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ABSTRACT

To predict the rate and consequences of shrinkage of the earth’s mountain glaciers and ice caps, it is

necessary to have improved regional-scale models of mountain glaciation and better knowledge of the

subglacial topography upon which these models must operate. The problem of estimating glacier ice

thickness is addressed by developing an artificial neural network (ANN) approach that uses calculations

performed on a digital elevation model (DEM) and on a mask of the present-day ice cover. Because suitable

data from real glaciers are lacking, the ANN is trained by substituting the known topography of ice-denuded

regions adjacent to the ice-covered regions of interest, and this known topography is hidden by imagining it to

be ice-covered. For this training it is assumed that the topography is flooded to various levels by horizontal

lake-like glaciers. The validity of this assumption and the estimation skill of the trained ANN is tested by

predicting ice thickness for four 50 km 3 50 km regions that are currently ice free but that have been partially

glaciated using a numerical ice dynamics model. In this manner, predictions of ice thickness based on the

neural network can be compared to the modeled ice thickness and the performance of the neural network can

be evaluated and improved. From the results, thus far, it is found that ANN depth estimates can yield

plausible subglacial topography with a representative rms elevation error of 670 m and remarkably good

estimates of ice volume.

1. Introduction

The sea level equivalent volumes of the Greenland

and Antarctic ice sheets are 7.3 and 56.6 m, respectively,

whereas the combined volume of glaciers and small ice

caps is far less. Yet, over the next 100 yr their 0.15–0.37-m

contribution to sea level rise (Lemke et al. 2007) is ex-

pected to dominate that from shrinkage of the great ice

sheets (e.g., Ohmura 2004; Meier et al. 2007). Despite

such compelling reasons to be interested in the volumes

of glaciers and ice caps, only a few hundred of the more

than 105 glaciers and ice caps that exist today have been

geophysically mapped. Estimates of glacier and ice cap

volume are therefore only weakly constrained by depth

measurements, and it is extremely unlikely that this

situation will change. For this reason, attention has fo-

cused on scaling relationships such as

V 5 cAg (1)

(e.g., Chen and Ohmura 1990) between glacier area

(which is readily observed) and glacier volume. The

Chen and Ohmura study was based on statistical regres-

sion of data from 63 mountain glaciers and yielded g 5

1.357 as the best-fit value for the exponent in (1).

By elegant use of dimensional analysis, Bahr (1997)

and Bahr et al. (1997) derived a theoretical value of

g 5 11/8 5 1.375 for the exponent, in remarkable agree-

ment with Chen and Ohmura (1990). However, the coef-

ficient c in (1) remains beyond the reach of dimensional

analysis and must be treated as a fitting parameter that can

differ from region to region.
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Several physically based approaches to estimating

subglacial topography have received attention. The

earliest of these (Nye 1952) is based on the recognition

that ice resembles a perfectly plastic material and thus,

for actively deforming glaciers, the basal shear stress t0

should be close to the plastic yield stress for ice.

Driedger and Kennard (1986) applied this approach to

estimate the volume of glaciers of known thickness and

suggested that their volume estimates were accurate to

620%. A similar approach has been followed by Haeberli

(1985) and Haeberli and Hoelzle (1995). Plasticity es-

timators require no knowledge of the mass balance

forcing for the glacier but do assume, implicitly, that the

glacier is healthy enough to maintain its basal stress

near the yield stress. An alternative approach that re-

quires additional assumptions is to assume that the

glacier is near a steady-state configuration with respect

to a known or estimated mass balance forcing. With this

assumption the balance ice flux can be calculated and

the balance flux can be inverted to ice thickness using

Glen’s flow law (Huss et al. 2008).

A shortcoming of the volume–area scaling approach

is that it yields no useful information about subglacial

topography—a necessary boundary condition for gla-

cier dynamics models. In contrast, the physics-based

methods allow ice thickness to be estimated but are

subject to error if their underlying assumptions are not

fulfilled. This motivates our interest in a fresh approach

to estimating the thickness and volume of glaciers. The

aim of the present contribution is to explore the po-

tential of artificial neural networks (e.g., Bishop 1995;

Reed and Marks 1999) as a tool for estimating ice

thickness. In the next section we introduce artificial

neural networks (ANNs), review their applications in

climate science and glaciology, and describe how they

are trained and used in the present study. In section 3,

we describe the construction of test datasets using a

numerical ice dynamics model so that the skill of trained

neural networks can be objectively tested. Section 4 is

concerned with testing the skill of ANNs, using this

information to optimize the selection of inputs and the

network architecture, and evaluating the performance

of the ANN estimators for four test regions and a range

of glaciation states. Section 5 summarizes the results of

this study.

2. Artificial neural networks

Artificial neural networks are input–output systems

that aim to imitate the operation of biological neural

networks. These biological networks are characterized by

an intricate interconnectivity among neurons and by the

possibility of modifying this connectivity so that learning

can proceed. In ANNs the response F(u) of an individual

neuron to an input u is approximated by either a non-

linear function that smoothly or discontinuously switches

between binary ‘‘on’’ (1) and ‘‘off’’ (0) states or as a

linear function F(u) 5 u. ANNs simplify the natural sit-

uation by limiting the number of neurons and by as-

suming that the network connectivity has a systematic

structure. The most commonly used ANNs have a mul-

tilayered architecture with a unidirectional feedforward

flow of information and are termed multilayer percep-

trons (e.g., Bishop 1995; Reed and Marks 1999).

In climate science, ANNs have been successfully used

to reduce the dimensionality of data and to classify pat-

terns (e.g., Cavazos 2000; Hsieh 2001; Hewitson and

Crane 2002), to predict large-scale climate oscillations

(e.g., Tangang et al. 1998a,b), and to approximate the

behavior of complex physical systems (e.g., Monahan

2000; Tang and Hsieh 2001). In glaciology, ANNs have

received less attention, but Reusch et al. (2005) used

them to attempt an association of ice-core climate rec-

ords from West Antarctica with synoptic climate patterns

identified in a 15-yr climate reanalysis dataset. Subse-

quently, Reusch and Alley (2007) used self-organizing

maps (a special category of ANN; Kohonen 2001) to

classify patterns of the extent and concentration of

Antarctic sea ice. In an intriguing series of recent papers,

ANNs have been trained to emulate the fluctuations in

glacier length that are associated with changes in air

temperature and precipitation. This approach has al-

lowed historical variations in glacier mass balance to be

constructed (Steiner et al. 2005), past length variations

to be comprehended (Steiner et al. 2008), and future

changes to be predicted (Zumbühl et al. 2008)—all with-

out reference to a physical ice dynamics model.

