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Abstract

We establish the asymptotic normality of the regression estimator in a fixed-
design setting when the errors are given by a field of dependent random variables.
The result applies to martingale-difference or strongly mixing random fields. On
this basis, a statistical test that can be applied to image analysis is also pre-
sented.
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1 Introduction and notations

Our aim in this paper is to establish the asymptotic normality of a regression estimator
in a fixed-design setting when the errors are given by a stationary field of random
variables which show spatial interaction. Let Z

d, d ≥ 1 denote the integer lattice
points in the d-dimensional Euclidean space. By a stationary random field we mean
any family (εk)k∈Zd of real-valued random variables defined on a probability space
(Ω,F ,P) such that for any (k, n) ∈ Z

d × N
∗ and any (i1, ..., in) ∈ (Zd)n, the random

vectors (εi1 , ..., εin) and (εi1+k, ..., εin+k) have the same law. The regression model which
we are interested in is

Yi = g(i/n) + εi, i ∈ Λn = {1, ..., n}d (1)

where g is an unknown smooth function and (εi)i∈Zd is a zero mean and square-
integrable stationary random field. Let K be a probability kernel defined on R

d and
(hn)n≥1 a sequence of positive numbers which converges to zero and which satisfies
(nhn)n≥1 goes to infinity. We estimate the function g by the kernel-type estimator gn



defined for any x in [0, 1]d by

gn(x) =

∑

i∈Λn

YiK

(

x− i/n

hn

)

∑

i∈Λn

K

(

x− i/n

hn

) . (2)

In a previous paper, El Machkouri [9] obtained strong convergence of the estimator
gn(x) with optimal rate. However, most of existing theoretical nonparametric results
for dependent random variables pertain to time series (see Bosq [4]) and relatively few
generalisations to the spatial domain are available. Key references on this topic are
Biau [2], Carbon et al. [5], Carbon et al. [6], Hallin et al. [11], [12], Tran [25], Tran and
Yakowitz [26] and Yao [28] who have investigated nonparametric density estimation for
random fields and Altman [1], Biau and Cadre [3], Hallin et al. [13] and Lu and Chen
[16], [17] who have studied spatial prediction and spatial regression estimation.
Let µ be the law of the stationary real random field (εk)k∈Zd and consider the projection
f from R

Zd
to R defined by f(ω) = ω0 and the family of translation operators (T k)k∈Zd

from R
Zd

to R
Zd

defined by (T k(ω))i = ωi+k for any k ∈ Z
d and any ω in R

Zd
. Denote

by B the Borel σ-algebra of R. The random field (f ◦T k)k∈Zd defined on the probability
space (RZd

,BZd
, µ) is stationary with the same law as (εk)k∈Zd, hence, without loss of

generality, one can suppose that (Ω,F ,P) = (RZ
d
,BZ

d
, µ) and εk = f ◦T k. An element

A of F is said to be invariant if T k(A) = A for any k ∈ Z
d. We denote by I the σ-

algebra of all measurable invariant sets. On the lattice Z
d we define the lexicographic

order as follows: if i = (i1, ..., id) and j = (j1, ..., jd) are distinct elements of Z
d, the

notation i <lex j means that either i1 < j1 or for some p in {2, 3, ..., d}, ip < jp and
iq = jq for 1 ≤ q < p. Let the sets {V k

i ; i ∈ Z
d , k ∈ N

∗} be defined as follows:

V 1
i = {j ∈ Z

d ; j <lex i},

and for k ≥ 2

V k
i = V 1

i ∩ {j ∈ Z
d ; |i− j| ≥ k} where |i− j| = max

1≤l≤d
|il − jl|.

For any subset Γ of Z
d define FΓ = σ(εi ; i ∈ Γ) and set

E|k|(εi) = E(εi|FV
|k|
i

), k ∈ V 1
i .

Note that Dedecker [7] established the central limit theorem for any stationary square-
integrable random field (εk)k∈Zd which satisfies the condition

∑

k∈V 1
0

‖εkE|k|(ε0)‖1 <∞. (3)

A real random field (Xk)k∈Zd is said to be a martingale-difference random field if for
any m in Z

d, E(Xm | σ(Xk ; k <lex m ) ) = 0 a.s. The condition (3) is satisfied by
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martingale-difference random fields. Nahapetian and Petrosian [20] defined a large
class of Gibbs random fields (ξk)k∈Zd satisfying the stronger martingale-difference prop-
erty: E( ξm | σ( ξk ; k 6= m ) ) = 0 a.s. for any m in Z

d. Moreover, for these models,
phase transition may occur (see [18],[19]).

Given two sub-σ-algebras U and V, different measures of their dependence have been
considered in the literature. We are interested by one of them. The strong mixing (or
α-mixing) coefficient has been introduced by Rosenblatt [24] and is defined by

α(U ,V) = sup{|P(U ∩ V ) − P(U)P(V )|, U ∈ U , V ∈ V}.

