Exact Calculation of Optimal Filter in Hidden Markov Switching Long-Memory Chain

Wojciech Pieczynski

- To cite this version:

Wojciech Pieczynski. Exact Calculation of Optimal Filter in Hidden Markov Switching Long-Memory Chain. International Conference on Mathematics and Statistics (ICMS 2009), Jun 2008, Athènes, Greece. pp.1-10. hal-00403154

HAL Id: hal-00403154
https://hal.science/hal-00403154
Submitted on 9 Jul 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Exact Calculation of Optimal Filters in Hidden Markov Switching Long-Memory Chain

Draft version: June 2009

Wojciech Pieczynski
Telecom SudParis, Dept CITI, 8, rue Charles Fourier, 91000 Evry, France E-mail: Wojciech.Pieczynski@it-sudparis.eu http://www-public.it-sudparis.eu/~pieczyn/

Abstract

This paper considers the problem of continuous state estimation in the presence of random switches. There are three random chains $X_{1}^{N}=\left(X_{1}, \ldots, X_{N}\right)$, $R_{1}^{N}=\left(R_{1}, \ldots, R_{N}\right)$, and $Y_{1}^{N}=\left(Y_{1}, \ldots, Y_{N}\right)$. The random variables X_{i}, Y_{i}, and R_{i} take their values from $\mathrm{R}^{q}, \mathrm{R}^{m}$, and $S=\{1, \ldots, s\}$, respectively. Y_{1}^{N} is observed, X_{1}^{N} and R_{1}^{N} are hidden, and the problem is to estimate $\left(R_{1}^{N}, X_{1}^{N}\right)$ from Y_{1}^{N}. In the classical probabilistic models R_{1}^{N} is Markovian, X_{1}^{N} is linear Markovian conditionally on R_{1}^{N}, and (Y_{1}, \ldots, Y_{N}) are independent conditionally on $\left(R_{1}^{N}, X_{1}^{N}\right)$. Neither exact filtering nor smoothing is possible with polynomial complexity in time in such models and the different research works mainly concern different approximate algorithms. More recently, another class of models, in which exact filtering and smoothing with polynomial complexity in time are feasible, has been proposed. In the latter models the distribution of the triplet ($X_{1}^{N}, R_{1}^{N}, Y_{1}^{N}$) is defined by a Markov distribution of $\left(R_{1}^{N}, X_{1}^{N}\right)$, and then X_{1}^{N} is assumed to be linear Markovian conditionally on $\left(R_{1}^{N}, Y_{1}^{N}\right)$. Subsequently, two extensions of these models have been specified. In the first one, the Markovianity of $\left(R_{1}^{N}, Y_{1}^{N}\right)$ is extended to the «partial» Markovianity, in which $\left(R_{1}^{N}, Y_{1}^{N}\right)$ is Markovian with respect to R_{1}^{N}, but may not be with respect to Y_{1}^{N}. In the second one, $\left(R_{1}^{N}, Y_{1}^{N}\right)$ remains Markovian and X_{1}^{N} is assumed to be linear conditionally on $\left(R_{1}^{N}, Y_{1}^{N}\right)$, but is not assumed Markovian. The aim of this paper is to propose a family of models admitting both these extensions simultaneously. In the new models proposed the distribution of Y_{1}^{N} conditional on R_{1}^{N} can be of the «long dependence» kind, and it is the same for the distribution of X_{1}^{N} conditional on $\left(R_{1}^{N}, Y_{1}^{N}\right)$. We show that the Kalman-like exact filtering remains feasible with polynomial complexity in time in the new models models.

