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1 Introduction

In the case of shock loading that results from underwater ex-

plosion, naval propulsion devices can be subjected to highly ac-

celerated, high frequency motions. These components can be in

contact with a fluid, which is the case for heat exchangers, nuclear

propulsion reactors, or squeeze-film dampers. In order to improve

design margins and ensure safety, long life, and satisfactory oper-
ating performance of the shock loaded components, the precise
knowledge of the fluid effects on the solid components is of major
importance. Since the body motion modifies the fluid flow, and the
fluid flow influences the body motion, complex fluid/structure in-
teraction problems have to be accounted for. In order to choose an
appropriate fluid model, design engineers must identify the mean-
ingful physical phenomena occurring in their particular geometry.
This can be done by estimating the fluid forces on simplified
representative geometries, for which analytical results are
available.

The purpose of the present paper is to formulate and group such
models for a rigid circular cylinder subjected to relatively small
amplitude transient motions along a radial line, in an annular or
infinite fluid domain. Numerous analytical and numerical methods
are now available for the harmonic dynamics of this geometry
�1,2�. It also continues to be an active domain of interest particu-
larly to studies of flow-induced vibrations. However, transient dy-
namics have comparatively received little attention. Although the

solution of a time-dependent problem can be obtained from the
solution of the corresponding harmonic problem using Fourier
synthesis methods or series of resonance modes �3,4�, time-
domain methods can provide more physical insight. Such methods
are currently receiving considerable attention �5–8�, in particular,
due to increasing computer capabilities and constantly improving
computational methods.

This paper deals with several aspects of fluid effects in one of
the simplest two-dimensional fluid problems, illustrated in Fig. 1.
The motion of the inner cylinder is imposed and the outer cylin-
der, when present, is fixed. Consequently, this is not a fluid-
structure interaction problem and emphasis can be especially
placed on the forces acting on the moving cylinder. Highly con-
fined flows, such as those encountered in squeeze-film dampers or
rotating machinery, are not discussed here. Related fluid effects
can be found in other articles �9–14�. In this study, the imposed
motion is assumed sufficiently small, that no boundary-layer sepa-
ration occurs �15�. Hence, there is neither wake formation nor its
force related modifications �16,17�. Two-phase flows are also not
considered. Some elements concerning the associated damping
effect can be found in a review article �18�.

The problem of interest is governed by seven independent di-

mensional parameters: R1, R2, �, �, c, U, and �. R1 and R2 are the
geometrical parameters denoting the inner and outer cylinder ra-

dii, respectively; �, �, and c are the fluid parameters representing
the density, the kinematic viscosity, and the speed of sound in the

fluid at rest. Lastly, U and � denote the characteristic velocity and

pulsation frequency of the imposed inner motion. For instance, U

may be the maximum velocity and � the pulsation with the maxi-
mum energy in the power spectrum of the transient motion. Since
there are three fundamentals units, length, mass and time, the
problem is driven by four independent dimensionless numbers.
While there are of course infinite ways to build such numbers
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from the seven dimensional numbers, it will be seen below that
the four following ones are particularly meaningful:

� =
R2

R1

, � =
U

R1�
, � =

R1
2�

�
, � =

R1�

c
�1�

2 Motion of Non-Negligible Amplitude in a Potential

Flow

2.1 General Equations. Here, a rapidly moving circular cyl-
inder in a two-dimensional annular incompressible and inviscid
fluid region is considered. The fluid forces on the inner cylinder
for an infinitesimal displacement are found in Ref. �19�, in which
fluid advection and geometrical deformation are neglected. An
extension of this model to larger amplitude motions is proposed
by formulating the problem as a boundary-perturbation problem
�20� solved up to the second order. Only the main steps of the
derivation are described here; a more detailed account can be
found in Ref. �21�. Another way of accounting for large-
displacement effects can be found in Refs. �13,14�. In this section,
the fluid forces are obtained by solving the dimensional equations
and are then expressed in a dimensionless form at the end.

