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Abstract

We are interested in the experimental characterizatioheoHofstadter butter-
fly by means of acoustical waves. The transmission of an sicqudse through an
array of 60 variable and resonant scatterers periodicalyibued along a waveg-
uide is studied. An arbitrary scattering arrangement i8ze@ by using the vari-
able length of each resonator cavity. For a periodic mothriathe structures of
forbidden bands of the transmission reproduce the Hofstduttterfly. We com-
pare experimental, analytical, and computational retiina of the Hofstadter but-
terfly and we show the influence of the resonances of the seatten the structure
of the butterfly.

PACS. 43.20.Fn-Scattering of acoustic waves
PACS. 43.20.Mv-Waveguide, wave propagation in tubes awtl du
PACS. 43.58.Gn-Acoustic impulse analyzers and measursmen

1 Introduction

The Hofstadter butterfly is well known since the work of Haffter on the electron
transmission through a two-dimensional ordered lattictupeed by a perpendicularly
applied uniform magnetic fiel(ﬂ[l]. Few experimental attésnipave been made to
observe signatures of this phenomenon in two-dimensideairen system{[ﬂ fﬂ 4].
Recently, an experimental electromagnetic realizatiothefHofstadter butterfly was
done by studying the transmission of microwaves throughreayaf 100 scatterers
inserted into a waveguide when the modulation length ofuhidimensional periodic

lattice change(ﬂS]. These authors used cylindrical s@atiantroduced into a rect-
angular microwave waveguide. In this study, the stopbarete wroduced by Braggs
reflection on the transmission spectra and the illustratibthe Hofstadter butterfly

exhibited self-similar structures.
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In the present paper, we study the transmission of an acqusse through a lat-
tice composed of an assembly of variable Helmholtz resosditat are the scatterers
[E]. A particularity of this work is the use of scatterersttban exhibit resonant scatter-
ing at wavelength much larger then the scatterers (well knexamples of Helmholtz
resonators are the bottle of wine that have resonancesdquéncies corresponding
to wavelengths of the order of the meter). The resonatorsiifermly distributed
along a cylindrical waveguide. Each Helmholtz resonataoisstituted by two cylin-
drical tubes which play the role of neck and cavity of the negor. The length of the
Helmholtz cavity is a variable parameter and the latticecsygaconstant between
each resonator is fixed.

The propagation of sound wave into a tunnel with a periodiayaof Helmholtz
resonators has been already stud@d [7] and different lohdtopband appear in the
transmission coefficient. In addition to Bragg stopbandsed by the spatial periodic-
ity of the lattice, resonances of the Helmholtz resonateate other "stopping bands”
called scatterer stopbands which are non-existelﬂ in [¥] sWow that a realization of
the Hofstadter butterfly is obtained experimentally witbastic waves. The effects of
the scatterer stopbands are examined. Experimental wodkigleted by an analytical
and a numerical analysis, and all show self-similar stngctu

2 Theory of the propagation into a lattice

We study a monochromatic pressure wane,t) with the form gix,t) = p(x)el
wherew is the wave pulsation. A cylindrical waveguide with Helmizolesonators
connected axially constitutes the one-dimensional kttia this lattice, the pressure
p(x) is solution of the following equati0|ﬂ[8],

d?p(x)
dx2

+K2p(x) = > 3(x—Xn)onp(X) 1)

wherek = w/c, 0, = —ju)pisYn with 5 andSthe derivation and the main tube areas
respectively (fig.[|1)p is the density of air and is the celerity of the wavey, is the
admittance of the' resonator placed at= x,, defined by, = V(Xn)/P(Xn) = Vn/ Pn
wherep(xn) andv(x,) are respectively the pressure and the acoustic velocity-at,.
The solutions of eq.[[l) are found by the transfer matrix methin the regionx, <
X < Xnt 1, Which determines thé'hcell, the solutions of eq.[kl) are separated into two
plane waves with opposite propagation direction assatiaith the amplitudegy, and

Bn: p(x) = An6jk(xfxn) + Bne*jk(X*Xn)_

The propagation through one cell is described by

— jkdn jkdn
Pt ) (B0 ) = t- %)idj gT:ker jkd M) @
Bni1 Bn —T-T(ej " (1+ T-T()(:fJ " Bn

with dn = Xn11 — Xn. For a finite lattice which is composed Nfresonators, the wave
propagation is described %, Bn)! = [TN_; Mn (Ao Bo)!, where(AgBo)! are the ampli-
tudes of the inlet of the lattice.
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Figure 1: Description of the Helmholtz resonator.