1. Introduction

Let us consider $X_{1}^{N}=\left(X_{1}, \ldots, X_{N}\right)$ and $Y_{1}^{N}=\left(Y_{1}, \ldots, Y_{N}\right)$ two sequences of random vectors, and let $R_{1}^{N}=\left(R_{1}, \ldots, R_{N}\right)$ be a finite-values random chain. Each X_{n} takes its values from R^{q}, while Y_{n} takes its values from R^{m}. The sequences X_{1}^{N} and R_{1}^{N} are hidden and the sequence Y_{1}^{N} is observed. For each $n=1, \ldots, N$, we will set $x_{1}^{n}=\left(x_{1}, \ldots, x_{n}\right), y_{1}^{n}=\left(y_{1}, \ldots, y_{n}\right)$, and $r_{1}^{n}=\left(r_{1}, \ldots, r_{n}\right)$. We deal with the problem of filtering, which consists of the computation, for each $n=1, \ldots, N$, of the conditional expectation $E\left[X_{n} \mid Y_{1}^{n}=y_{1}^{n}\right]$. To simplify, we will set $E\left[X_{n} \mid Y_{1}^{n}=y_{1}^{n}\right]=E\left[X_{n} \mid y_{1}^{n}\right]$. As is well known, this conditional expectation is the optimal estimation of X_{n} from Y_{1}^{n}, when the squared error is concerned. This expectation can be considered - which will be done in this paper - as given by the distribution $p\left(r_{n} \mid y_{1}^{n}\right)$, which is the distribution of R_{n} conditional on $Y_{1}^{n}=y_{1}^{n}$, and by the conditional expectation $E\left[X_{n} \mid R_{n}=r_{n}, Y_{1}^{n}=y_{1}^{n}\right]$, denoted by $E\left[X_{n} \mid r_{n}, y_{1}^{n}\right]$. We have

$$
\begin{equation*}
E\left[X_{n} \mid y_{1}^{n}\right]=\sum_{r_{n}} E\left[X_{n} \mid r_{n}, y_{1}^{n}\right] p\left(r_{n} \mid y_{1}^{n}\right) \tag{1.1}
\end{equation*}
$$

Finally, the problem considered is to compute $p\left(r_{n+1} \mid y_{1}^{n+1}\right)$ and $E\left[X_{n+1} \mid r_{n+1}, y_{1}^{n+1}\right]$ from $p\left(r_{n} \mid y_{1}^{n}\right)$ and $E\left[X_{n} \mid r_{n}, y_{1}^{n}\right]$. The most classical model to define the distribution of the triplet $T_{1}^{N}=\left(X_{1}^{N}, R_{1}^{N}, Y_{1}^{N}\right)$, in use for about thirty years, is the so-called "conditionally Gaussian state-space linear model" (CGSSLM), which consists of considering that R_{1}^{N} is a Markov chain and, roughly speaking, $\left(X_{1}^{N}, Y_{1}^{N}\right)$ is the classical linear system conditionally on R_{1}^{N}. This is summarized in the following:

$$
\begin{align*}
& R_{1}^{N} \text { is a Markov chain; } \tag{1.2}\\
& X_{n+1}=F_{n}\left(R_{n}\right) X_{n}+G_{n}\left(R_{n}\right) W_{n} ; \tag{1.3}\\
& Y_{n}=H_{n}\left(R_{n}\right) X_{n}+J_{n}\left(R_{n}\right) Z_{n}, \tag{1.4}
\end{align*}
$$

where $X_{1}, W_{1}, \ldots, W_{N}$ are independent (conditionally on R_{1}^{N}) Gaussian vectors in $\mathrm{R}^{q}, Z_{1}, \ldots, Z_{N}$ are independent (conditionally on R_{1}^{N}) Gaussian vectors in $\mathrm{R}^{m}, F_{1}\left(R_{1}\right), \ldots, F_{N}\left(R_{N}\right), G_{1}\left(R_{1}\right), \ldots, G_{N}\left(R_{N}\right)$ are matrices of size $q \times q$ depending on switches, and $H_{1}\left(R_{1}\right), \ldots, H_{N}\left(R_{N}\right), J_{1}\left(R_{1}\right), \ldots, J_{N}\left(R_{N}\right)$ are matrices of size $q \times m$ also depending on switches. Therefore the classical