Since the flow is assumed inviscid and initially irrotational, it
remains irrotational at later times �22� and can be described by the

Laplace equation for the velocity potential � as follows:

�
2� = 0 �2�

The normal component of the fluid velocity at the boundaries
must equal the velocity of the cylinders, so that the boundary
conditions can be written as

�� · er = 0 on the fixed outer cylinder �3�

�� · n = ė�t�ex · n on the moving inner cylinder �4�

where ė�t� is the inner-cylinder velocity, ex the unit vector along

the x-axis, and n the unit outward normal, as illustrated in Fig. 1.
In order to make this problem analytically tractable, the position
of the inner cylinder and the unit normal in Eq. �4� must be ex-
plicitly expressed.

2.2 Boundary-Perturbation Formulation. By considering

the triangle OO�A in Fig. 1, the position of the inner circular

cylinder C�t� can be characterized by the polar equation

rc�	,t� = e�t�cos 	 + R1�1 −
e2�t�
R1

2
sin2 	 �5�

where e�t� is the inner-cylinder displacement. This formula is only

valid for �e�t� /R1�
1. Expanding the square root in terms of se-

ries gives the relation

rc�	,t� = R1�1 + cos 	
e�t�
R1

+ �
n=1

�

�− 1�n�sin 	�2n
1

n!
	
k=0

n−1 
1

2
− k�

�� e�t�
R1

2n� �6�

By introducing the perturbation parameter �t�,

�t� =
e�t�
R1

�7�

approximate positions of the inner cylinder can be evaluated at a

given order in powers of �t�. Hence, by neglecting third-order

terms and higher in Eq. �6�, the second-order approximation for
the inner-cylinder position takes the form

rc�	,t� � R1�1 + �t�cos 	 −
1

2
2�t�sin2 	� �8�

It is also useful to write in explicit terms the unit outward normal

n on the moving inner cylinder so as to express the boundary

condition �4�. Thus, the parametric curve � of C�t� is introduced

as follows:

C�t�:	 � ��	� = O + rc�	,t�er�	,t� �9�

where O denotes the center of the outer cylinder. The unit tangent

T to C�t� at the position 	 is given by:

Fig. 1 Geometrical configuration

Here, � is the dimensionless geometrical parameter called the 
confinement number. �, often called the Keulegan–Carpenter 
number, quantifies the displacement of the inner cylinder in rela-
tion to its radius and takes into account fluid advection and geo-
metrical deformation. � , the Stokes number, is the ratio between 
unsteady and viscous effects, and � is used to take into account 
the fluid compressibility in unsteady flows.

Section 2 of this paper considers motions of non-negligible am-
plitude in an incompressible and inviscid flow. The problem is 
formulated as a boundary-perturbation method for the velocity 
potential and a regular expansion is used to solve it up to the 
second order. Hence, fluid advection and geometrical deforma-
tions due to the inner motion are approximately taken into ac-
count. The resulting fluid force expression depends nonlinearly on 
the imposed instantaneous displacement, velocity, and accelera-
tion, and can be seen as an extension of the Fritz model �19�, 
which is limited to very small amplitude motions. Its dimension-
less formulation highlights the Keulegan–Carpenter number as the 
meaningful parameter in quantifying large-displacement effects. 
In Sec. 3, the fluid viscosity is considered assuming a small am-
plitude imposed motion that is rapid enough that the boundary 
layer thickness can be taken as much less than the radial clear-
ance. The corresponding fluid forces are obtained using a singular 
perturbation method solved at the first order. Its expression in-
cludes a convolution product whose amplitude is quantified by the 
Stokes number. Section 4 takes fluid compressibility into account, 
assuming a small amplitude motion and inviscid flow. The forces 
are derived by solving the wave equation for the velocity potential 
and take the form of a convolution product whose kernel depends 
on the compressibility number. The viscous and compressible 
fluid force expressions extend the harmonic models of Chen �2� 
for transient motions. In Sec. 5, the fluid forces obtained using 
these models are illustrated and compared for a specific imposed 
inner-cylinder motion.
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T�	� =
���	�

����	��
�10�

with

���	� = rc��	�er + rc�	�e	 �11�

The prime denotes a derivative according to 	. The unit normal n

orthogonal to T can then be evaluated. Its truncation at the second

order in powers of �t� is

n�	,t� �
R1

����	��
�cos 	 + �t�cos 2	 −

3

8
2�t��cos 	 − cos 3	�ex

+
R1

����	��
�sin 	 + �t�sin 2	 −

3

8
2�t��sin 	 − sin 3	�ey

�12�

The boundary condition on the moving inner cylinder �4� can now
be seen as the extreme boundary condition of the following
family:

���rn�	,t�,	� · n�rn�	,t�,	� = ė�t�ex · n�rn�	,t�	� �13�

where rn�	 , t� is the nth-order approximation of the power series

expansion of the inner-cylinder position rc�	 , t�. Performing a

Taylor expansion of Eq. �13� about R1 permits turning the original
problem into an equivalent sequence of problems with solutions

�0, �1, �2, �3 , . . . that can be found recursively. Each �n must
satisfy the following Laplace equation and outer boundary
condition:

�
2�n

�r2
+

1

r

��n

�r
+

1

r2

�
2�n

�	2
= 0 �14�

� ��n

�r
�

r=R2

= 0 �15�

Due to Eqs. �8�, �12�, and �13� and several Taylor expansions, the
boundary conditions on the inner cylinder up to the second order
are given by

� ��0

�r
�

r=R1

= ė�t�cos 	 �16�

� ��1

�r
�

r=R1

=
2�2

�2 − 1
ė�t�cos 2	 �17�

� ��2

�r
�

r=R1

=
2�2

��2 − 1�2��2 + 1�
ė�t�cos 	

+
3�2��4 + 1�

��2 − 1�2��2 + 1�
ė�t�cos 3	 �18�

where Eqs. �17� and �18� are anticipated knowledge of the solu-

tions �0 and �1, respectively. Hence, each �n is the solution of
the Laplace equation on a fixed annular fluid region with Neu-
mann boundary conditions. The solution of the general problem is
then achieved using

� = �
n=0

�

n�t��n �19�

be found in Ref. �21�. Once the velocity potential is determined,
the pressure in the fluid domain can be obtained from the Ber-
noulli relation �22�

p = − �
��

�t
− �

1

2
����2 + C �20�

where � is the fluid density and C a constant available in the
whole fluid domain. Since the flow is assumed inviscid, the inte-
grated fluid forces per unit length on the moving inner circular
cylinder can be written as

F�t� = −�
0

2�

p�rc�	,t��I� · n�	,t�����	��d	 �21�

with I� the identity matrix. By performing Taylor expansions about

r=R1 in the pressure term of the above equation, the fluid forces

up to the second order can be found. Only the ex-direction com-

ponent of F is nonzero and its dimensional expression is given by

��t� = − ��R1
2�2 + 1

�2 − 1
ë�t� + ��

2�2

��2 − 1�3��2 + 1�
e�t�ė2�t�

− ��
4�4

��2 − 1�3��2 + 1�
e2�t�ë�t� �22�

The first term on the right-hand side, which is the main-order
term, is exactly the Fritz model �19�. It is proportional to the
inner-cylinder acceleration and consists only in an added mass
effect. The next two terms are displacement-dependent nonlinear
corrections. The first one, proportional to the square of the inner-
cylinder velocity, is induced by the fluid advection, and the second
one can be seen as an added mass induced by relatively large

amplitude motions. For an infinite fluid domain ��→��, the force

expression reduces to −��R1
2ë�t�, the well-known fluid displaced

term. It is fruitful to express the fluid forces with dimensionless

quantities. By normalizing t, e�t�, ė�t�, ë�t�, and ��t� according to

Table 1, the resulting second-order nondimensional fluid forces
can be written as

��t� = −
�2 + 1

�2 − 1
ë�t� + �2

2�2

��2 − 1�3��2 + 1�
�e�t�ė2�t� − 2�2e2�t�ë�t��

�23�

The Keulegan–Carpenter number � appears explicitly and allows
quantification of the large-displacement nonlinear effects.

3 Viscous Model

3.1 Problem Formulation. Small amplitude motions of the
inner-circular cylinder in a viscous incompressible fluid are now
addressed. For an infinite fluid domain, the harmonic problem was
solved by Stokes �23�. An approximate solution is proposed here
for transient motion in a confined flow that is achieved using a
matched asymptotic expansion at first order, also known as the
composite boundary-layer solution �15�. The incompressible

Table 1 Normalization factors for the variables

Variable Normalization factor

Length R1

Time 1 /�
Velocity U

Displacement U /�
Acceleration U�
Potential R1U

Pressure �R1U�
Force ��R1

2U�

If the perturbation parameter is sufficiently small, the series will 
converge rapidly and a few terms will suffice for a good approxi-
mation of the solution.