In this presentation we shall, for the first time, apply

ANNs to the problem of estimating subglacial topogra-

phy using geometric information extracted from a digital

elevation model (DEM). Most field glaciologists, when

standing on a glacier, would think themselves capable of

guessing, albeit roughly, the thickness of ice beneath

them. The underpinnings of such a guess might include a

qualitative awareness of the distance between the ob-

server and the valley walls and the steepness of the sur-

rounding topography. The fact that such a guess is pos-

sible and has some observational basis suggests that the

depth estimation process can be formalized and even

automated. As illustrated in Fig. 1, our task starts with a

glacierized digital elevation model, and entails the es-

timation of ice thickness for each of the ice-covered

cells. By assembling these estimates, an ice-denuded

DEM (Fig. 1c) can be constructed for the same terrain.

We assume that the process that transforms Fig. 1a to

Fig. 1c can be represented by a multilayer feedforward
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ANN (Fig. 1b) and use the MATLAB Neural Network

Toolbox (Demuth et al. 2006) to train and then apply the

ANN. Following the simplest options of the MATLAB

Toolbox, we adopt the standard Levenberg–Marquardt

back-propagation training algorithm (Levenberg 1944;

Marquardt 1963) and the Widrow–Hoff least squares

learning rule. Only 60% of the data in the training set

are used for training the ANN; 20% are held back to

allow the training result to be independently validated

and part, but not all, of the remaining 20% are used to

perform tests during training so that signs of over-

training can be detected and the training episode ter-

minated.

The practical problem becomes one of optimizing the

selection of inputs and the architecture of the ANN.

This problem can be stated as follows: For a DEM cell

centered at some map position (i, j) with surface elevation

Sij, estimate the ice thickness Hij or, equivalently, the bed

surface elevation Bij 5 Sij 2 Hij. An ANN tailored to

solve this problem can be applied to every ice-covered

cell on a given DEM in order to generate a bed surface

map Bij for the region of interest; clearly, Bij 5 Sij for

cells that are not ice covered.

a. Geomorphic premise

Our supposition that ANNs can be applied to the

problem of estimating subglacial topography is based on

unstated geomorphic assumptions that we shall attempt

to identify: (i) Within a particular geographical region

there is a sameness to the landscape that is a conse-

quence of the sameness of the bedrock geology, geo-

logical and environmental history, and present condi-

tions for that region. (ii) The deglaciated portions of

landscapes that today are partially ice covered have

geometrical similarities to portions that are glaciated;

for the most part, the areas that are now ice denuded

were formerly ice covered and therefore subject to

similar landscape-shaping processes that currently op-

erate on the ice-covered landscape. (iii) Because the

geological and environmental settings are spatially

varying, it follows that a neural network that has been

trained to estimate ice thickness in a particular geo-

graphical region may not perform well if applied to

another region.

b. Data masks

In addition to the DEM of surface elevation S, it is

necessary to define an ice mask I that has the properties

Iij 5 0 for an ice-free DEM cell and Iij 5 1 for an ice-

covered one. A second mask that can prove useful is a

surface slope mask G that discriminates between steeply

sloping and gently sloping topography. For steeply

sloping topography Gij 5 1 and for gently sloping to-

pography Gij 5 0. In our work, the threshold between the

two is taken as |u0| 5 258 but is not a sensitive parameter

and could be adjusted. The slope mask can be used to

distinguish among gently sloping glaciers (I ^G9), steeply

sloping glaciers and ice-covered valley walls (I ^ G), and

an ice-free surface of any slope (I9). We have found that

for steeply sloping glaciers a physics-based estimator

(discussed subsequently) gives better thickness estimates

than ANN estimators, and the slope threshold deter-

mines which estimator will be enlisted. Examples of the I,

G, I ^G9, and I ^G masks are presented in Fig. 2. Here,^
denotes the logical and operator, the superscript prime

denotes the logical not operator, and _ denotes the

nonexclusive logical or operator.

c. Inputs and outputs

Referring to Fig. 1b, for each ice-covered cell there is

a single output Y 5 ~Hij, where the tilde indicates an

FIG. 1. Actual (ice covered) and estimated (ice denuded) DEMs for a partially ice-covered region in the

vicinity of the Mount Waddington ice field, BC, Canada (map center at 51.33338N, 125.338W). The DEM

resolution is 200 m. (a) Input DEM of surface topography with glacier-covered cells indicated by light

gray shading. (b) Input–output system represented as an artificial neural network. (c) Output DEM of

estimated bed surface topography using neural network operations on input DEM.
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estimate of the true value Hij. The situation with respect

to the inputs X1 . . . XN is less clear-cut and starts with an

enumeration of information that might provide some

useful constraints on the ice thickness estimate. The

possibilities that we examined are (i) the surface ele-

vation of the ice-covered cell, (ii) the orientation of the

surface slope at (i, j), (iii) the distance between the point

(i, j) and one or more points on the surrounding valley

walls, and (iv) the slope at points on the surrounding

valley walls. In terms of the Xn inputs in Fig. 1b, the

surface elevation input would correspond to Sij, and the

slope orientation inputs to (tx)ij and (ty)ij where (tx, ty)

are components of the unit vector t that is aligned with

the surface slope =S at (i, j).

To calculate the distance to the valley walls, we apply

a sectorial stencil (Fig. 3a) obtained by dividing the

compass circle into M sectors and measure the mini-

mum horizontal distance Rm between the point (i, j) and

the valley walls within that sector. This procedure yields

M additional data inputs. We have experimented with

two different practical definitions of ‘‘valley walls.’’ In

early work we assumed that valley walls correspond to

ice-free areas (I9) that surrounded a glacier, but we

found this definition to be too narrow and now define

the valley walls as being either ice free or ice covered

but steeply sloping (I9_G). To illustrate our procedure,

suppose that a four-sector stencil was placed at the map

point (i, j) on a glacier of unknown thickness and the

stencil was aligned with the cardinal compass directions

(north, east, south, west). We would first look north

(6458) to find the nearest point that was ice free or

steeply sloping, then east, etc., to obtain four distance

inputs to the ANN. The usefulness of a two-tiered sec-

torial stencil (Fig. 3a), with the two elevation levels

separated by some distance Dztier, was also tested.