Kalman filter can be used when $R_{1}^{N}=r_{1}^{N}$ is known; however, it has been well known since the publication of (Tugnait, 1982) that the exact computation of neither $E\left[X_{n} \mid r_{n}, y_{1}^{n}\right]$ nor $E\left[X_{n} \mid r_{n}, y_{1}^{N}\right]$ is feasible with linear - or even polynomial - complexity in time in such models when R_{1}^{N} is not known. The difficulty comes from the fact that conditional probabilities $p\left(y_{n+1} \mid y_{1}^{n}\right)$ are not computable with a reasonable complexity. This is a constant problem in all the classical models and the very reason for this is the fact that in the classical model (1.2)-(1.4) the couple (R_{1}^{N}, Y_{1}^{N}) is not Markovian. Then different approximations have to be used and a rich bibliography on the classical methods concerning the subject can be seen in recent books (Costa et al. 2005, Ristic et al. 2004, Cappe et al. 2005,), among others. Roughly speaking, there are two families of approximating methods: the stochastic ones, based on the Monte Carlo Markov Chains (MCMC) principle (Doucet et al. 2001, Andrieu et al. 2003, Cappe et al. 2005, Giordani et al. 2007), among others, and deterministic ones (Costa et al. 2005, Zoeter et al. 2006), among others. Further recent results concerning different applications of these models and related approximation methods can be seen in recent works (Germani et al., 2006; Ho \& Chen, 2006; Kim et al., 2007; Lee \& Dullerud 2007; Zhou and Shumway 2008; Johnson and Sakoulis 2008; Orguner \& Demirekler 2008), among others.
To remedy this impossibility of exact computation, different models have been proposed since 2008. Two of them, proposed in (Abbassi and Pieczynski 2008, Pieczynski 2008), are based on the following two general assumptions: (i) R_{1}^{N} is a Markov - or a semi-Markov chain, the difference being of little importance here ; (ii) X_{1}^{N} and Y_{1}^{N} are independent conditionally on R_{1}^{N}. As $\left(R_{1}^{N}, Y_{1}^{N}\right)$ is Markovian in the proposed models, the conditional ditributions $p\left(y_{n+1} \mid y_{1}^{n}\right)$ are computable, which implies that the exact filtering and smoothing are also. Further, prediction is workable (Bardel and Desbouvries 2009). More sophisticated models, in which the hypothesis (ii) is relaxed but the possibility of exact filtering remains were proposed in (Pieczynski 2009a; Pieczynski and Desbouvries 2009). In the latter models, the Markovianity of (R_{1}^{N}, Y_{1}^{N}) is kept, which still allows exact filtering and exact smoothing with complexity linear in time to be performed. Subsequently, based on the recent model proposed in (Lanchantin et al. 2008), two extensions to "partially" Markov models, which can include the "long-memory" ones (Beran and Taqqu 1994; Doukhan et al. 2003), have been introduced. In the first one the Markovianity of $\left(R_{1}^{N}, Y_{1}^{N}\right)$ has been relaxed and replaced by the "partial" Markovianity, in which $\left(R_{1}^{N}, Y_{1}^{N}\right)$ is Markovian with respect to R_{1}^{N} but is not necessarily Markovian with respect to Y_{1}^{N} (Pieczynski et al. 2009). In the second one, the distribution of the state chain X_{1}^{N} conditional on (R_{1}^{N}, Y_{1}^{N}) remains linear but is no longer necessarily Markovian (Pieczynski 2009b).
The aim of the present paper is to consider both the latter extensions simultaneously. Roughly speaking, we propose a general model in which
although neither $p\left(y_{1}^{N} \mid r_{1}^{N}, x_{1}^{N}\right)$ nor $p\left(x_{1}^{N} \mid r_{1}^{N}, y_{1}^{N}\right)$ are Markovian, the filtering can be performed with complexity polynomial in time.
The new model is proposed and discussed in the next section, and the exact computation of smoothing is described in the third one. The fourth section contains some conclusions and perspectives.