2.3 Fluid Forces Evaluation. The results are obtained up to 
the second order, so the solution is expected to be valid in cases

where �e�t� /R1�3�1. Here,�0,�1, and�2 are found by solving 
Eqs. � 14�–�18� by separation of variables. Their expressions can
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Navier–Stokes equations are the starting point. All variables are
normalized as indicated in Table 1. The nondimensional govern-
ing equations take the form

�u

�t
+ ��u · ��u = − �p + �−1

�
2u �24�

� · u = 0 �25�

where u denotes the fluid velocity and p the pressure. The

Keulegan–Carpenter number � and the Stokes number � appear
explicitly. Since a small amplitude motion in relation to the inner-
cylinder radius is assumed here, the Keulegan–Carpenter number
is small and the advection term can be neglected. Moreover, the
no-slip boundary conditions can then be applied on fixed bound-
aries as follows:

�u�r=1 = ė�t�ex, �u�r=� = 0 �26�

The inner-cylinder motions are also assumed to be rapid enough
that the viscous boundary layer will be much smaller than the
radial clearance. Hence, the fluid domain can be divided into two
parts: one far from the boundaries, where viscous effects can be
neglected, and the other closer to the boundaries, where the vis-
cous dissipation is a main-order term �24�.

3.2 Outer Resolution. Far from the boundaries, the following

outer expansion in �−1/2 is introduced into the nondimensional
Navier–Stokes equations:


u�r,	,t�

p�r,	,t�
� = 
u0�r,	,t�

p0�r,	,t�
� + �−1/2
u1�r,	,t�

p1�r,	,t�
� + O��−1� �27�

Keeping only the main-order terms gives

�tu0 = − �p0 �28�

� · u0 = 0 �29�

Since Eq. �28� has lost the second-order spatial derivative, Eq.
�26� cannot be fully satisfied and only the normal projection of the
boundary conditions is kept. The fluid flow in this outer region

can therefore be characterized by a velocity potential �0 governed
by the following system:

�
2�0

�r2
+

1

r

��0

�r
+

1

r2

�
2�0

�	2
= 0 �30�

� ��0

�r
�

r=1

= ė�t�cos 	, � ��0

�r
�

r=�

= 0 �31�

The solution of this system is readily obtainable by separation of
variables; it is given by

�0�r,	,t� = −
1

�2 − 1

r +

�2

r
�ė�t�cos 	 �32�

The nondimensional main-order velocity components far from the
boundaries can then be deduced as follows:

u0
r =

1

�2 − 1

�2

r2
− 1�ė�t�cos 	 �33�

u0
	 =

1

�2 − 1

�2

r2
+ 1�ė�t�sin 	 �34�

r

�ū���,	,t�

ū	��,	,t�

p̄��,	,t�
� = �

0

ū0
	��,	,t�

p̄0��,	,t�
� + �−1/2�ū1

���,	,t�

ū1
	��,	,t�

p̄1��,	,t�
� + O��−1�

�35�

where ū�, ū	, and p̄ are, respectively, the radial velocity, the azi-
muthal velocity, and the pressure in the boundary-layer. The in-
troduction of the boundary-layer variable together with the inner
expansion, Eq. �35�, account for the different orders of magnitude
of the radial and azimuthal boundary layer velocities: the radial
velocity is normalized with the viscous diffusion velocity given by
��� and the azimuthal velocity with the characteristic cylinder
velocity. Introducing Eq. �35� into the Navier–Stokes equations
and retaining the main-order terms yield the following system of
equations:

�p̄0

��
= 0 �36�

�ū0

�t
= −

�p̄0

�	
+

�
2ū0

��2
�37�

�ū1
�

��
+

�ū0

�	
= 0 �38�

As expected, the unsteady and diffusion terms in Eq. �37� are now
of the same order. Equation �36� states that the pressure at the
main order is constant across the boundary layer. Therefore, the
pressure term in Eq. �37� can be linked to the outer variables by
considering the azimuthal component of Eq. �28� as follows:

−
�p̄0

�	
= lim

r→1

−

1

r

�p0

�	
� = � �u0

	