Valley-wall distances for the lower tier were calculated

as described above and, for the upper tier, the valley-

wall distances were taken as the shortest distance at the

same elevation as the upper tier. In principle, ANN in-

puts from a two-tier sectorial stencil contain informa-

tion on the slope as well as the range of the valley walls.

An alternative approach to including valley-wall slope

information is to employ a one-tier stencil but add slope

magnitude information |=S|m for each of the Rm valley-

wall points.

FIG. 2. Examples of ice and slope masks for site BC-3 (see Fig. 6

for its location) with roughly 50% ice cover and a deglacial phase

of the climate cycle. (a) Icemask (I). (b) Slope mask with G slope

threshold u 5 258. (c) Ice and not slope mask (I ^ G9). This mask

isolates gently sloping ice-covered regions. (d) Ice and slope mask

(I ^ G). This mask isolates steeply sloping ice-covered regions.
FIG. 3. (a) Example of a computational stencil for the neural

network inputs. The compass circle is divided into M sectors (M 5 6

in the example) and within each sector the minimum range to a

DEM cell satisfying a condition such as ‘‘ice free’’ is calculated.

More than one tier is allowed with a distance Dztier separating the

two tier levels. The logical condition can be different from tier to

tier. (b) Illustration of bathtub filling of the landscape to two dif-

ferent levels.
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An analysis of the information value of the various

ANN inputs that we tested is described in section 4. It

was found that the wall-distance measurements carry

essential information for the ANN and that none of

other inputs delivered consistent improvements in net-

work performance.

Throughout this study the input DEMs and masks will

cover an area of 50 km 3 50 km at a resolution of 200 m.

Rather than make special assumptions at the map

boundaries we avoid the boundaries entirely by setting

an upper limit on range distance max(Rm) 5 6 km and

only centering the stencil on interior points that are at

least 6 km from any boundary. Thus the size of the

output map is 38 km 3 38 km. It is important to choose a

value for max(Rm) that exceeds the expected distance

between on-glacier points and the surrounding valley

walls but is not so large that data loss at the map margins

is substantial. As examples, if we had taken max(Rm) 5

15 km, the output map size would be reduced to 20 km 3

20 km; whereas, if max(Rm) 5 0.5 km, many of the range

distance inputs will be set to max(Rm) rather than the

true values.

Apart from these practical considerations, decisions

concerning the input map size must be guided by the

understanding that neural networks yield estimates that

are based on the statistical properties of the input data

that were used to train the network. Thus the geomor-

phic premise, detailed above, would caution against the

use of very large input maps (unless the ANN allowed

for spatial variation). One must therefore balance con-

flicting requirements. The input map should be suffi-

ciently large that data loss at the map margins is not

substantial but not so large that spatial inhomogeneity

of the landscape significantly undermines the geomor-

phic premise.

d. Layer architecture

In addition to selecting inputs to the ANN it is nec-

essary to make decisions about the network architec-

ture, including such matters as the number of active

layers, the dimension dk of each layer, and the transfer

function for each layer. It is customary for the first ac-

tive layer to have at least as many nodes as the number

of inputs N; as our starting assumption we take d1 5 2N

but subsequently find that d1 5 N yields comparable

performance with faster training. Referring to Fig. 4 and

considering one of the nodes on the first active layer,

there are N 5 4 inputs xj converging to any given node i

and these are assigned weights wij and summed; last, a

constant bias bi is added to yield ui 5 Sj wijxj 1 bi as the

node input. The purpose of the biases is to control the

position of logical thresholds within the ANN and po-

tentially improve its performance. Next, the node input

is applied to a linear or nonlinear transfer function F(ui)

to produce the node output yi 5 F(ui). Common choices

for the form of the transfer function are

F(ui) 5

ui linear
1/[1 1 exp (�ui)] sigmoid
tanh (ui) hyperbolic tangent

8<
: (2)

(e.g., Reed and Marks 1999, p. 316). As a shorthand in

subsequent discussion, we shall denote the linear trans-

fer function by L, the sigmoid transfer function (also

known as the ‘‘logistic function’’) by S, and the hyper-

bolic tangent transfer function by T.

e. Training

Having discussed the inputs and architecture of the

ANN, we turn attention to the problem of training the

network to deliver reasonable estimates of ice thickness.

In essence, training reduces to the problem of optimiz-

ing the values of the weights wij and biases bi for every

active node of the neural network, with the aim of

minimizing the error ~Hij �Hij of the output estimate

Y 5 ~Hij. Here we are faced with the dilemma that the

ice-covered portions of a DEM are unsuitable for

training purposes because, in most cases, we have no

prior information about the ice thickness. Thus the

network must be trained using DEM cells that are not

FIG. 4. Example of a multilayer feedforward artificial neural

network having 4X�6S�6T�1L architecture. Solid dots represent

nodes and open circles represent artificial neurons with a response

functions having one of the following forms F(u) 5 1/[1 1 exp(2u)])

(S), F(u) 5 tanh(u) (T), or F(u) 5 u (L). In this example the ANN

has an input layer (four inputs X1 . . . X4), an output layer (one

output Y), and two ‘‘hidden’’ layers. The three active layers, com-

prising the output layer and the hidden layers, are each associated

with a transfer function F(u).
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ice covered. We justify this strategy by invoking the

geomorphic premise: that, for the most part, glaciers

exist in landscapes that are highly glaciated and the

landscape signatures of glaciation are the expression of

regional influences such as geology, climate, and the

intensity of past glaciations. In consequence, the ice-

covered parts of the contemporary landscape, if de-

nuded of their ice cover, would resemble nearby areas

that are currently deglaciated. In a subsequent section

we demonstrate how these assumptions can be tested

using glacier modeling but, for now, we accept them and

proceed.

