

Safety Instrumented System reliability evaluation with Influencing Factors

F. Brissaud, D. CharpentierM. Fouladirad, A. Barros, C. Bérenguer

ESREL 2008, September 22-25, Valencia

Florent Brissaud • 24/09/2008 • 1 / 17

Contents

- Introduction
- failure rate evaluation with influencing factors frewif methodology
 - 1. Case study presentation
 - 2. Qualitative analysis (system analysis, some tools)
 - 3. Quantitative part (general model, formulation of results)
 - 4. Results
- Conclusion

Introduction

- Safety Instrumented System (SIS) reliability evaluation
 - IEC 61508: probabilities of failure
 - the relevance of existing models strongly depends on the quality of input data as *failure rates*
- Influencing factors [relating to the reliability]
 - the internal and external parts of an item which act on its reliability, for example by causing failure rate changes
 - e.g. design, material properties, solicitation, environment...
- For risk analysis
 - to allow a more efficient risk management by acting both on systems and environment / conditions of use

Introduction

Failure rate evaluation

- reliability data feedbacks (statistical models)
 - may include influencing factors (Cox model, neuronal network...)
 - require significant equipment field and appropriate procedures
- data handbooks
 - systems are sometimes very heterogeneous
 - generic values do not always fit system specificities
- predictive models (physical models)
 - electronic components: MIL HDBK 217, FIDES, RDF, Telcordia...
 - mechanical components: NSWC
- frameworks for human and organizational factors
 - in risk analysis: WPAM, RIA, ORIM, ARAMIS, BORA-Release...
 - tools have been developed for expert judgments

failure rate evaluation with influencing factors – frewif methodology

- 1. Case study presentation
- 2. Qualitative analysis
- 3. Quantitative part
- 4. Results

1. Case study presentation

- Presentation
 - seven safety relief valves
 - different design, environment and conditions of use
 - few feedback data
- Aim
 - evaluate the failure rate of each valve by tacking into account the influencing factors → to have argued and coherent results
- How
 - compensating the lack of knowledge by a qualitative analysis
 - integrating the available data by a quantitative part

2. Qualitative analysis: RID

• Reliability influencing diagram (RID)

- Main component groups
 - *poppet* (70% of failure causes)
 - *seal* (5% of failure causes)
 - *spring* (25% of failure causes)
- Relevant life cycle phases
 - design
 - use
- Influencing factors (with weight)
 - sizes (3): small, medium or big
 - *loading charge* (2): low, medium or high pressure
 - performance requirements (1): restrictive or indulgent allowable leakage rate

2. Qualitative analysis: some tools

Category Infl		Infl	aencing factors					
Design Syst Wor Size Mat Com and		Syst Wor Size Mat Con and	tem type rking principle es (height, volume, weight) terials nponent quality (quality requirements controls)					
Manu	facture	Spe	cial characteristics (supply)					
Manufacture Man Man Installation Loc:		Mar Loc	nuacturer nufacture process (procedures, controls) ation (access facilities)					
		Ass	sembly/Activation (procedures, controls)					
Use	EUC*		EUC* type					
			Special characteristics					
	Solicitation		Type of load (cycling, random)					
	Environment		Frequency of use Loading charge/Activation threshold Electrical load (voltage, intensity) Mechanical constraints (vibration, friction, shocks)					
			Temperature Corrosion/Humidity Pollution (dust, impurities) Other stresses (electromagnetism, climate)					
			Performance requirements Failure modes (recorded failures)					
Maintenance Freq Qua Qua		Free Qua Qua	juency of preventive maintenance lity of preventive maintenance lity of corrective maintenance					

* Equipment Under Control

• Selection of influencing factors and corresponding indicators

- it is possible to measure or evaluate the states
- the states have to allow making difference between systems
- exhaustive for reliability

Setting indicator states

- technical reports
- operational / feedback data
- measurements
- investigation with key staff
- Rating influencing factors