The resolution of the eigenvalue problem for the makfix allows us to find the
structure of the transmission (allowed and forbidden barBigsettingh* = e*ad for
the eigenvalues, the dispersion relation takes the form

cogqd) = cogkd) + % sin(kd), 3)

whereq is called the Bloch wave number. The transmission of théckait deter-
mined by the value of cdqd) : if cos(qd) belongs to[—1,1], the wave propagates
into the system; in contrast, when ¢qd) belongs td — o, —1] or [1, +oo[, the wave is
exponentially damped and the lattice is completely opaquleg wave.

3 Determination of Helmholtz resonator admittanceY

To determine the impedance of a Helmholtz resonator, we teeadelation pressure
p and velocityv between the entrance (E) and the end (F) of the resonatorﬂjig.
Applying classical lossless plane wave technique it is ébilnat

<pe) B cogkh)  jztsin(kl) <1 jZ‘CkAI)
VE - ZJC,—sin(in) cogkl;) 0 1



cogkle)  jZgsin(klc) p
( zesin(kle)  cogkle) ) ( V: ) @

whereZ. and z¢ are respectively the characteristic impedance of neck anitycl;
andl. are respectively the length of the neck and the length of theme cavity, and
subscriptE€ andF refer to entrance and end of the resonafdrrepresents the added
length to the neck due to the discontinuity of the sectiortgs Tength takes generally
the form B’]AI =Alj+Alg=r; (%” + % + 0(%)) wherer; is the radius of the neck.

Because the Helmholtz resonator is closed, the boundadjttamat the end of the
resonator iz = 0. Eliminatingpr in the eq. ﬂl), the acoustic impedarite- pg /ve
seen from the entry (at the point E) is given by the followiatation :

1 coskh) cosKle) — Zk(Al) cogkh) sin(Kle) — Z sin(kl;) sin(klc)
~Y " ZcosKig) sin(kl) — Z sin(Ki) sin(Klc) + % cos(ki;)sin(Klc)

Because of resonances, it is very important to take intowatcthe losses. The
theory with losses[[10] is used in the ed] (5) with- 2(1+ B2+ (y—1)x) and
Z.=pc(l+ % (1— (y—1)x) by settings =r/d whered is the viscous boundary layer,

X = v/Pr with P, the Prandtl numbef = (1— j)/v/2 and where is the radius of the
tube considered.

4 Description of the experimental apparatus

In the experiment, a cylindrical waveguide with an inneriugd = 2.5102 m was
used. 60 Helmholtz resonators were periodically locatedglthis waveguide and
the lattice spacing between each resonatordvas0.1 m. Each resonator was com-
posed by a neck (cylindrical tube with an inner aBea= 7,85.10 °n? and a length
I = 2.1072 m) and a variable length cavity (cylindrical tube with anénmreaS;. =
7,85.10-3n? and a maximum length = 16.5.102 m) as described in the fifj}. 1. The
sound source was a loudspeaker with special design placed &nd of the main tube
. Two microphones (BK 4136) measured the pressure at eacbfehé cylindrical
waveguide. We measured in the frequency range where onfirshenode can prop-
agate, starting from 0 Hz up to the first cutoff frequerigyt = 4,061 kHz, where the
propagation of the first higher mode becomes possible.