To generate a training set, we start with a DEM such

as that of Fig. 1a that contains a mix of ice-covered and

ice-denuded cells and focus attention on the ice-denuded

cells. One of these cells (i, j) is selected at random and

then covered by a randomly generated thickness of ice

H�ij to yield an ice elevation Z�ij at that site; the entire

DEM is filled to this ice level to generate a new land-

scape realization S�ij 5 max (Sij, Z�ij) as illustrated in Fig.

3b. An ice mask is generated for this filling level such

that I�ij 5 1 when (Iij 5 1) _ Z�ij . Sij and I�ij 5 0 other-

wise. (Recall that _ represent the logical or operator;

thus the logical expression reads: ‘‘when a cell is already

ice covered or when the randomly generated ice filling

level Z* exceeds the prefilling surface elevation Sij.’’)

The ANN inputs for the new landscape realization S*

and ice mask I* are constructed for the point (i,j), and

the training target (i.e., the desired value of Y in Fig. 4)

for this single realization is H�ij. Repeating this process

(thousands of times) generates a large training set. It

should be noted that there is no reward for training a

neural network to perform well in irrelevant situations.

We therefore edit the ANN training set so that it is

concentrated on elevation bands that contain or re-

cently contained glaciers and on ice thickness values

that are plausible rather than implausible.

Clearly, real glaciers have sloping surfaces and a

complex surface geometry that surely carry information

concerning the subglacial geometry. It remains to be

demonstrated (in section 4) that this ‘‘bathtub-filling

process’’ leads to a sufficiently accurate representation of

glaciated landscapes that ANNs trained in this manner

can yield reasonable predictions of ice thickness.

By applying this ‘‘bathtub-filling process’’ to real

glaciated DEMs such as that in Fig. 1a, we have estab-

lished that well-designed neural networks, using inputs

such as those described above, are highly trainable and

can yield an impressive correlation between the esti-

mated ice thickness values ~Hij and the target values H�ij,

although with substantial scatter (e.g., Fig. 5). This re-

sult is encouraging but does not establish that the

method actually performs well, because we have yet to

determine whether the original hypothesis (about ice-

covered topography having geometric similarities to

nearby ice-denuded topography) and the bathtub-filling

training strategy have shortcomings. Again, because suit-

able datasets are lacking, we test the success of the

bathtub-filling ANN training method using synthetic

data generated by a numerical ice dynamics model as

described below.

3. Generation of test datasets

To test the skill of the ice thickness estimator, we

require DEMs and ice masks for mountainous regions

that have substantial ice cover and well-mapped sub-

glacial topography. There are no suitable regions that

meet these requirements. Geophysical mapping of the

subglacial topography of mountain glaciers has focused

on those few glaciers that have attracted scientific in-

terest and this creates an observational bias that favors

safe, accessible glaciers of modest size. Although many

of Iceland’s ice caps have been well mapped (e.g.,

Björnsson 1986), ice caps and ice sheets are unsuitable

for our purposes because their geometry is only loosely

controlled by subglacial topography, so the neural net-

work method, as developed here, is unlikely to perform

well. Thus we rely on glacier modeling to generate test

datasets. We must necessarily assume that the modeled

glaciers are acceptable surrogates for real glaciers but

we do not consider this a serious shortcoming of our

FIG. 5. A representative example of an ANN training outcome.

The input DEM and ice mask are those for Fig. 1a. The correlation

coefficient for the fit is r 5 0.863. For this example the size of the

training set was Nset 5 36 100.
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approach. The ANNs make no use of glacier physics so

the main necessity of the modeling is that the glaciers

have a passing resemblance to glaciers and, in particu-

lar, that they have surfaces that slope in their direction

of flow as opposed to the flat ice topography assumed

for training the networks. The test is mainly to establish

that the ANN training assumptions do not completely

undercut the possibility of generating reasonable ice

thickness estimates.

As a starting point, we select test regions in British

Columbia (BC) and the Yukon Territory (YT; Fig. 6)

that are mountainous and have been extensively glaci-

ated in the past but currently lack any permanent ice

cover. No effort was made to select sites that represent

different bed lithologies or climatic settings, but these

environmental controls can be presumed to differ owing

to the large geographical separation of the test sites. The

DEMs for these test sites (Fig. 7) therefore satisfy the

H(x, y, 0) 5 0 initial condition for the ice dynamics

model. To simulate the growth and shrinkage of regional

ice cover, we solve the standard shallow-ice equations

(e.g., Hutter 1983):

›H

›t
5 b� div Q, (3)

Q 5 � 2A(rg)nj=Sjn�1

n 1 2
Hn12=S 1 vsH, (4)

where H 5 S 2 B; t is time; b is the ice-equivalent mass

balance function (m s21); Q 5 Qx(x, y, t)i 1 Qy(x, y, t)j is

the ice flux (m2 s21); g 5 9.80 m s22 is the gravity ac-

celeration; n 5 3 is the exponent in Glen’s flow law for

ice; A 5 3 3 10224 Pa23 s21 is the flow law coefficient;

and vs is the ice sliding rate, which we take as vs 5 0.

(Including sliding might add realism to the glaciation

model but would also open debate about whether the

sliding mechanism was correctly represented and, in any

case, would be unlikely to affect the outcome of our

ANN performance tests.) The mass balance forcing is

assumed to be

b 5 gb(S� ZELA), (5)

ZELA 5 Z0 1 DZ cos 2pt/T0, (6)

where gb 5 0.001 yr21 is the mass balance gradient, ZELA

is the equilibrium line altitude (ELA), Z0 1 DZ is the

ELA at t 5 0, DZ is the amplitude of the ELA variations,

and T0 5 2500 yr is the periodicity for a sinusoidally

oscillating climate. We make no attempt to simulate re-

alistic glacial histories for the test regions—our aim is

simply to produce plausible ice topography for a range of

glacial and deglacial conditions and use the resulting

DEMs and masks to test and optimize the ANNs. The

assignments of Z0 and DZ differ among test sites, but for

every case Z0 is chosen so that ZELA(0) lies above the

highest point on the DEM and DZ is chosen so that, at

t 5 T0/2 when ZELA(t) is a minimum, the ELA is low

enough to ensure an ice cover that exceeds 60% by area.