�t
�

r=1

=
�2 + 1

�2 − 1
ë�t�sin 	 �39�

Only the azimuthal boundary-layer velocity ū0
	 is required for

evaluation of the first-order fluid forces, since the inner radial

velocity contributes to the higher-order terms. Thus, ū0
	 must sat-

isfy the no-slip boundary condition on the moving cylinder and
must match the outer azimuthal velocity. It is fully characterized
by the system

�ū0

�t
=

�
2ū0

��2
+

�2 + 1

�2 − 1
ë�t�sin 	 �40�

�ū0
	��=0 = − ė�t�sin 	 �41�

lim
�→�

ū0
	 =

�2 + 1

�2 − 1
ė�t�sin 	 �42�

Taking the Laplace transform of the above system, the inner azi-
muthal solution can be found in the Laplace domain,

û0
	��,	,s� = 
−

2�2

�2 − 1
e−�s� +

�2 + 1

�2 − 1
� ê̈�s�

s
sin 	 �43�

where s is the Laplace variable and the circonflex denotes the
Laplace transform of the corresponding temporal function.

3.4 Evaluation of Fluid Forces. The uniformly valid first-
order dimensionless azimuthal velocity in the fluid domain is ob-
tained by summing the inner and outer solutions �34� and �43� and
removing the common limit �42�, which is counted twice �24�,

û	�r,	,s� = � 1

�2 − 1

1 +

�2

r2 � −
2�2

�2 − 1
e−��s�r−1� ê̈�s�

s
sin 	

�44�

The resultant dimensionless fluid forces on the inner cylinder can
be evaluated in the Laplace domain by the formula �22�

where u0 and u0
� denote, respectively, the radial and azimuthal 

velocities.

3.3 Inner Resolution. Due to the no-slip boundary condition, 
a viscous boundary-layer is formed close to the moving cylinder. 
In this fluid part, the boundary layer variable � =�1/2�r−1� is 
injected into the Navier–Stokes equations. Moreover, the follow-
ing inner expansion is performed for the nondimensional depen-
dent variables
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F̂�s� = −
1

�
�

0

2�

�p̂�r=1erd	 + �−1
1

�
�

0

2�

���û + ��û�T��r=1 · erd	

�45�

The first term on the right-hand side can be expressed in terms of
the fluid velocities, Eqs. �33� and �44�, using integration by parts.
Keeping only the main- and first-order terms in the power expan-

sion of �−1/2 gives the integrated fluid forces in the Laplace do-
main. The nondimensional fluid forces in the temporal domain can
then be found by using the convolution theorem and some inverse

Laplace transform properties. Only the ex-component of F is non-
zero and is given by

��t� = −
�2 + 1

� − 1
ë�t� − �−1/2

�2

�2 − 1

4

��
�

0

t
ë���

�t − �
d� �46�

The first term is the small amplitude potential added mass effect
found in the previous section. The second one, inversely propor-
tional to the square root of the Stokes number, is the first-order
viscous rectification. The total history of the imposed motion is
involved so that its effect can be attributed neither to added mass
nor viscous damping alone. The convolution product kernel,

known explicitly, indicates that the imposed motion at time � has

decreasing influence on the fluid forces at time t as t−� increases.
This type of convolution product �which accounts for viscous ef-
fects� is well known and can be found in Ref. �25� for an infinite
plate. For an infinite fluid domain, the resulting dimensionless
fluid forces are then given by

��t� = − ë�t� − �−1/2
4

��
�

0

t
ë���

�t − �
d� �47�

which consists of the displaced fluid term and a first-order viscous
correction. This expression can also be found, with higher-order
viscous corrections, from existing harmonic models �26,27� based
on a Fourier transform method �28�. Nevertheless, for relatively
high Stokes number flows, the first-order term suffices to account
for the viscous effects �29�.