2. Conditionally Markov switching linear chain (CMSLC)

Let ($X_{1}^{N}, R_{1}^{N}, Y_{1}^{N}$) be the triplet of random sequences as specified above. The distribution of the couple (R_{1}^{N}, Y_{1}^{N}) will be assumed to be a "pairwise partially Markov chain" (PPMC) distribution recently introduced in (Lanchantin et al. 2008). The distribution $p\left(r_{1}^{N}, y_{1}^{N}\right)$ of a PPMC $\left(R_{1}^{N}, Y_{1}^{N}\right)$ can be defined by $p\left(r_{1}, y_{1}\right)$ and the transitions $p\left(r_{n+1}, y_{n+1} \mid r_{1}^{n}, y_{1}^{n}\right)$ verifying

$$
\begin{equation*}
p\left(r_{n+1}, y_{n+1} \mid r_{1}^{n}, y_{1}^{n}\right)=p\left(r_{n+1}, y_{n+1} \mid r_{n}, y_{1}^{n}\right) . \tag{2.1}
\end{equation*}
$$

Such a law is called "partially" Markovian as it can be seen as being Markovian with respect to the variables R_{1}^{N}, but being not necessarily Markovian with respect to the variables Y_{1}^{N}.

Definition 1

A triplet ($X_{1}^{N}, R_{1}^{N}, Y_{1}^{N}$) will be said to be a "conditionally Markov switching linear chain" (CMSLC) if it verifies
$\left(R_{1}^{N}, Y_{1}^{N}\right)$ is a PPMC;
for $n=1, \ldots, N-1, X_{n+1}=F^{n+1}\left(R_{n+1}, Y_{n+1}\right) X_{1}^{n}+G_{n+1}\left(R_{n+1}, Y_{n+1}\right) W_{n+1}$,
with $F^{n+1}\left(r_{n+1}, y_{n+1}\right)=\left[F_{1}^{n+1}\left(r_{n+1}, y_{n+1}\right), F_{2}^{n+1}\left(r_{n+1}, y_{n+1}\right), \ldots, F_{n}^{n+1}\left(r_{n+1}, y_{n+1}\right)\right]$, where for each $i=1, \ldots, n, F_{i}^{n+1}\left(r_{n+1}, y_{n+1}\right)$ is a matrix of size $q \times q$ depending on $\left(r_{n+1}, y_{n+1}\right), G_{n+1}\left(r_{n+1}, y_{n+1}\right)$ is a matrix of size $q \times q$ depending on $\left(r_{n+1}, y_{n+1}\right)$, and $X_{1}, W_{1}, \ldots, W_{N}$ are independent centred vectors in R^{q} such that each W_{n} is independent of $\left(R_{1}^{N}, Y_{1}^{N}\right)$.

Let us point out the following aspects of the model (2.2)-(2.3), underlying its differences with the classical ones:
(a) the model (2.2)-(2.3) is said to be "conditionally Markov switching" because the switching process R_{1}^{N} is Markovian conditionally on Y_{1}^{N}; however, it does not need to be Markovian according to its own distribution (without conditioning upon Y_{1}^{N}). We may recall that such models are richer and more efficient that the classical hidden Markov chains in which R_{1}^{N} is Markovian (Derrode and Pieczynski 2004, Pieczynski 2007);
(b) similarly, the model is said to be "conditionally linear" because X_{1}^{N} is linear conditionally on $\left(R_{1}^{N}, Y_{1}^{N}\right)$; however, contrary to the classical models, it is not necessarily linear according to its own distribution (without conditioning upon (R_{1}^{N}, Y_{1}^{N}) ;
(c) the distribution of Y_{1}^{N} conditional on $\left(X_{1}^{N}, R_{1}^{N}\right)$ is a very complex one, while it is, in general, very simple in the classical models. However, this additional complexity enriches the model and does not interfere in the computations of interest;
(d) the Gaussianity is not needed, either at the X_{1}^{N} distribution level or at the Y_{1}^{N} one.
We see that in "CMSLC" the word "conditionally" concerns the Markovianity of R_{1}^{N} as well as the linearity of X_{1}^{N}.