Thus Eq. (6) leads to cycles of glaciation and deglacia-

tion. Our approach to solving (3)–(6) is similar to that

described by Plummer and Phillips (2003) and recently

employed by Kessler et al. (2006). We approximate (3)

and (4) using finite differences and develop a semi-

implicit scheme to solve for Hij. Intentionally, our choices

of T0, Z0, and DZ yield modeled rates of glaciation and

deglaciation that are higher than typical worldwide rates;

this highlights the differences in neural network perfor-

mance during phases of glaciation and deglaciation.

4. Testing and optimization

In this section ANN estimators are applied to the test

datasets and the results are evaluated. As already noted,

four geographically separated test areas were selected

and, by using the numerical ice dynamics model to

glaciate and deglaciate these regions, a large suite of

digital elevation models and ice masks (e.g., Fig. 8) has

been generated. It is not worthwhile to consider all

these model outputs in our evaluation procedure. Thus

for each of the four test sites we selected six modeled ice

cover maps having roughly 20%(1), 20%(2), 40%(1),

FIG. 6. Location map for the Mount Waddington area (Fig. 1) and

four test sites in British Columbia and Yukon Territory, Canada.
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40%(2), 60%(1), and 60%(2) fractional ice cover by

area, which we denote by aI. This yielded a test set of 24

models. [The parenthetical signs indicate whether the

ice area is increasing (1) or decreasing (2) when the

model snapshots were taken. Because the glaciation/

deglaciation process is hysteretic, the actual spatial

distribution of ice, e.g., for the 20%(1) and 20%(2)

cases, can differ markedly.] The objectives are to dis-

cover which inputs carry the most useful information

and to select a network architecture that performs well

under a variety of conditions. By comparing the per-

formance of various network architectures, one can

discover where computational effort is rewarded and

where it is wasted and determine how many active

layers are required to obtain acceptable estimates.

a. Special treatment for steep ice

Using ANNs to estimate the thickness of steeply slop-

ing glaciers, such as those that hang from mountain faces

and valley walls, is unlikely to offer the best approach

because the bathtub-filling assumption yields a poor rep-

resentation of the geometry for such glaciers. We there-

fore use the slope mask to separate glaciers into two

classes: gently sloping glaciers (I ^ G9), which are

amenable to the neural network approach; and steeply

sloping glaciers (I ^ G), which require some alternative

estimation strategy.

Steeply sloping ice is approximated by an inclined

slab having local thickness H and local slope |=S| 5

tanu. A long-standing rule of thumb in glaciology (e.g.,

Paterson 1999) is that, owing to the plasticity of ice, the

shear stress at the base of slablike glaciers, taken as

t0 5 rgH sin u, (7)

is roughly constant (Nye 1952). If one accepts this idea,

then

FIG. 7. DEMs for the four test sites. The geographical coordinates refer to map center

positions. (a) Site BC-1 (55.46358N, 124.81518W). (b) Site BC-2 (58.90008N, 125.87148W).

(c) Site BC-3 (59.45458N, 130.35668W). (d) Site YT-1 (61.60148N, 133.36848W).
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H(x, y) 5
t0

rg sin u(x, y)
(8)

can be used to obtain a thickness estimate ~Hij 5

t0/rg sin uij for the I ^ G regions of the DEM. The as-

signment of t0 can be optimized to minimize the thick-

ness estimation error for steep-ice regions of the test

models but is expected to be close to t0 5 105 Pa.

b. Optimization and performance analysis

Attention is centered on two aspects of the neural

network performance: trainability and prediction error.

These performance criteria are used to guide decisions

about network architecture, the choice of network in-

puts, and the size of the training set. As a measure of

trainability we take the correlation coefficient r of the

ice thicknesses ~H estimated by the neural network

versus the target thicknesses H* that correspond to the

random bathtub-filling levels. Using a tilde to indicate

estimated quantities and angular brackets to denote

ensemble averages, the bed elevation error estimates

are

h ~B� Bi5 mean error in bed elevation estimates, and

h( ~B� B)2i
1
2 5 root-mean-square error in bed

elevation estimates.

The estimated thickness of high-slope ice is denoted
~HI^G and given by

~HI^G 5
t0

rg sin u
, (9)

and ~HI^G9 is the thickness of low-slope ice as estimated

by the neural network.

1) NETWORK ARCHITECTURE

By systematically varying the number of active layers

and the transfer functions between layers, we compared

the performance of a variety of network architectures

applied to each of the 24 models in the test dataset. To

limit the possibilities, we assumed that the ANN inputs

were obtained from the six range distance values Rm

obtained by applying a one-tier 6-sector stencil (see Fig.

3a for an illustration of a two-tier 6-sector stencil). By

using each range value twice, we applied 12 inputs to

the first layer of the neural network. For brevity we

employ a notational shorthand such that, for example,

6X�12S�12T�1L denotes a network with 6 data inputs

(6X), a single output, and three active layers where the

first active layer has 12 artificial neurons each with a

sigmoidal transfer function (12S), etc. (See Fig. 4 for

additional clarification of this notation.) Scoring sys-

tems were devised to quantify the trainability, estima-

tion skill, and overall performance of the various archi-

tectures, and these results are summarized in Table 1.

FIG. 8. Ice masks for four test sites. The ice masks represent

snapshots during a cycle of glaciation and deglaciation. The area

coverage of ice is roughly 20% for each map. The snapshots were

taken during the deglacial phase of the cycle. The geographical

coordinates refer to map center positions. (a) Site BC-1 (55.468N,

124.828W). (b) Site BC-2 (58.908N, 125.878W). (c) Site BC-3

(59.458N, 130.368W). (d) Site YT-1 (61.608N, 133.378W).

TABLE 1. Evaluation of ANN architecture. Preferred architectures

are indicated in boldface.