4 Compressible Model

4.1 Problem Formulation. Here, small amplitude motions of
the inner circular cylinder in an inviscid compressible fluid are
considered. The solution of the associated harmonic problem can
be found in Ref. �2�, for instance. The fluid dynamics is assumed
to be governed by the wave equation for the velocity potential

�
2� − �2

�
2�

�t2
= 0 �48�

where the variables are normalized according to Table 1 and the

compressibility number � appears explicitly. The boundary con-
ditions are of Neumann type and can be written as

� ��

�r
�

r=1

= ė�t�cos 	, � ��

�r
�

r=�

= 0 �49�

4.2 Evaluation of Fluid Forces. The system of Eqs. �48� and
�49� can be solved by using the Laplace transform for the tempo-
ral variable and performing a separation of variables. The result-
ing nondimensional velocity potential in the Laplace domain is
then given by

�̂�r,	,s� =
ê̈�s�
ks

Y1���k�J1�kr� − J1���k�Y1�kr�

Y1���k�J1��k� − Y1��k�J1���k�
cos 	 �50�

convolution theorem yield the nondimensional ex-component of
the fluid forces in the temporal domain as follows:

��t� = −�
0

t

C�t − ��ë���d� �51�

where the kernel C�t� must be evaluated. This requires a Laplace

inversion according to a contour integration based on the Bro-
mwich integral as follows:

C�t� =
1

2�i
�

�−i�

�+i�

Ĉ�s�estds �52�

with

Ĉ�s� = −
1

k

Y1���k�J1�k� − J1���k�Y1�k�

Y1���k�J1��k� − Y1��k�J1���k�
�53�

This inversion can be obtained numerically. Figure 2 shows the

temporal evolution of the kernel C�t� for �=1 and a few different

values of �. These functions have points of finite discontinuity
that account for the reflections of hydrodynamic waves in the fluid
domain. The intervals between the discontinuities are equal to the
time for a wave to travel from the inner to the outer cylinder and

back. For instance, for �=1 and �=2, the pressure wave induced

by the impulse motion of the inner cylinder at t=0 is reflected

back on the outer cylinder at t=1 and influences the integrated

fluid forces on the inner cylinder at t=2. Furthermore, the more
confined the fluid domain is, the more discontinuities the kernel
contains. At the beginning of the process, that is, before the wave
returns to the inner cylinder, the kernel is seen to be independent

of the confinement ratio �. In evaluating the fluid forces at a time

t in a confined domain, the motion of the inner cylinder at an early

time � is as important as that at time t, even if t−� is large. On the

other hand, for an infinite fluid domain, the motion at large t−�
does not significantly influence the fluid forces at t, since the
waves are not reflected back.

5 Fluid Forces on a Rigid Circular Cylinder Subjected

to a Sine-Wave Shock

5.1 Sine-Wave Shock. The fluid forces obtained in Secs. 2–4
are illustrated and compared for a specific motion imposed on the
inner cylinder that corresponds to a unique sinusoidal period of
acceleration and is then stopped. Hence, the dimensional motion
is fully determined by

Fig. 2 Evolution of the compressible fluid forces kernel with
�=1, for different confinement numbers �: „¯… 1.5, „– – –… 2,
and „—… 10

where k= i�s, the circonflex denotes the Laplace transform. Here,

J1 and Y1 are the Bessel functions of order 1, respectively, of the 
first and second kinds. The prime denotes the derivative according
to the function argument. Making use of Eq. �50� and applying the
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ë�t� = �U�

2
sin �t , ∀t � �0,2�/��

0, ∀t � 2�/�
� �54�

where � is the pulsation of the shock. In what follows, it is also
convenient to express this motion in a nondimensional form. Us-
ing the normalization factor of Table 1 yields the simple represen-
tation

ë�t� = �1

2
sin t , ∀t � �0,2��

0, ∀t � 2�
� �55�

fluid domain, the greater the discrepancies with the Fritz model,

becoming as much as 20% for ��2. The different limits of the
curves in Fig. 4 can be explained by recalling that the nonlinear
model was derived assuming an inner-cylinder displacement
smaller than its radius and smaller than the radial clearance.