The oriented dependence graphs of the classical models, the long-memory models proposed in (Pieczynski et al., 2009), and the CMSLC proposed in the present paper are presented in Figure 1.

Figure 1: Dependence oriented graphs of: (a) classical model; (b) recent longmemory model; (c) new conditionally Markov switching linear chain (CMSLC) model.

3. Filtering withCMSLC

In the following, we assume that $p\left(r_{n+1}, y_{n+1} \mid r_{n}, y_{1}^{n}\right)$ are given in a closed form. The main property of the CMSLC model is that $p\left(y_{n+1} \mid y_{1}^{n}\right)$ is linked to $p\left(r_{n} \mid y_{1}^{n}\right)$ by

$$
\begin{equation*}
p\left(y_{n+1} \mid y_{1}^{n}\right)=\sum_{r_{n+1}} \sum_{r_{n}} p\left(r_{n} \mid y_{1}^{n}\right) p\left(r_{n+1}, y_{n+1} \mid r_{n}, y_{1}^{n}\right), \tag{2.4}
\end{equation*}
$$

which comes from the fact that $\left(R_{1}^{N}, Y_{1}^{N}\right)$ is a PPMC. Thus $p\left(y_{2} \mid y_{1}^{1}\right), \ldots$, $p\left(y_{n+1} \mid y_{1}^{n}\right)$ are computable with complexity linear in time. This is the key point because the lack of the computability of $p\left(r_{n} \mid y_{1}^{n}\right)$ with complexity linear in times is the very reason for the impossibility of exact filtering in classical models. We can state the following result:

Lemma

Let us consider a CMSLC ($X_{1}^{N}, R_{1}^{N}, Y_{1}^{N}$). Then we have:
(i) $p\left(r_{n+1} \mid y_{1}^{n+1}\right)$ is given from $p\left(r_{n} \mid y_{1}^{n}\right)$ by

$$
\begin{equation*}
p\left(r_{n+1} \mid y_{1}^{n+1}\right)=\frac{1}{p\left(y_{n+1} \mid y_{1}^{n}\right)} \sum_{r_{n}} p\left(r_{n} \mid y_{1}^{n}\right) p\left(r_{n+1}, y_{n+1} \mid r_{n}, y_{1}^{n}\right) \tag{2.5}
\end{equation*}
$$

(ii) for $n=1, \ldots, N-1$, and $i=1, \ldots, n$, the distribution $p\left(x_{i} \mid r_{n+1}, y_{1}^{n+1}\right)$ is given from the distribution $p\left(x_{i} \mid r_{n}, y_{1}^{n}\right)$ by

$$
\begin{equation*}
p\left(x_{i} \mid r_{n+1}, y_{1}^{n+1}\right)=\frac{\sum_{r_{n}} p\left(r_{n} \mid y_{1}^{n}\right) p\left(r_{n+1}, y_{n+1} \mid r_{n}, y_{1}^{n}\right) p\left(x_{i} \mid r_{n}, y_{1}^{n}\right)}{p\left(y_{n+1} \mid y_{1}^{n}\right) p\left(r_{n+1} \mid y_{1}^{n+1}\right)} \tag{2.7}
\end{equation*}
$$

where $p\left(r_{n+1} \mid y_{1}^{n+1}\right)$ is computable with (2.5) and $p\left(r_{n+1}, y_{n+1} \mid r_{n}, y_{1}^{n}\right)$ are given.

