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Abstract  

 

This paper considers the problem of continuous state estimation in the presence 

of random switches. There are three random chains )...,,( 11 N

N XXX = ,  

)...,,( 11 N

N RRR = , and )...,,( 11 N

N YYY = . The random variables iX ,  iY , and iR  

take their values from qR , mR , and { }sS ...,,1= , respectively. NY1  is observed, 
NX1  and NR1  are hidden, and the problem is to estimate ),( 11

NN XR  from NY1 . 

In the classical probabilistic models NR1  is Markovian, NX1  is linear 

Markovian conditionally on NR1 , and )...,,( 1 NYY  are independent conditionally 

on ),( 11

NN XR . Neither exact filtering nor smoothing is possible with 

polynomial complexity in time in such models and the different research works 

mainly concern different approximate algorithms. More recently, another class 

of models, in which exact filtering and smoothing with polynomial complexity 

in time are feasible, has been proposed. In the latter models the distribution of 

the triplet ),,( 111

NNN YRX  is defined by a Markov distribution of ),( 11

NN XR , and 

then NX1  is assumed to be linear Markovian conditionally on ),( 11

NN YR . 

Subsequently, two extensions of these models have been specified. In the first 

one, the Markovianity of ),( 11

NN YR  is extended to the « partial » Markovianity, 

in which ),( 11

NN YR  is Markovian with respect to NR1 , but may not be with 

respect to NY1 . In the second one, ),( 11

NN YR  remains Markovian and NX1  is 

assumed to be linear conditionally on ),( 11

NN YR , but is not assumed 

Markovian. The aim of this paper is to propose a family of models admitting 

both these extensions simultaneously. In the new models proposed the 

distribution of NY1  conditional on NR1  can be of the « long dependence » kind, 

and it is the same for the distribution of NX1  conditional on ),( 11

NN YR . We 

show that the Kalman-like exact filtering remains feasible with polynomial 

complexity in time in the new models models. 
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1. Introduction 

 

Let us consider )...,,( 11 N

N XXX =  and )...,,( 11 N

N YYY =  two sequences of random 

vectors, and let )...,,( 11 N

N RRR =  be a finite-values random chain. Each nX  takes 

its values from qR , while nY  takes its values from mR . The sequences NX1  and 

NR1  are hidden and the sequence NY1  is observed. For each 1=n , …, N , we will 

set )...,,( 11 n

n xxx = , )...,,( 11 n

n yyy = , and )...,,( 11 n

n rrr = . We deal with the 

problem of filtering, which consists of the computation, for each 1=n , …, N , of 

the conditional expectation ][ 11

nn

n yYXE = . To simplify, we will set 

== ][ 11

nn

n yYXE ][ 1

n

n yXE . As is well known, this conditional expectation is the 

optimal estimation of nX  from nY1 , when the squared error is concerned. This 

expectation can be considered – which will be done in this paper - as given by the 

distribution )( 1

n

n yrp , which is the distribution of nR  conditional on nn yY 11 = , and 

by the conditional expectation ],[ 11

nn

nnn yYrRXE == , denoted by ],[ 1

n

nn yrXE . 

We have 

 

=][ 1

n

n yXE )(],[ 11

n

n

r

n

nn yrpyrXE
n

∑     (1.1) 

 

Finally, the problem considered is to compute )( 1

11

+
+

n

n yrp  and ],[ 1

111

+
++

n

nn yrXE  

from )( 1

n

n yrp  and ],[ 1

n

nn yrXE . The most classical model to define the 

distribution of the triplet ),,( 1111

NNNN YRXT = , in use for about thirty years, is the 

so-called “conditionally Gaussian state-space linear model” (CGSSLM), which 

consists of considering that NR1  is a Markov chain and, roughly speaking, 

),( 11

NN YX  is the classical linear system conditionally on NR1 . This is summarized 

in the following: 

 

  NR1  is a Markov chain;     (1.2) 

 

  nnnnnnn WRGXRFX )()(1 +=+ ;    (1.3) 

 

  nnnnnnn ZRJXRHY )()( += ,      (1.4) 