5.3 Viscous Effects. Here, the viscous fluid force model
given by Eq. �46� is applied to the specific motion of Eq. �55�. The
temporal evolution normalized by the maximum potential forces

is displayed in Fig. 5 with confinement number �=2 for different

Stokes numbers �. Viscous effects are shown to increase the fluid
forces on the inner cylinder and to induce a residual fluid force
that tends quite rapidly to zero once the cylinder stops. These
effects are in good agreement with the numerical simulations on
an infinite fluid domain in Ref. �29�. For a confined fluid domain,
these results are expected to be valid when the boundary layer is
much thinner than the radial clearance, that is, for very low

Keulegan–Carpenter numbers and for cases where �� /��R2

Fig. 3 Evolution of the nondimensional fluid forces normal-
ized with the maximum of the Fritz fluid force model †19‡ for
�=2. Comparison between the Fritz model „¯… and the non-
negligible displacement model for different Keulegan–
Carpenter numbers �: „– – –… 0.19 and „—… 0.28

Fig. 4 Maximum nondimensional fluid forces, obtained with
the non-negligible displacement model and normalized with the
maximum of the Fritz fluid force model †19‡, in function of the
Keulegan–Carpenter number and for different confinement
numbers �: „¯… 4, „–·–… 2, „– – –… 1.5 and „—… 1.1

Fig. 5 Evolution of the nondimensional fluid forces normal-
ized with the maximum of the Fritz fluid force model †19‡ for
�=2. Comparison between the Fritz model „¯… and the viscous
model for different �: „– – –… 500 and „––… 50.

Even if this function is partly composed of a harmonic function, it 
can be considered as a purely transient motion since it starts from 
rest at t=0 and stops at t=2�. It consists of a simple imposed 
translation and is representative of the early residual motion un-
dergone by equipment during shock loading.

5.2 Non-Negligible Amplitude Motion Effects. Here, the di-
mensionless fluid forces given by Eq. �23� are illustrated on the 
specific imposed motion defined by Eq. �55�. Figure 3 shows the 
temporal evolution of these forces with confinement number � 
=2 for different Keulegan–Carpenter numbers �. They are nor-
malized with the maximum value given by the potential Fritz 
model �19�, which assumes negligible amplitude motions. It can 
be seen that the nonlinear and Fritz models predict similar forces 
when the inner cylinder is still close to its initial position, but 
show different behaviors as the inner cylinder approaches the 
outer one. This results in a force increase that becomes more 
significant as the Keulegan–Carpenter number increases. This ef-
fect is checked with a finite-volume numerical code able to take 
into account moving boundaries �30�. The nonlinear model is in 
good agreement with these numerical results for inner-cylinder 
displacements up to 60% of the radial clearance. Some discrepan-
cies are observed for higher displacements. More specifically, the 
nonlinear model underestimates the maximum fluid forces, and 
hence more than three terms should be kept in Eq. �19� to repro-
duce the strong geometrical deformation. Nevertheless, the non-
linear model predicts the trend better than the Fritz model.

Figure 4 shows the maximum fluid forces obtained with the 
nonlinear model as function of the Keulegan–Carpenter number � 
for different confinement numbers � , and also normalized by the 
maximum Fritz model forces. At a given �, the more confined the
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−R1 �or, in dimensionless form, �1/2��−1��1�.
The maximum fluid forces normalized by the maximum poten-

tial forces as function of the Stokes number are illustrated in Fig.
6 for different confinement numbers. Large discrepancies are ob-
served for low Stokes numbers, an effect that is less pronounced
for confined domains. This is because the potential added mass
increases more rapidly with the confinement than the viscous
term. This result is not expected to be valid for strongly confined
domains in which viscous forces become predominant.

5.4 Compressible Effects. The compressible fluid forces of
Eq. �51� are now applied to the specific motion described through
Eq. �55�. The temporal evolution, normalized by the maximum

potential forces, is shown in Fig. 7 for �=2 and different com-

pressible numbers �. It can be seen that compressible waves are
generated in the fluid domain and result in fluid force oscillation
around the potential curve due to their multiple reflections on the
boundaries. Once the inner cylinder has been stopped, the com-
pressible waves continue to induce these harmonic oscillations

without damping. For higher compressible numbers than those in
Fig. 7, several compressible waves can be generated and clearly
identified on a single curve. In an infinite fluid domain, the loss of
energy induced by the outgoing waves has a damping effect �2�.

The maximum fluid forces normalized by the maximum poten-
tial value are displayed in Fig. 8 as function of the compressible

number � and different confinement numbers �. For small com-
pressible numbers, the fluid forces tend to their potential value for
all confinements. For large compressible numbers, they tend to
zero due to the increasing difference between the imposed motion
frequency and the fundamental fluid cavity acoustic frequency.