Proof

(i) is given by the following classical computation: $p\left(r_{n+1} \mid y_{1}^{n+1}\right)=\sum_{r_{n}} p\left(r_{n+1}, r_{n} \mid y_{1}^{n+1}\right)=\frac{1}{p\left(y_{n+1} \mid y_{1}^{n}\right)} \sum_{r_{n}} p\left(r_{n+1}, r_{n}, y_{n+1} \mid y_{1}^{n}\right), \quad$ which leads to the results knowing that
$p\left(r_{n+1}, r_{n}, y_{n+1} \mid r_{n}, y_{1}^{n}\right)=p\left(r_{n} \mid y_{1}^{n}\right) p\left(r_{n+1}, y_{n+1} \mid r_{n}, y_{1}^{n}\right)$;
to show (ii), we can write:
$p\left(x_{i} \mid r_{n+1}, y_{1}^{n+1}\right)=\frac{p\left(x_{i}, r_{n+1}, y_{n+1} \mid y_{1}^{n}\right)}{p\left(r_{n+1}, y_{n+1} \mid y_{1}^{n}\right)}=\frac{p\left(x_{i}, r_{n+1}, y_{n+1} \mid y_{1}^{n}\right)}{p\left(y_{n+1} \mid y_{1}^{n}\right) p\left(r_{n+1} \mid y_{1}^{n+1}\right)}=$
$\sum_{r_{n}} \frac{p\left(x_{i}, r_{n}, r_{n+1}, y_{n+1} \mid y_{1}^{n}\right)}{p\left(y_{n+1} \mid y_{1}^{n}\right) p\left(r_{n+1} \mid y_{1}^{n+1}\right)}=\sum_{r_{n}} \frac{p\left(x_{i}, r_{n} \mid y_{1}^{n}\right) p\left(r_{n+1}, y_{n+1} \mid x_{i}, r_{n}, y_{1}^{n}\right)}{p\left(y_{n+1} \mid y_{1}^{n}\right) p\left(r_{n+1} \mid y_{1}^{n+1}\right)}$.

Knowing that according to the model we have $p\left(r_{n+1}, y_{n+1} \mid x_{i}, r_{n}, y_{1}^{n}\right)=$ $p\left(r_{n+1}, y_{n+1} \mid r_{n}, y_{1}^{n}\right)$, it gives

$$
p\left(x_{i} \mid r_{n+1}, y_{1}^{n+1}\right)=\sum_{r_{n}} \frac{p\left(r_{n} \mid y_{1}^{n}\right) p\left(x_{i} \mid r_{n}, y_{1}^{n}\right) p\left(r_{n+1}, y_{n+1} \mid r_{n}, y_{1}^{n}\right)}{p\left(y_{n+1} \mid y_{1}^{n}\right) p\left(r_{n+1} \mid y_{1}^{n+1}\right)}
$$

which is (2.7) and ends the proof.

Proposition

Let us consider a CMSLC $\left(X_{1}^{N}, R_{1}^{N}, Y_{1}^{N}\right)$. Then for $n=1, \ldots, N-1$, and $i=1$, $\ldots, n, E\left[X_{i} \mid r_{n+1}, y_{1}^{n+1}\right]$ is given from $E\left[X_{i} \mid r_{n}, y_{1}^{n}\right]$ by

$$
\begin{equation*}
E\left[X_{i} \mid r_{n+1}, y_{1}^{n+1}\right]=\frac{\sum_{r_{n}} p\left(r_{n} \mid y_{1}^{n}\right) p\left(r_{n+1}, y_{n+1} \mid r_{n}, y_{1}^{n}\right) E\left[X_{i} \mid r_{n}, y_{1}^{n}\right]}{p\left(y_{n+1} \mid y_{1}^{n}\right) p\left(r_{n+1} \mid y_{1}^{n+1}\right)} \tag{2.8}
\end{equation*}
$$