 

where 1X , 1W , …, NW  are independent (conditionally on NR1 ) Gaussian vectors 

in qR , 1Z , …, NZ  are independent (conditionally on NR1 ) Gaussian vectors in 

mR , )( 11 RF , …, )( NN RF , )( 11 RG , …, )( NN RG  are matrices of size qq ×  

depending on switches, and )( 11 RH , …, )( NN RH , )( 11 RJ , …, )( NN RJ  are 

matrices of size mq ×  also depending on switches. Therefore the classical 
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Kalman filter can be used when NN rR 11 =  is known; however, it has been well 

known since the publication of (Tugnait, 1982) that the exact computation of 

neither ],[ 1

n

nn yrXE  nor ],[ 1

N

nn yrXE  is feasible with linear - or even polynomial 

- complexity in time in such models when NR1  is not known. The difficulty comes 

from the fact that conditional probabilities )( 11

n

n yyp +  are not computable with a 

reasonable complexity. This is a constant problem in all the classical models and 

the very reason for this is the fact that in the classical model (1.2)-(1.4) the couple 

),( 11

NN YR  is not Markovian. Then different approximations have to be used and a 

rich bibliography on the classical methods concerning the subject can be seen in 

recent books (Costa et al. 2005, Ristic et al. 2004, Cappe et al. 2005,), among 

others. Roughly speaking, there are two families of approximating methods: the 

stochastic ones, based on the Monte Carlo Markov Chains (MCMC) principle 

(Doucet et al. 2001, Andrieu et al. 2003, Cappe et al. 2005, Giordani et al. 2007), 

among others, and deterministic ones (Costa et al. 2005, Zoeter et al. 2006), 

among others. Further recent results concerning different applications of  these 

models and related approximation methods can be seen in recent works (Germani 

et al., 2006; Ho & Chen, 2006; Kim et al., 2007; Lee & Dullerud 2007; Zhou and 

Shumway 2008; Johnson and Sakoulis 2008; Orguner & Demirekler 2008), 

among others.  

To remedy this impossibility of exact computation, different models have been 

proposed since 2008. Two of them, proposed in (Abbassi and Pieczynski 2008, 

Pieczynski 2008), are based on the following two general assumptions: (i) NR1  is 

a Markov – or a semi-Markov chain, the difference being of little importance here 

; (ii) NX1  and NY1  are independent conditionally on NR1 . As ),( 11

NN YR  is 

Markovian in the proposed models, the conditional ditributions )( 11

n

n yyp +  are 

computable, which implies that the exact filtering and smoothing are also. 

Further, prediction is workable (Bardel and Desbouvries 2009). More 

sophisticated models, in which the hypothesis (ii) is relaxed but the possibility of 

exact filtering remains were proposed in (Pieczynski 2009a; Pieczynski and 

Desbouvries 2009). In the latter models, the Markovianity of ),( 11

NN YR  is kept, 

which still allows exact filtering and exact smoothing with complexity linear in 

time to be performed. Subsequently, based on the recent model proposed in 

(Lanchantin et al. 2008), two extensions to “partially” Markov models, which can 

include the “long-memory” ones (Beran and Taqqu 1994; Doukhan et al. 2003), 

have been introduced. In the first one the Markovianity of ),( 11

NN YR  has been 

relaxed and replaced by the “partial” Markovianity, in which ),( 11

NN YR  is 

Markovian with respect to NR1  but is not necessarily Markovian with respect to 
NY1  (Pieczynski et al. 2009). In the second one, the distribution of the state chain 
NX1  conditional on ),( 11

NN YR  remains linear but is no longer necessarily 

Markovian (Pieczynski 2009b). 

The aim of the present paper is to consider both the latter extensions 

simultaneously. Roughly speaking, we propose a general model in which 
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although neither ),( 111

NNN xryp  nor ),( 111

NNN yrxp  are Markovian, the filtering can 

be performed with complexity polynomial in time. 

The new model is proposed and discussed in the next section, and the exact 

computation of smoothing is described in the third one. The fourth section 

contains some conclusions and perspectives. 

 

 

2. Conditionally Markov switching linear chain (CMSLC) 

 

Let ),,( 111

NNN YRX  be the triplet of random sequences as specified above. The 

distribution of the couple ),( 11

NN YR  will be assumed to be a “pairwise partially 

Markov chain” (PPMC) distribution recently introduced in (Lanchantin et al. 

2008). The distribution ),( 11

NN yrp  of a PPMC ),( 11

NN YR  can be defined by 

),( 11 yrp  and the transitions ),,( 1111

nn

nn yryrp ++  verifying 

 

),,(),,( 1111111

n

nnn

nn

nn yryrpyryrp ++++ = .    (2.1) 

 

Such a law is called “partially” Markovian as it can be seen as being 

Markovian with respect to the variables NR1 , but being not necessarily 

Markovian with respect to the variables NY1 .  