For the experimental realization of the butterfly a periodadulation of the lengths
of the cavity resonators was applied with the period length parameter. The modu-
lation of this lattice is given by the variation of the cavigngth of the H' resonator

Ih = lccog2ma — ap) (6)

wherea = ﬁp], with p, me N. We replace this cosinusoidal variation by a rectangular

one (in the same manner @ [5]):

I 0 for cog2ma—op) <0
"7 I for cog2ma —ag) > 0.

(7)
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In the experiment we choodg = 16510 2m andag = 0. It is important for the
experiment to use a rectangular setup and not a sinusoidaivase the stopbands
would destroy the butterfly.

5 Signal analysis

To investigate the experimental results, we used a timgufacy method. It maps the
time domain signal (the square of the amplitude) in the tirequency plane. In this
way, it is possible to know the arrival time of each frequepsent in the input signal
and to determine a "transfer function” of the acousticaterys The Wigner-Ville @1]
distribution defined as

Wz(t,f):/

—00

o .
Z(t + %)z;(t - %)ejz’mdr

wherez(t) is the analytical signamZ] (associated to the real sig(t3) is certainly
the most widely studied time-frequency methods. To redheectoss terms (interfer-
ences) between different components of the signal, we use&4eudo Wigner-Ville
distribution PW given by :
te 2 T T, jonft

P ) = [ IR+ 37— 5)e
whereh(T) is the temporal rectangular window with a lengthThis method gives the
acoustical response of the lattice in the time-frequenap@by using a source pulse.
We determined the transmission spectra by detecting thénmiax of energy for each
frequency upstream and downstream the lattice. The trasgmi was deduced from
the "transfer function” (in energy) defined as the fractidriransmitted and incident
energy.

Using a pulse source, this method avoids seeing, in therias®n spectra, os-
cillations phenomena caused by the finite number of cE]}; [IBe pulse source pre-
vents this phenomena, which would destroy the Hofstadtietfly structure, when the
propagation time along a cell is greater than the pulse 'nhur@]. The fig.|]2 shows
a comparison between these two sorts of processing metholhssical way (Fourier
transform) using a shirp source and the previous one usm@gbudo distribution of
Wigner-Ville and a pulse source. Itillustrates the ostiias in the transmission coef-
ficient and shows the influence of the source on the transmnisgiectra.

6 Analytic determination of the Hofstadter butterfly

The periodic rectangular modulation implies only two valder the cavity length of
each Helmholtz resonator. When this length vanishes, thenedor effects on the
propagation are completely invisible in the frequency mofjinterest. Whem is
written asa = 1/m, the lattice is periodic with a period length= d/a = md. In this
case, analytical points of the Hofstadter butterfly can bedoin the(f,a) plane.
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Figure 2: Comparison between two different signals prangder o = 0.0125. (a)
Use of a Fourier transform and a shirp source . (b) Use of Wiyfille distribution
and a pulse source.

This new periodd’ is used in the dispersion relation (eq[| (3)) which becomes
cogkd) + g sin(kd') = £1.

The solutions of this equation gives some points of the lihictvis the boundary
between the passbands and the stopbands (the stopbandeareided when the dis-
persion relation|]3) is greater than 1 or lower thah). By setting taf®) = — 5, the
dispersion relation is written as c(d!% +0) = £cog0) and the solutions are

kg =nmn—26 andkg =nnwithne N. (8)

The effects of the scatterers are present in the &@nd the resonance frequencies
imply its divergence. These divergences perturb branctestgre of the butterfly
around these resonance frequencies and "break” the butténdicture as presented in
the fig. [3 and}4 forf = 283 Hz, f = 1120 Hz,f = 2240 Hz andf = 3360 Hz (each
band corresponds to a resonance of the resonator). Thetiesabf the eq. |Z|8) gives
different points on théf, a) plane fora’s values corresponding fo= 1 andm= 2 up

to 20 which are reported on the fig. 3b.
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Figure 3: (a) Experimental transmission spectra for a périarrangement of scatter-
ers witha ranging from 0 to 1 with 50 values between 0 an8l.0The upper part is
obtained by reflection. (b) Zoom of the experimental trassion spectra for a peri-
odic arrangement of scatterers withranging from 0 to 1 betweej® : 200Q Hz. The
white points show the analytic results from the eﬁ1 (8).