and $E\left[X_{n+1} \mid r_{n+1}, y_{1}^{n+1}\right]$ is given from $E\left[X_{1} \mid r_{n+1}, y_{1}^{n+1}\right], \ldots, E\left[X_{n} \mid r_{n+1}, y_{1}^{n+1}\right]$ by

$$
\begin{equation*}
E\left[X_{n+1} \mid r_{n+1}, y_{1}^{n+1}\right]=\sum_{i=1}^{n} F_{i}^{n+1}\left(r_{n+1}, y_{n+1}\right) E\left[X_{i} \mid r_{n+1}, y_{1}^{n+1}\right] \tag{2.9}
\end{equation*}
$$

Proof
(2.8) is a direct consequence of (2.7). To show (2.9), let us take the expectation of (2.3) conditional on $\left(R_{n+1}, Y_{n+1}\right)=\left(r_{n+1}, y_{n+1}\right)$. As the randomn variables G_{1}, $\ldots, \quad G_{N-1}$ are centred, we have $E\left[X_{n+1} \mid r_{n+1}, y_{1}^{n+1}\right]=$ $\sum_{i=1}^{n} F_{i}^{n+1}\left(r_{n+1}, y_{n+1}\right) E\left[X_{i} \mid r_{n+1}, y_{1}^{n+1}\right]$, which ends the proof.

4. Conclusions and perspectives

We presented a "Conditionally Markov switching linear chain" (CMSLC) model $\left(X_{1}^{N}, R_{1}^{N}, Y_{1}^{N}\right)$, in which both hidden switches process R_{1}^{N} and hidden states process X_{1}^{N} can be recovered from the observed process Y_{1}^{N} by a Kalman-like filtering with complexity polynomial in time. None of the distributions $p\left(x_{1}^{N} \mid r_{1}^{N}, y_{1}^{N}\right), p\left(y_{1}^{N} \mid r_{1}^{N}, x_{1}^{N}\right)$ needs to be Markovian, and can be, in particular, of the "long-memory" kind.
Tackling the parameter problem in such models, using the general "Expectation-Maximization" (EM) principle (McLachlan and Khrishnan 1996) or the general "Iterative Conditional Estimation" (ICE) principle (Derrode and Pieczynski 2004), is undoubtedly among the most important perspectives.

References

Abbassi, N. and Pieczynski, W. (2008). "Exact filtering in semi-Markov jumping system." Paper presented at the Sixth International Conference of Computational Methods in Sciences and Engineering, September 25-30, Hersonissos, Crete, Greece.

Andrieu, C., Davy, C. M., and Doucet, A. (2003). "Efficient particle filtering for jump Markov systems. Application to time-varying autoregressions." IEEE Trans on Signal Processing, 51(7): 1762-1770.

Bardel, N. and Desbouvries, F. (2009). "Exact Bayesian Prediction in nonGaussian Markov-Switching Model." Paper presented at the XIIIth International Conference on Applied Stochastic Models and Data Analysis (ASDMDA), Vilnius, Lithuania, June 30-July 3.

Beran J. and Taqqu M. S. (1994). "Statistics for Long-Memory processes." Monographs on Statistics and Applied Probability, Chapman and Hall, New York.

Cappé, O., Moulines E., and Ryden T. 2005. Inference in hidden Markov models, Springer.

Costa, O. L. V., Fragoso, M. D., and Marques, R. P. (2005). "Discrete time Markov jump linear systems." New York, Springer-Verlag.

Derrode S. and Pieczynski W. (2004). "Signal and Image Segmentation using Pairwise Markov Chains." IEEE Trans. on Signal Processing, 52(9): 24772489.

Doucet, A., Gordon, N. J. and Krishnamurthy, V. (2001). "Particle filters for state estimation of Jump Markov Linear Systems." IEEE Trans. on Signal Processing, 49(3): 613-624.