Denote by ♯Γ the cardinality of any subset Γ of Z
d. In the sequel, we shall use the

following non-uniform mixing coefficients defined for any (k, l, n) in (N∗ ∪ {∞})2 × N

by
αk,l(n) = sup {α(FΓ1,FΓ2), ♯Γ1 ≤ k, ♯Γ2 ≤ l, ρ(Γ1,Γ2) ≥ n},

where the distance ρ is defined by ρ(Γ1,Γ2) = min{|i − j|, i ∈ Γ1, j ∈ Γ2}. We say
that the random field (εk)k∈Zd is strongly mixing (or α-mixing) if there exists a pair
(k, l) in (N∗ ∪ {∞})2 such that limn→∞ αk,l(n) = 0.
The condition (3) is satisfied by strongly mixing random fields. For example, one can
construct stationary Gaussian random fields with a sufficiently large polynomial decay
of correlation such that (5) holds ([8], p. 59, Corollary 2).

2 Main results

First, we recall the concept of stability introduced by Rényi [21].

Definition. Let (Xn)n≥0 be a sequence of real random variables and let X be de-
fined on some extension of the underlying probability space (Ω,A,P). Let U be a
sub-σ-algebra of A. Then (Xn)n≥0 is said to converge U-stably to X if for any con-
tinuous bounded function ϕ and any bounded and U-measurable variable Z we have
limn→∞E (ϕ(Xn)Z) = E (ϕ(X)Z).

For any B > 0, we denote by C1(B) the set of real functions f continuously differen-
tiable on [0, 1]d such that

sup
x∈[0,1]d

max
α∈M

|Dα(f)(x)| ≤ B,

where

Dα(f) =
∂α̂f

∂xα1
1 ... ∂x

αd
d

and M = {α = (αi)i ∈ N
d ; α̂ =

d
∑

i=1

αi ≤ 1}.

In the sequel we denote ‖x‖ = max1≤k≤d |xk| for any x = (x1, ..., xd) ∈ [0, 1]d. We make
the following assumptions on the regression function g and the probability kernel K:
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A1) The probability kernel K fulfils
∫

K(u) du = 1 and
∫

K2(u) du < ∞. K is also
symmetric, non-negative, supported by [−1, 1]d and satisfies a Lipschitz condition
|K(x) − K(y)| ≤ r‖x − y‖ for any x, y ∈ [−1, 1]d and some r > 0. In addition
there exists c, C > 0 such that c ≤ K(x) ≤ C for any x ∈ [−1, 1]d.

A2) There exists B > 0 such that g belongs to C1(B).

We consider also the notations:

σ2 =

∫

Rd

K2(u) du and η =
∑

k∈Zd

E(ε0εk|I).

The following proposition (see [9]) gives the convergence of Egn(x) to g(x).

Proposition 1 Assume that the assumption A2) holds then

sup
x∈[0,1]d

sup
g∈C1(B)

|Egn(x) − g(x)| = O [hn] .

By proposition 3 in [7], we know that under condition (3), the random variable η
belongs to L1. Our main result is the following.

Main theorem. If nhd+1
n → ∞ and the condition (3) holds then for any k ∈ N

∗ and
any distinct points x1, ..., xk in [0, 1]d, the sequence

(nhn)d/2







gn(x1) −Egn(x1)
...

gn(xk) −Egn(xk)







L−−−−−→
n→+∞

σ
√
η







τ (1)

...
τ (k)






(I-stably)

where σ2 =
∫

Rd K
2(u) du and (τ (i))1≤i≤k ∼ N (0, Ik) where Ik is the identity matrix.

Moreover, (τ (i))1≤i≤k is independent of η =
∑

k∈Zd E(ε0εk|I).

As a consequence of this theorem, we obtain the following result for strongly mixing
random fields.

Corollary. Let us consider the following assumption

∑

k∈Zd

∫ α1,∞(|k|)

0

Q2
ε0

(u) du <∞ (4)

where Qε0 denotes the cadlag inverse of the function Hε0 : t → P (|ε0| > t). Then (4)
implies (3) and also the main theorem.

Remark. If ε0 is (2 + δ)-integrable for some δ > 0 then the condition

∞
∑

m=1

md−1α
δ/(2+δ)
1,∞ (m) <∞ (5)
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is more restrictive than condition (4).

In order to use the main theorem for establishing confidence intervals, one needs to
estimate η. It is done by the following result established in [7].