Scores

Architecture Training Estimation Combined

6X�12S�1S 4 36 37

6X�12T�1T 9 34 37
6X�12T�1S 0 26 26

6X�12S�1T 12 28 31

6X�12S�1L 1 26 26

6X�12T�1L 0 17 17

6X�12S�12S�1S 42 17 27

6X�12S�12S�1L 65 15 32

6X�12S�12S�1T 36 16 26

6X�12S�12T�1T 44 12 22

6X�12S�12T�1S 13 17 19

6X�12S�12T�1L 56 21 35

6X�12T�12T�1T 39 15 26

6X�12T�12T�1S 19 15 20

6X�12T�12T�1L 33 14 22

6X�12T�12S�1S 18 21 25

6X�12T�12S�1T 33 12 20

6X�12T�12S�1L 56 18 32
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Evaluation of network architecture revealed that

ANNs having three active layers tended to achieve

better training performance (higher r values) than two-

layer networks but that this did not result in improved

estimates of bed elevation. In fact the two-layer net-

works 6X�12S�1S, 6X�12T�1T, and 6X�12S�1T tended to

match or surpass all three-layer networks. Based on our

comparisons of network architecture we conclude that,

for the present application, three-layer ANNs do not

outperform two-layer ANNs, and, furthermore, they

require substantial additional computer time for net-

work training. The best-performing three-layer networks

were 6X�12S�12T�1L and 6X�12T�12S�1S and these ar-

chitectures were kept under scrutiny when additional

tests were conducted. Collectively, these five networks

will be referred to as the ‘‘preferred architectures’’ and

appear in boldface in Table 1.

2) CHOICE OF TYPE AND NUMBER OF INPUTS

In addition to the six range distances used as input for

the architecture tests, we examined the effects of in-

cluding other kinds of geometric information. The re-

sults of this analysis are summarized in Table 2 and

discussed below. The following additional inputs were

examined: (i) range distance derived from a two-tier

range stencil (as in Fig. 3a), (ii) surface slope magnitude

calculated at each of the range points Rm of a one-tier

range stencil, (iii) surface elevation at the map point P

where ice thickness is being estimated, and (iv) the di-

rection of local surface slope at the point P. The moti-

vation underlying (i) and (ii) is that valley-wall slope

might convey useful information about ice thickness.

The motivation underlying (iii) and (iv) is that there

could be systematic variations in topographic geometry

associated with the elevation and aspect of the point P.

(The bathtub fillings used to train the ANN assume a

horizontal ice surface and therefore carry no informa-

tion about slope orientation. In this situation, the ori-

entation of the calculated bed slope =B at the point P is

substituted for that of =S.)

Adding a second tier of range information or in-

cluding slope information from the range points of a

single-tier stencil improved the training performance

for all five of the preferred network architectures but

the performance improvement was not substantial. The

root-mean-squared error (rmse) h( ~B� B)2i1=2 actually

increased for three of the five architectures tested,

leading us to conclude that adding information about

valley-wall slope was unjustified. Including information

on surface elevation also resulted in improved training

performance but considerably worsened the estimates

of bed elevation, both in terms of the mean estimation

error ~B� B and the rmse. Finally, including informa-

tion on the orientation of local surface slope had a

negligible influence on the training performance but

tended to result in poorer estimates of bed surface el-

evation.

Accepting the conclusion that range distance inputs

provide the most useful geometric information for the

neural networks, we turn to the question of deciding on

the number of range sectors and the number of inputs to

the neural network. Thus far we have assumed that the

number of inputs to the first active layer of the neural

network is twice the number of input data values. The

merit of this assumption is that a single input can be

used in more than one way by the neural network.

Fixing the number of range sectors at M 5 6, we ex-

amined the effect of reducing the number of inputs from

12 to 9 and 6. Interestingly, reducing the number of

inputs to 6 has almost no influence on the training

performance or the estimation error. Clearly, there is no

argument for increasing the number of inputs beyond

the number of actual data values. We also tested the

effect of varying the number of range sectors from M 5 6

to M 5 8, 9, 10, and 12 and found that increasing the

number of range sectors leads to a progressive increase

in training performance but only a modest improvement

in estimation error. We judge that beyond M 5 8 the

error reduction becomes small and inconsistent and

therefore settle on M 5 8 as the practical optimum.

3) SIZE OF TRAINING SET

To this point we have assumed a training set of fixed

size (Nset 5 36 100) but we have yet to establish whether

similar performance could be obtained with less training

(and hence less computing effort). We tested the effect

of taking Nset 5 1805, 3610, 9025, 18 050, and 36 100 and

found that the training performance improved with in-

creasing values of Nset but that the estimation error

ceased to decrease significantly when Nset . 18 050.

Thus for subsequent applications of the neural network

we take Nset 5 18 050.

4) SUMMARY

Our preferred two-layer architectures are 8X�8S�1S,

8X�8T�1T, and 8X�8S�1T, and their performance measures

TABLE 2. Evaluation of supplementary ANN inputs. Changes in

training performance and depth estimation accuracy are indicated

by 1 (improvement), 0 (negligible effect), and 2 (degraded).

Input Training Estimation

Distance to valley walls (tier 2) 1 0

Slope magnitude at valley walls 1 0

Ice surface elevation at site 1 2

Orientation of ice surface slope 1 2

15 APRIL 2009 C L A R K E E T A L . 2155

Unauthenticated | Downloaded 10/22/21 12:23 PM UTC



are summarized in Table 3. Henceforth all neural net-

works will have N 5 8 inputs, so we simplify the ar-

chitecture notation to 8S�1S, 8T�1T, and 8S�1T. Note

that all three of the preferred two-layer architectures

yield similar performance but that, by a very slight

margin, the 8S�1S architecture seems to combine the

best trainability with the smallest rmse if ‘‘training

blunders,’’ which were characterized by very low values

of the correlation coefficient r (as low as r 5 0), are

discarded. During the course of these tests we found

that the 8S�1S and 8S�1T architectures experienced

training blunders that occurred when the error mini-

mization routine became trapped in local minima and

failed to converge to the true minimum error. This is a

common problem of nonlinear optimization that could

be remedied using standard approaches but, instead, we

chose to switch to a different ANN architecture. The

thickness estimation errors associated with these un-

successfully trained networks were very large. Fortu-

nately, training blunders are easy to identify and when

this situation arises we simply discard the results ob-

tained for the 8S�1S architecture and retrain for the

8T�1T architecture. We have not encountered a situa-

tion where all three architectures were simultaneously

subject to training blunders. To ensure that well-trained

networks are always used, we take r 5 0.7 as the ac-

ceptability threshold for training.

c. Application to ice thickness and ice volume
estimation

Having decided on the architectures and inputs of the

neural networks, we now demonstrate their application

to the problem of estimating ice thickness and volume

for the four test sites at six stages of a glacial cycle [area

fraction of ice cover aI 5 20%(6), 40%(6), 60%(6)].