 

Definition 1  

 

A triplet ),,( 111

NNN YRX  will be said to be a “conditionally Markov switching 

linear chain” (CMSLC) if it verifies  

 

),( 11

NN YR  is a PPMC ;       (2.2) 

 

for 1=n , …, 1−N , 1111111

1

1 ),(),( ++++++
+

+ += nnnn

n

nn

n

n WYRGXYRFX  , (2.3) 

 

with )],(),...,,(),,([),( 11

1

11

1

211

1

111

1

++
+

++
+

++
+

++
+ = nn

n

nnn

n

nn

n

nn

n yrFyrFyrFyrF , where for 

each 1=i , …, n , ),( 11

1

++
+

nn

n

i yrF  is a matrix of size qq ×  depending on 

),( 11 ++ nn yr , ),( 111 +++ nnn yrG  is a matrix of size qq ×  depending on ),( 11 ++ nn yr , and 

1X , 1W , …, NW  are independent centred vectors in qR  such that each nW  is 

independent of ),( 11

NN YR . 

 

Let us point out the following aspects of the model (2.2)-(2.3), underlying its 

differences with the classical ones: 



3rd International Conference on Mathematics and Statistics (ICMS 2009), 15-18 June 2009, Athens, Greece, 2009 

 5 

   (a) the model (2.2)-(2.3) is said to be “conditionally Markov switching” because 

the switching process NR1  is Markovian conditionally on NY1  ; however, it does 

not need to be Markovian according to its own distribution (without conditioning 

upon NY1 ). We may recall that such models are richer and more efficient that the 

classical hidden Markov chains in which NR1  is Markovian (Derrode and 

Pieczynski 2004, Pieczynski 2007); 

   (b) similarly, the model is said to be “conditionally linear” because NX1  is 

linear conditionally on ),( 11

NN YR ; however, contrary to the classical models, it is 

not necessarily linear according to its own distribution (without conditioning 

upon ),( 11

NN YR ); 

   (c) the distribution of NY1  conditional on ),( 11

NN RX  is a very complex one, 

while it is, in general, very simple in the classical models. However, this 

additional complexity enriches the model and does not interfere in the 

computations of interest; 

   (d) the Gaussianity is not needed, either at the NX1  distribution level or at the 

NY1  one. 

We see that in “CMSLC” the word “conditionally” concerns the Markovianity of 

NR1  as well as the linearity of NX1 . 

 

The oriented dependence graphs of the classical models, the long-memory 

models proposed in (Pieczynski et al., 2009), and the CMSLC proposed in the 

present paper are presented in Figure 1. 
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                        (a)                   (b)                                      (c)                            

 
Figure 1: DepenFigure 1: DepenFigure 1: DepenFigure 1: Dependence oriented graphs of: (a) classical model; (bdence oriented graphs of: (a) classical model; (bdence oriented graphs of: (a) classical model; (bdence oriented graphs of: (a) classical model; (b) ) ) ) recent longrecent longrecent longrecent long----
memory model; (c) new cmemory model; (c) new cmemory model; (c) new cmemory model; (c) new conditionally Markov switconditionally Markov switconditionally Markov switconditionally Markov switchhhhing linear chaining linear chaining linear chaining linear chain ( ( ( (CMSLCCMSLCCMSLCCMSLC))))    

model.model.model.model. 
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3. Filtering withCMSLC 

 

In the following, we assume that ),,( 111

n

nnn yryrp ++  are given in a closed form. 

The main property of the CMSLC model is that )( 11

n

n yyp +  is linked to )( 1

n

n yrp  

by 

 

∑∑
+

+++ =
1

),,()()( 111111

n nr r

n

nnn

n

n

n

n yryrpyrpyyp ,   (2.4) 

 

which comes from the fact that ),( 11

NN YR  is a PPMC. Thus )( 1

12 yyp , …, 

)( 11

n

n yyp +  are computable with complexity linear in time. This is the key point 

because the lack of the computability of )( 1

n

n yrp  with complexity linear in times 

is the very reason for the impossibility of exact filtering in classical models. 

