oip10�1 s�1 and for the acoustic one when

103 s�1poi. Therefore, for imposed frequencies such that oip10�1 s�1, viscous effects must be taken into account, for

10�1 s�1poip103 s�1 the flow is dominated by potential effects and for 103 s�1poi, fluid compressibility must be

considered. Thus, a meaningful fluid model can be easily identified on a broad range of motions.
6. Conclusions

This paper has presented a semi-analytical approach to the study of an elastic circular cylinder confined in a

cylindrical fluid domain initially at rest and subjected to small-amplitude transient motions. The elastic flexure beam
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model is chosen for the circular cylinder dynamics and the transverse beam displacement is expanded on the in vacuo

sets of eigenvectors, with time-dependent coefficients. The three fluid models, potential, viscous boundary-layer and

acoustic, are derived for small Mach numbers Ma by means of perturbation methods so as to highlight their links and

limits a priori. Hence, the potential flow model is expected to be valid in the range of parameters b!1, M2
a5K51

and O51, the viscous boundary layer model for b
1
2ða� 1Þb1, M2

a5K51 and O51, and the acoustic model for

b!1, K ¼ OðMaÞ and O ¼ Oð1Þ. The resolution method for the fluid–structure interaction problem is then presented,

with the same approach for the three fluid models. The problem is turned into an infinite number of fully coupled

integro-differential equations involving the modal time-dependent displacement coefficients. It is solved, after

truncation, by matrix inversions in the Laplace domain. A fast numerical inversion of the Laplace transform can then

be employed to return to the temporal domain. The governing equations of the fluid medium are then solved for each

fluid model by separation of variables. The solutions, put into the form of convolution products, are expressed for

arbitrary motions of the domain boundaries. Analysis of their kernels yields a physical understanding of the fluid

behaviour and highlights the influence of the related wave-propagation phenomena on the fluid forces. The response

functions, involving both the wave-propagation phenomena in the fluid domain and the beam elasticity, are also

introduced and described. Then, the fluid–structure interaction solutions are illustrated for a specific imposed motion, a

sine-wave shock, that is representative of the early residual motion felt by equipments on board of surface ships or

submarines subjected to the effects of underwater explosion. Some general behaviour is illustrated by displaying the

maximum absolute beam acceleration as a function of the dimensionless frequency W and the maximum relative beam

displacement as a function of the Stokes and compressibility numbers. Last, the models are examined simultaneously

for a particular case and are shown to cover a broad range of motions. Thus for a given geometry and displacement

imposed on the whole system, a meaningful fluid model can be identified.

These models emphasize some fluid–structure interaction effects in simple asymptotic cases. However, not all physical

phenomena are, of course, treated here. For instance, large-relative-displacement beam motions are not considered, so

that boundary-layer separation issues are not handled. Furthermore, the viscous flow is assumed stable, and thus

centrifugal and transient hydrodynamic instabilities are not taken into account. Another restriction comes from the

single-phase assumption, which makes the models incapable of taking cavitation phenomena into account. The present

article yields, however, converged three-dimensional fluid–structure solutions that can be used for estimating the shock-

loaded structures displacement in the first step of design studies and, if required, for selecting a meaningful fluid model

for further investigations. They are also believed to be suitable for validating more evolved numerical codes that can

solve fluid–structure interaction problems in more complex geometries.
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des Etudes et Recherches d’Electricité de France, vol. 69. Eyrolles, Paris.

Habault, D., Filippi, P.J.T., 2003. On the transient response of a fluid-loaded structure represented by a series of resonances modes.

Journal of Sound and Vibration 259, 1269–1275.

Habault, D., Filippi, P.J.T., 2004. A numerical method for the computation of the resonance frequencies and modes of a fluid-loaded

plate: application to the transient response of the system. Journal of Sound and Vibration 270, 207–231.

Hall, P., 1984. On the stability of an unsteady boundary layer on a cylinder oscillating transversely in a viscous flow. Journal of Fluid

Mechanics 146, 337–367.

Honji, H., 1981. Streaked flow around an oscillating circular cylinder. Journal of Fluid Mechanics 107, 507–520.

Iakovlev, S., 2002. Interaction of a spherical shock wave and a submerged fluid-filled circular cylindrical shell. Journal of Sound and

Vibration 255, 615–633.

Iakovlev, S., 2004. Influence of a rigid coaxial core on the stress–strain state of a submerged fluid-filled circular cylindrical shell

subjected to a shock wave. Journal of Fluids and Structures 19, 957–984.

Iakovlev, S., 2006. External shock loading on a submerged fluid-filled cylindrical shell. Journal of Fluids and Structures 22,

997–1028.
20



Iakovlev, S., 2007. Submerged fluid-filled cylindrical shell subjected to a shock wave: fluid–structure interaction effects. Journal of

Fluids and Structures 23, 117–142.

Keil, A.H., 1961. The response of ships to underwater explosions. Transactions, Society of Naval Architects and Marine Engineers 69,

366–410.

Kevorkian, J., Cole, J.D., 1996. Multiple Scale and Singular Perturbation Methods. Springer, New York.

Keulegan, G.H., Carpenter, L.H., 1958. Forces on cylinders and plates in an oscillating fluid. Journal of Research of the National

Bureau of Standards 60, 423–440.

Koumoutsakos, P., Leonard, A., 1986. High resolution simulations of the flow around an impulsively started circular cylinder using

vortex methods. Journal of Fluid Mechanics 296, 1–38.

Lalanne, C., 1999. Vibrations et Chocs Mécaniques, Tome 2. Hermès, Paris.
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