Table 4 summarizes the results of this effort. Bed to-

pography ~B and ice volumes ~VI, etc., estimated using

ANNs are compared with bed topography B and ice

volumes VI calculated from modeling output. As indi-

cated in column three, the 8S�1S architecture was used

for the ANN estimates except when a training problem

occurred and the 8T�1T architecture was adopted. The

rms and mean errors of the bed elevation estimates are

given in columns 4 and 5. The middle columns give in-

formation on how the total ice volumes, estimated by

the ANN and calculated from the ice dynamics model,

are divided between steep-gradient ice (I ^ G) and low-

gradient ice (I ^ G9) with u 5 258 taken as the threshold

that distinguishes these classes. For these cases, ice

volume estimates are obtained by coarse numerical in-

tegration of ~H:

~VI^G 5

ð
AI^G

~HI^Gdx dy, (10)

~VI^G9 5

ð
AI^G9

~HI^G9dx dy, (11)

with the total ice volume estimate being ~VI 5 ~VI^G 1
~VI^G9. The three rightmost columns give the estimated

and actual ice volumes and the fractional error in these

estimates, expressed as a percentage.

It is immediately apparent that the network perfor-

mance is related to the amount of ice cover and to

whether the ice cover is increasing or decreasing with

time. The rmse in ~B increases with increasing aI but

there is no clear relationship between mean error and

aI. We attribute the tendency for rmse to increase as aI

increases to a partial breakdown of the geomorphic

premise. As more of the landscape becomes hidden by

ice cover, the average geometrical properties of the

exposed landscape and those of the buried landscape

progressively diverge, leading to reduced skill for the

ANN. The fractional error in ice volume (rightmost

column), which has relevance to sea level predictions, is

very strongly linked to whether ice cover is increasing or

decreasing with time. The fractional error tends to be

large for the case of increasing ice cover and surprisingly

small (45% is the worst case) when ice cover is de-

creasing. Noting, in the VI column of Table 4, that for a

given fractional coverage of ice aI the ice volume during

deglaciation (202, 402, 602) is systematically much

larger than the ice volume during glaciation (201, 401,

601) for each of the test sites, we conclude that during

glaciation the ice configuration resembles a snowfield,

whereas during deglaciation the ice configuration is more

glacierlike. We speculate that the geomorphic premise is

better matched to the situation of glacier recession than

to glacier advance; the geometric form of snowfields is

not closely related to glacial processes that shape gla-

ciated landscapes so their configuration carries less in-

formation about subglacial topography.

Globally, glaciers are in retreat and thus performance

measures for the 202, 402, and 602 cases are more

relevant to the present situation than those for 201, 401,

and 601. Generally, the high-slope volume estimates

TABLE 3. Averaged network performance results.

Performance parameters

Architecture

SS TT ST

Mean training correlation coefficient, r 0.764 0.754 0.759

Bed elevation rmse (m), h( ~B� B)2i1/2 70.39 70.47 73.28

Mean of bed elevation error (m), h ~B� Bi 24.06 2.08 26.55

Number of runs used 21 24 22

Number of runs rejected 3 0 2

Total runs 24 24 24
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[based on Eq. (8)] are superior to the low-slope esti-

mates using neural networks, but this does not neces-

sarily imply that Eq. (8) offers a useful approach to

estimating the low-slope thicknesses and volumes.

Figure 9 shows histograms of the elevation estimation

error eB 5 ~B� B for all four test sites and a deglaciat-

ing ice cover with aI 5 20%, 40%, and 60%. The error

distributions tend to be roughly symmetric about eB 5 0,

which accounts for the surprisingly good estimates of ice

volume, and, as noted above, the rmse increases with

increasing ice cover.

Figure 10 shows maps of the estimated ice thickness

(left panels) and thickness estimation error ~H �H

(right panels) for the four test sites and 60% (2) ice

cover. (Note that the colored regions are ice covered

and the white regions are ice denuded.) The ice thick-

ness map for site BC-1 (Fig. 10a) manifests an inter-

esting pathology not shared by the other examples—a

fanlike patterning of the predicted ice thickness. This is

related to the fact that the areal distribution of ice for

site BC-1 closely resembles a continuous ice field rather

than an arterial system of flowing glaciers (as for the

remaining sites). Within this ice mass, many points lie at

distances that exceed the assumed 6-km range limit of

the computational stencil. Thus many of the inputs to

the neural network will be set to Rm 5 6 km and the

ANN will lose its effectiveness. For the three other sites

the predicted ice thicknesses seem highly plausible: ice

thickness lies in the 0–400-m range, typical for glaciers

of modest size, and thickness varies smoothly with dis-

tance, tending to be maximum along the central axes of

valley channels. Close examination of the thickness es-

timation errors (right panels), draws attention to the

fact that although the estimated thickness patterns are

plausible they are not necessarily correct. As also sug-

gested by the histograms (Fig. 9), there can be large

errors in the ice thickness estimates.

5. Concluding remarks

This study is thought to represent the first attempt to

apply neural networks to the problem of ice thickness

estimation. As a first attempt, the results are en-

couraging and suggest that additional development is

warranted, ideally in tandem with estimation strategies

that are rooted in glacier physics. Of particular interest

TABLE 4. Neural network performance for test sites. Values based on ANN estimates (indicated by a tilde, e.g., ~B) are compared with

those calculated from numerical ice dynamics simulations. The default architecture for the ANNs was 8S�1S but the 8T�1T architecture

was used in cases when an 8S�1S network experienced a training blunder. Here aI is the area fraction of ice cover, h( ~B� B)2i
1
2 is the rmse

of the bed elevation estimate, h ~B� Bi is the mean error of the bed elevation estimate;, ~VI^G is the estimated volume of steeply sloping

ice, VI^G is the modeled volume of steeply sloping ice, ~VI^G0 is the estimated volume of gently sloping ice, VI^G9 is the modeled volume of

gently sloping ice, ~VI is the estimated total ice volume, V1 is the modeled total ice volume, and ( ~VI � VI)/VI is the relative error of the

estimated ice volume.

aI (%) Site Net

h( ~B� B)2i1/2

(m)

h ~B� Bi
(m)

~VI^G

(km3)

VI^G

(km3)

~VI^G0

(km3)

VI^G9

(km3)

~VI

(km3)

VI

(km3)

( ~VI � VI)/

VI (%)