3. Quantitative part

	Influencing factors severity							
Valve	#1	#2	#3	#4	#5	#6	#7	
Sizes	good	good	medium	medium	bad	bad	bad	
Loading Charge	good	medium	medium	medium	medium	bad	bad	
Perf. Requirement	good	good	good	bad	bad	good	bad	
MLE (3 TtF/Valve)	1.52E-05	1.66E-05	4.77E-05	1.28E-04	3.65E-03	8.23E-04	1.33E-03	

université de technologie

Troyes

3. Quantitative part

	Influencing factors severity							
Valve	#1	#2	#3	#4	#5	#6	#7	
Sizes	good	good	medium	medium	bad	bad	bad	
Loading Charge	good	medium	medium	medium	medium	bad	bad	
Perf. Requirement	good	good	good	bad	bad	good	bad	
MLE (3 TtF/Valve)	1.52E-05	1.66E-05	4.77E-05	1.28E-04	3.65E-03	8.23E-04	1.33E-03	

INE-RIS

université de technologie

Troyes

3. Quantitative part

université de technologie

Troyes

3. Quantitative part: general mode

$$\lambda_{s} = \sum_{i=1}^{N} \lambda_{i} = \sum_{i=1}^{N} \left[\lambda_{i,mean} \cdot \prod_{j \in J_{i}} C_{j}^{*} \right]$$

$$\lambda_{i,mean} = c_i \cdot \lambda_{s,mean}$$
 with $\sum_{i=1}^{N} c_i = 1$

- Part count model
- Influencing coefficients
 - one coefficient for each influencing factor
 - the relevant coefficients are multiplied to the baseline failure rates
 - $C_i^* = 1$ if the corresponding influencing factor is in a medium state
 - $C_j^* < 1$ (resp. $C_j^* > 1$) if the corresponding influencing factor is in a more suitable state (resp. less suitable state)

• How to calculate the influencing coefficients?

INE-RIS

3. Quantitative part: indicator functions

- Probability density functions: $g_i(I_i)$
 - uncertainties
 - variations in time
- Distributions
 - triangular for deterministic values
 - *Gaussian* for quantitative values
 - *uniform* for expert judgment

Restrictive — Indulgent

Florent Brissaud • 24/09/2008 • 13 / 17

3. Quantitative part: influencing functions

 $C_{j}^{*} = \int_{I_{j}}^{I_{j,upper}} C_{j}(I_{j}) \cdot g_{j}(I_{j}) \cdot dI_{j}$

• Influencing functions: $C_i(I_i)$

- aim at formulating the influencing coefficients according to the indicator values
- are built using three particular values: *worst, mean, best*
- take into account general assumptions and influencing factor weights
- Final results of the influencing coefficients: C_i^*
 - are calculated by integrating the product of the influencing functions with the indicator functions, all over the possible indicator values

4. Results

université de technologie

INE-RIS

Troyes

	Influencing factors severity							
Valve	#1	#2	#3	#4	#5	#6	#7	
Sizes	good	good	medium	medium	bad	bad	bad	
Loading Charge	good	medium	medium	medium	medium	bad	bad	
Perf. Requirement	good	good	good	bad	bad	good	bad	
MLE (3 TtF/Valve)	1.52E-05	1.66E-05	4.77E-05	1.28E-04	3.65E-03	8.23E-04	1.33E-03	
frewif methodology	1.66E-05	2.33E-05	6.10E-05	1.48E-04	5.17E-04	6.20E-04	1.51E-03	

Conclusion

- Influencing factors in reliability
 - a definition
 - a classification according to the system life cycle phases and a corresponding checklist
- New model for failure rate evaluation with influencing factors frewif
 - global enough to be usable for a large number of safety systems and influencing factors
 - combines a qualitative analysis to compensate for a potential lack of knowledge, and a quantitative part to integrate available data
 - allows better argued and coherent results for a more efficient risk management which can act both on systems and environment / conditions of use

Thanks for your attention

Questions and comments are welcome

Florent Brissaud • 24/09/2008 • 17 / 17