7 Results

The transfer function between the end and the beginningedéttice, in the frequency
range[0,4000 Hz which is corresponding to twa-Bragg bands, was measured. We
used 50 different values for the paramatdretween 0 and.6.

The fig. ES presents the transmission in the periodic casdh@lresonators are
identical) and for three different values of modulationdin The periodic case (fig.
Ea) is obtained foo = 0 and shows two sorts of forbidden bands in the spectra : the
first and second are due to the scatterers (Helmholtz remshdor 283 Hz and 1120
Hz and the third is due to the spatial periodicityBragg stopband) at 1700 Hz.

The periodic modulation of the lattice involves the arriwdforbidden subbands in
the transmission spectra (fi. 5b, ¢ and d) which split thestrdssion band (allowed
band) into subbands (marked with a arrow in the figure). Theber of these subbands
increases wittm. The new period of the lattice & = md so the frequency location of
the subbands are nofy = ¢/(2md) :1 subband appears for= 1 andm= 2 (fig. Eb) at
850 Hz and theoretically 10 subbands foe 1 andm= 10 (fig. Bd) every 170 Hz (this
argument is not satisfactory fgr£ 1 as in the fig[|5c wherp = 13 andm = 40). The
attenuation phenomenon added to the finite dimension oftitied and the presence
of stopbands due to resonance’s scatterers induce that sdmeands are missing in
the spectra presented in the ﬁb 5.

To obtain a view of the Hofstadter butterfly, the transferdlions for different
values of the modulation parametgrare plotted together on a plane building with
the frequency (abscise axe) aadelonging to[0, 1] (ordinate axe). The spectra are
converted to a grey scale (figﬂ 3 aﬂd 4) and the part betW@8rl] is obtained by
reflection.

In fig. Ea twoTeBragg bands are seen and two Hofstadter butterflies areletanp
The structure of the butterflies is broken by the resonantcggeaesonators and some
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Figure 4: Numerical result for the transmission spectrafperiodic arrangement of
scatterers witl ranging from 0 to 1 with 100 values between 0 an8l. 0The upper
part is obtained by reflection.

"oscillations” due to the signal processing are observdtk fig. ﬁ;b presents a zoom

of the fig. @a for g0 : 200Q Hz frequency range. In this figure, the structure of the
Hofstadter butterfly are identified and can be compared tithalation (fig. |}l) ob-
tained with 100 values af. Self similar structures are observed and a lot of subbands
are perceptible. The presence of scatterers stopbands $eestop the effects of the
lattice modulation in the transmission : for example, themsaibband is just shifted
during the both stopbands caused by Helmholtz resonatadrthenbutterfly structure

is affected by this phenomenon. The white points on theﬁ‘igor’élsent the analytical
results calculated with the ed] (8). They are in agreemetttive experimental results
and they predict sufficiently the effect of the scattereonesices.

The self-similar structure of the butterfly is also observEde simulated butterfly
(fig. E), building with 100 different arrangements of thetsei@rs, exhibits more self-
similar structures than the experimental results. Theldefthe self-similar structures
is depending on the number of modulation used to map the &ftifst butterfly. The
simulation allows to observe with a high definition some fietails of the Hofstadter
butterfly and to analyze more precisely the effects of th&aea resonances. It seems
that the presence of scatterer stopbands (the first and¢badstopbands) breaks the
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Figure 5: Transmission function for four different valudsodulation lengths. (a)

a=0. (b)a=0.5. (c)a =0.325. (d)a = 0.1. Some subbands due to the modulations
are marked by arrows.

modulation influence by diverting the different branchethefbutterfly. It implies that
the structure is self-similar only in the region between shatterer stopbands. This
phenomena is also observed with the experimental resulthéomain branch of the
butterfly (fig.[Bb).
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