602 BC-1 8S�1S 74.6 7.6 0.23 0.18 114.70 121.09 114.94 121.27 25%

602 BC-2 8S�1S 112.5 28.6 1.29 0.87 130.55 151.07 131.84 151.94 13%

602 BC-3 8T�1T 118.0 68.1 3.24 2.10 63.35 119.80 66.59 121.91 245%

602 YT-1 8S�1S 107.6 37.9 1.10 0.79 134.37 164.02 135.47 164.81 218%

402 BC-1 8T�1T 62.8 11.7 0.17 0.09 58.80 65.49 58.97 65.58 21%

402 BC-2 8S�1S 85.1 21.1 0.66 0.42 73.79 83.39 74.44 83.81 11%

402 BC-3 8T�1T 88.6 43.6 1.53 0.84 49.06 75.49 50.58 76.33 234%

402 YT-1 8S�1S 80.9 32.5 0.62 0.52 86.29 103.46 86.92 103.98 216%

202 BC-1 8S�1S 51.1 1.1 0.09 0.04 27.42 27.79 27.51 27.84 21%

202 BC-2 8S�1S 77.4 23.7 0.32 0.19 26.76 26.11 27.08 26.30 3%

202 BC-3 8S�1S 59.8 3.8 0.48 0.24 30.11 31.33 30.59 31.57 23%

202 YT-1 8S�1S 66.5 27.2 0.27 0.21 43.22 41.32 43.49 41.53 5%

201 BC-1 8S�1S 40.7 224.6 1.54 1.26 10.10 3.46 11.64 4.72 147%

201 BC-2 8T�1T 32.6 213.1 7.37 3.75 0.75 0.33 8.11 4.08 99%

201 BC-3 8T�1T 39.5 214.6 7.19 4.19 2.24 0.94 9.43 5.13 84%

201 YT-1 8S�1S 45.2 233.3 5.81 2.58 6.72 1.32 12.53 3.89 222%

401 BC-1 8S�1S 69.1 244.4 1.34 1.32 40.96 14.48 42.30 15.80 168%

401 BC-2 8S�1S 58.6 215.6 13.14 10.80 7.07 4.89 20.20 15.69 29%

401 BC-3 8T�1T 70.5 25.5 10.76 11.27 12.97 11.36 23.73 22.62 5%

401 YT-1 8S�1S 55.5 226.4 9.88 7.70 14.64 7.13 24.52 14.83 65%

601 BC-1 8S�1S 85.7 244.5 1.04 1.18 90.60 51.94 91.64 53.17 72%

601 BC-2 8S�1S 62.1 4.3 15.28 15.67 24.65 26.16 39.93 41.85 25%

601 BC-3 8S�1S 72.2 5.9 10.32 13.33 40.80 44.44 51.13 57.77 211%

601 YT-1 8S�1S 62.3 217.0 10.98 12.20 40.64 31.90 51.61 44.10 17%
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is the indication that, despite unavoidable errors in the

ice thickness estimates, the resulting errors in estimated

ice volume are surprisingly small. Thus neural networks

can be used to estimate the ice volume of earth’s moun-

tain glaciers and yield estimates that are completely

independent of those obtained by conventional volume–

area scaling analysis. Our use of ice masks underscores

the importance of collecting accurate information on

glacier outlines, one of the objectives of the Glacier

Land Ice Measurements from Space (GLIMS) program

(additional information is available online at http://

www.glims.org/).

The neural network estimators perform best during

deglacial phases (like the present one) when the frac-

tional area of ice coverage is not large and when the ice

masses are characterized by distinct glacierlike ele-

ments rather than aggregated into extensive ice fields.

One of our aims was to predict subglacial topography in

order to provide a realistic boundary condition for nu-

merical ice dynamics models. In this we can claim a

qualified success: the estimates of subglacial topography

yield plausible, though not necessarily accurate, esti-

mates of the bed surface. As yet, there are no good ways

for estimating subglacial topography that do not involve

drilling or geophysical measurements, but neural net-

works can at least provide better results than simply

ignoring the existence of the ice cover (i.e., ~H 5 0). As

an approach to estimating glacier ice volume during

deglacial phases, the neural networks seem to yield very

good estimates of ice volume that are possibly supe-

rior to those obtained using conventional volume–area

scaling approaches [as in Eq. (1)]. Shortcomings of the

ANN approach are that it is computationally intensive

and that to apply the method over very large regions, for

example, Alaska–Yukon or the Himalayas, requires

repeated application of the method over a patchwork of

overlapping approximately 50 km 3 50 km subregions.

Worthwhile directions for future study would be to

investigate the potential of physics-based methods and

to compare ANN and volume–area scaling estimates of

ice volume for glaciers of known thickness as well as for

numerically simulated glaciers with appropriate mass

balance forcings and proper model physics. Our nu-

merical experiments with increasing and decreasing

degrees of ice coverage could have ominous implica-

tions for the volume–area scaling approach because we

find that glaciers having identical areas can have greatly

differing volumes, depending on whether glacier area is

increasing or decreasing with time. Thus the volume–

area scaling is likely to work best when glaciers are near

a steady state, an explicit assumption of Bahr’s scaling

analysis [Bahr et al. 1997, their Eq. (3a)].

Estimating the thickness of ice caps and ice sheets

appears to be a distinct problem that will require dif-

ferent approaches from the ones considered here. These

ice masses have been favored targets for geophysical

study and much is already known of their subglacial

topography, so the situation is not hopeless.
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FIG. 9. Histograms of the estimation error of bed elevation for

the numerically modeled glaciation of four test sites. The column

headers 20%(2), 40%(2), 60%(2) indicate the approximate areal

percentage of ice cover; the negative sign indicates that the ice

cover was decreasing at the time of the model snapshot. (a) Site

BC-1. (b) Site BC-2. (c) Site BC-3. (d) Site YT-1.
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FIG. 10. Maps of (left) estimated ice thickness and (right) ice thickness estimation error for test

sites. Scales for the color bars indicate thickness in meters. For these maps the areal coverage of

ice was roughly 60% with ice cover decreasing with time. These maps match to the rightmost

histograms in Fig. 9. (a),(a9) Site BC-1. (b),(b9) Site BC-2. (c),(c9) Site BC-3. (d),(d9) Site YT-1.
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