Pseudoresonances are observed around ��1. This effect is all the
more pronounced as the domain becomes more and more con-
fined. The maximum fluid forces are then seen to be three times
greater than their corresponding potential value. Several peaks on

the curve �=4 can be observed, a reminder that a compressible
fluid domain cannot be viewed as a single-degree-of-freedom
spring-mass system since its harmonic dynamics contains an infi-
nite number of resonant frequencies �2�.

5.5 Illustration of the Use of the Models on a Given
System. The three models were described independently in Secs.
2–4 as a function of their corresponding dimensionless numbers.
They can, however, be grouped on a single figure for a particular
geometry, so that their range of validity can be discussed and the
significant fluid effects in a particular case can be identified. For

instance, by fixing the geometrical parameters R1 and R2, the fluid

viscosity �, the speed of sound c, and the imposed velocity U, the
maximum normalized forces can be displayed as a function of the

dimensional imposed pulsation �. Hence, increasing � causes the
Stokes number and the compressibilty number increase and the
Keulegan–Carpenter number decrease. Such curves are given in

Fig. 9 with R1=0.2 m, U=0.5 m s−1, c=1500 m s−1, �
=10−6 m2 s−1, and several R2. For imposed pulsations such that

�� 1 s−1, viscous effects must be taken into account. For 1 s−1

���102 s−1, the flow is dominated by potential effects and for

102 s−1���105 s−1, fluid compressibility must be considered.

6 Conclusion

Transient fluid loading on a circular cylinder moving along a
radial line is addressed. The fluid domain can be infinite or cylin-
drically confined. A nonlinear fluid force model that takes into
account the geometrical deformation and fluid advection is de-

Fig. 6 Maximum nondimensional fluid forces, obtained with
the viscous model and normalized with the maximum of the
Fritz fluid force model †19‡, in function of the Stokes number
and for different confinement numbers �: „¯… �, „–·–… 2, „– – –…
1.5 and „—… 1.1

Fig. 7 Evolution of the nondimensional fluid forces normal-
ized with the maximum of the Fritz fluid force model †19‡ for
�=2. Comparison between the Fritz model „¯… and the com-
pressible model for different �: „– – –… 0.08 and „—… 0.2.

Fig. 8 Maximum nondimensional fluid forces, obtained with
the compressible model and normalized with the maximum of
the Fritz fluid force model †19‡, in function of the compressibil-
ity number and for different confinement numbers �: „¯… 4,
„–·–… 2, „– – –… 1.5 and „—… 1.1
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rived. Nonlinear effects are shown to be dependent on the square

of the Keulegan–Carpenter number �. Models of the viscous and
compressible fluid forces take the form of convolution products
including the history of the imposed acceleration. Their kernels
are linked to the viscous and compressible waves propagating in
the fluid domain. Viscous effects are shown to be inversely pro-

portional to the square root of the Stokes number � and the com-
pressible effects to be dependent on the compressibility number

�. All of these models are illustrated for a specific imposed mo-
tion that is representative of the early residual motion felt by
internal naval components during shock loading. The temporal
evolution of the fluid forces is then described for different values
of the dimensionless parameters and the maximum fluid force
curves are displayed as a function of these dimensionless param-
eters. Lastly, the models are examined all together for a particular
case and are shown to cover a broad range of motions. Thus, for a
given geometry and imposed displacement, the appropriate fluid
model can be identified and the resulting fluid forces rapidly
estimated.

All of these models emphasize some fluid effects in simple
asymptotic cases. However, all physical phenomena are of course
not treated in this paper. For instance, large-displacement motions
in a potential flow and viscous effects are handled independently,
and this prevents the models from tackling boundary-layer sepa-
ration issues. Furthermore, the viscous fluid forces are derived by
assuming laminar flow. This assumption does not hold for high-
Stokes-number flows, even at very low Keulegan–Carpenter num-
bers, due to the presence of centrifugal hydrodynamic instabilities
�31,32� in the boundary layer. In harmonic flows, these three-
dimensional phenomena are known to increase the fluid damping
�33,34� by a factor 2. Another restriction comes from the
monophasic assumption, which makes the models incapable of
accounting for cavitation phenomena. The present paper gives,
however, general guidance that can be used by design engineers
for the purpose of estimating the fluid force level and, if required,
selecting the meaningful fluid model to use in further investiga-
tion.
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