Doukhan P., Oppenheim G., and Taqqu M. S. (2003). "Long-Range Dependence." Birkhauser.

Germani, A. Manes, C., and Palumbo, P. (2006). "Filtering for bimodal systems: the case of unknown switching statistics." IEEE Trans. on Circuits and Systems, 53(6): 393-404.

Giordani P., Kohn R., and van Dijk, D. (2007). "A unified approach to nonlinearity, structural change, and outliers." Journal of Econometrics, 137: 112-133.

Ho, T.-J. and Chen, B.-S. (2006). "Novel extended Viterbi-based multiplemodel algorithms for state estimation of discrete-time systems with Markov jump parameters." IEEE Trans. on Signal Processing, 54(2): 393-404.

Johnson, L. D. and Sakoulis, G. (2008). "Maximizing equity market sector predictability in a Bayesian time-varying parameter model." Computational Statistics \& Data Analysis, 52(6): 3083-3106.

Kim, C.-J., Piger, J. and Starz, R. (2007). "Estimation of Markov regimeswitching regression models with endogenous switching." Journal of Econometrics, 143: 263-273.

Lanchantin, P., Lapuyade-Lahorgue, J., and Pieczynski, W. (2008). "Unsupervised segmentation of triplet Markov chains hidden with longmemory noise." Signal Processing, 88(5): 1134-1151.

Lee, J.-W. and Dullerud, G. E. (2007). "A stability and contractiveness analysis of discrete-time Markovian jump linear systems." Automatica, 43: 168-173.

McLachlan, G. J. and Khrishnan, T. (1996). "The EM algorithm and extensions". Wiley series in Probability and Statistics, Wiley Interscience.

Orguner, U. and Demirekler, M. (2008). "Risk-sensitive filtering for jump Markov linear systems." Automatica, 44: 109-118.

Pieczynski, W. (2007). "Multisensor triplet Markov chains and theory of evidence." International Journal of Approximate Reasoning, 45(1): 1-16.

Pieczynski, W. (2008). "Exact calculation of optimal filter in semi-Markov switching model." Paper presented at the Fourth World Conference of the International Association for Statistical Computing (IASC 2008), December 58, Yokohama, Japan.

Pieczynski, W., Abbassi, N., and Ben Mabrouk, M. (2009) "Exact filtering and smoothing of Markov switching linear system hidden with Gaussian longmemory Noise." Paper presented at the XIII International Conference Applied

Stochastic Models and Data Analysis, (ASMDA 2009), June 30- July 3, Vilnius, Lithuania.

Pieczynski, W. (2009a). "Exact filtering in Markov marginal switching hidden models." Submitted to Comptes Rendus Mathématique.

Pieczynski, W. (2009b). "Exact smoothing in hidden conditionally Markov switching chains." Paper presented at the XIII International Conference Applied Stochastic Models and Data Analysis, (ASMDA 2009), June 30- July 3, Vilnius, Lithuania.

Pieczynski, W. and Desbouvries, F. (2009). "Exact Bayesian smoothing in triplet switching Markov chains." Paper presented at the conference "Complex data modeling and computationally intensive statistical methods for estimation and prediction" (S. Co 2009), September 14-16, Milan, Italy.

Ristic, B. Arulampalam, S. and Gordon, N. (2004). "Beyond the Kalman Filter - Particle filters for tracking applications." Artech House, Boston, USA.

Tugnait, J. K. (1982). "Adaptive estimation and identification for discrete systems with Markov jump parameters." IEEE Trans. on Automatic Control, AC-25: 1054-1065.

Zhou, T. N. and Shumway, R. (2008). "One-step approximations for detecting regime changes in the state space model with application to the influenza data." Computational Statistics \& Data Analysis, 52(5): 2277-2291.

Zoeter, O. and Heskes, T. (2006). "Deterministic approximate inference techniques for conditionally Gaussian state space models." Statistical Computation, 16: 279-292.