We can state the following result: 

 

Lemma  

 

Let us consider a CMSLC ),,( 111

NNN YRX . Then we have: 

 

(i) )( 1

11

+
+

n

n yrp  is given from )( 1

n

n yrp  by 

 

),,()(
)(

1
)( 1111

11

1

11

n

nnn

r

n

nn

n

n

n yryrpyrp
yyp

yrp
n

++
+

+
+ ∑= ;  (2.5) 

 

(ii) for 1=n , …, 1−N , and 1=i , …, n , the distribution ),( 1

11

+
+

n

ni yrxp  is 

given from the distribution ),( 1

n

ni yrxp  by 

 

=+
+ ),( 1

11

n

ni yrxp
)()(

),(),,()(

1

1111

11111

+
++

++∑

n

n

n

n

n

ni

n

nnn

r

n

n

yrpyyp

yrxpyryrpyrp
n ,  (2.7) 

 

where )( 1

11

+
+

n

n yrp  is computable with (2.5) and ),,( 111

n

nnn yryrp ++  are given.  

 

Proof  

 

(i) is given by the following classical computation: 

=+
+ )( 1

11

n

n yrp =∑
+

+
nr

n

nn yrrp ),( 1

11 ∑ ++
+ nr

n

nnnn

n

yyrrp
yyp

),,(
)(

1
111

11

, which 

leads to the results knowing that  
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)(),,,( 1111

n

n

n

nnnn yrpyryrrp =++ ),,( 111

n

nnn yryrp ++  ; 

to show (ii), we can write:  

 

=+
+ ),( 1

11

n

ni yrxp =
++

++

),(

),,(

111

111

n

nn

n

nni

yyrp

yyrxp
=

+
++

++

)()(

),,(

1

1111

111

n

n

n

n

n

nni

yrpyyp

yyrxp
 

=∑ +
++

++

nr
n

n

n

n

n

nnni

yrpyyp

yyrrxp

)()(

),,,(

1

1111

111

∑ +
++

++

nr
n

n

n

n

n

ninn

n

ni

yrpyyp

yrxyrpyrxp

)()(

),,,(),(

1

1111

1111
.  

 

Knowing that according to the model we have =++ ),,,( 111

n

ninn yrxyrp  

),,( 111

n

nnn yryrp ++ , it gives  

 

=+
+ ),( 1

11

n

ni yrxp ∑ +
++

++

nr
n

n

n

n

n

nnn

n

ni

n

n

yrpyyp

yryrpyrxpyrp

)()(

),,(),()(

1

1111

11111
,  

 

which is (2.7) and ends the proof. 

 

Proposition 

 

Let us consider a CMSLC ),,( 111

NNN YRX . Then for 1=n , …, 1−N , and 1=i , 

…, n , ],[ 1

11

+
+

n

ni yrXE  is given from ],[ 1

n

ni yrXE  by  

 

=+
+ ],[ 1

11

n

ni yrXE
)()(

],[),,()(

1

1111

11111

+
++

++∑

n

n

n

n

n

ni

n

nnn

r

n

n

yrpyyp

yrXEyryrpyrp
n , (2.8) 

  

and ],[ 1

111

+
++

n

nn yrXE  is given from ],[ 1

111

+
+

n

n yrXE , …, ],[ 1

11

+
+

n

nn yrXE  by 

 

=+
++ ],[ 1

111

n

nn yrXE ],[),( 1

1111

1

1 +
+++

=

+
∑

n

ninn

n

i

n

i yrXEyrF    (2.9) 

 

Proof 

 

(2.8) is a direct consequence of (2.7). To show (2.9), let us take the expectation 

of (2.3) conditional on ),(),( 1111 ++++ = nnnn yrYR . As the randomn variables 1G , 

…, 1−NG  are centred, we have =+
++ ],[ 1

111

n

nn yrXE  

],[),( 1

1111

1

1 +
+++

=

+
∑

n

ninn

n

i

n

i yrXEyrF , which ends the proof. 
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4. Conclusions and perspectives 

 

We presented a “Conditionally Markov switching linear chain” (CMSLC) 

model ),,( 111

NNN YRX , in which both hidden switches process NR1  and hidden 

states process NX1  can be recovered from the observed process NY1  by a 

Kalman-like filtering with complexity polynomial in time. None of the 

distributions ),( 111

NNN yrxp , ),( 111

NNN xryp  needs to be Markovian, and can be, 

in particular, of the “long-memory” kind.  

Tackling the parameter problem in such models, using the general 

“Expectation-Maximization” (EM) principle (McLachlan and Khrishnan 1996) or 

the general “Iterative Conditional Estimation” (ICE) principle (Derrode and 

Pieczynski 2004), is undoubtedly among the most important perspectives. 
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