Proposition 2 Assume that the condition (3) holds. For any N ∈ N
∗, set GN =

{(i, j) ∈ Λn × Λn ; |i− j| ≤ N}. Let ρn be a sequence of positive integers satisfying:

lim
n→+∞

ρn = +∞ and lim
n→+∞

ρ3d
n E(ε2

0(1 ∧ n−dε2
0) = 0

Then

1

nd
max



1,
∑

(i,j)∈Gρn

εiεj





P−−−−−→
n→+∞

η.

3 Proofs

3.1 Proof of the main theorem

Let x in [0, 1]d and n ≥ 1 be fixed. For any i in Λn, denote

ai(x) = K

(

x− i/n

hn

)

and bi(x) =
ai(x)

√

∑

j∈Λn
a2

j (x)
.

Denote also

vn(x) =

√

(nhn)d

∑

i∈Λn
ai(x)

×
√

∑

i∈Λn
a2

i (x)
∑

i∈Λn
ai(x)

.

Without loss of generality, we consider the case k = 2 and we refer to x1 and x2 as x
and y. Let λ1 and λ2 be two real numbers such that λ2

1 + λ2
2 = 1 and let x, y ∈ [0, 1]d

such that x 6= y. One can notice that

(nhn)d/2

σ
[λ1(gn(x) −Egn(x)) + λ2(gn(y) −Egn(y))] =

∑

i∈Λn

s̃i(x, y) εi

where s̃i(x, y) = (λ1vn(x)bi(x) + λ2vn(y)bi(y))/σ.

Lemma 1 Let x, y ∈ [0, 1]d be fixed. If nhd+1
n → ∞ then

lim
n→+∞

1

(nhn)d

∑

i∈Λn

ai(x)ai(y) = δxy σ
2 (6)

and

lim
n→+∞

1

(nhn)d

∑

i∈Λn

ai(x) = 1 (7)

where δxy equals 1 if x = y and 0 if x 6= y.
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Proof of Lemma 1. In the sequel, we denote ψ(u) = 1
hd

n
K
(

x−u
hn

)

K
(

y−u
hn

)

and In(x, y) =
∫

[0,1]d
ψ(u) du, we have

In(x, y) =
∑

i∈Λn

∫

Ri/n

ψ(u) du =
∑

i∈Λn

n−dψ(ci)

where Ri/n =](i1 − 1)/n, i1/n] × ...×](id − 1)/n, id/n] and λ is the Lebesgue measure
on R

d. Let ϕx(u) = (x− u)/hn, for any v in [0, 1]d, we have

d(K ◦ ϕx)(u)(v) =
−1

hn

d
∑

i=1

vi

d
∑

j=1

∂K

∂uj
(ϕx(u)).

Using the assumptions on the kernel K and noting that

dψ(u) =
1

hd
n

[

d(K ◦ ϕx)(u) ×K(ϕy(u)) + d(K ◦ ϕy)(u) ×K(ϕx(u))

]

we derive that there exists c > 0 such that supu∈[0,1]d ‖dψ(u)‖ ≤ ch
−(d+1)
n . So, it follows

that
∣

∣

∣

∣

1

(nhn)d

∑

i∈Λn

ai(x)ai(y) − In(x, y)

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

i∈Λn

n−d(ψ(i/n) − ψ(ci))

∣

∣

∣

∣

≤ sup
u∈[0,1]d

‖dψ(u)‖
∑

i∈Λn

n−d‖i/n− ci‖∞

=
c

nhd+1
n

−−−−−→
n→+∞

0.

Moreover,

In(x, y) =

∫

ϕx([0,1]d)

K(u)K

(

u+
y − x

hn

)

du.

So, we obtain limn→+∞ In(x, y) = δxy σ
2 and consequently (6) holds. The proof of (7)

follows the same lines. The proof of Lemma 1 is complete. �

Using Lemma 1 and denoting κ2
xy = (λ1 + λ2)

2δxy + 1 − δxy, we derive

lim
n→+∞

∑

i∈Λn

s̃2
i (x, y) = κ2

xy = 1 (since x 6= y).

So, denoting

si(x, y) =
s̃i(x, y)

√

∑

j∈Λn
s̃2

j(x, y)
,

it suffices to prove the convergence I-stably of
∑

i∈Λn
si(x, y) εi to

√
ητ0 where τ0 ∼

N (0, 2). In fact, we are going to adapt the proof of the central limit theorem by
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Dedecker [7]. For any i in Z
d, let us define the tail σ-algebra Fi,−∞ = ∩k∈N∗FV k

i

(we are going to note F−∞ in place of F0,−∞) and consider the following proposition
established in [7].

Proposition The σ-algebra I is included in the P-completion of F−∞.

Let f be a one to one map from [1, N ] ∩ N
∗ to a finite subset of Z

d and (ξi)i∈Zd a real
random field. For all integers k in [1, N ], we denote

Sf(k)(ξ) =
k
∑

i=1

ξf(i) and Sc
f(k)(ξ) =

N
∑

i=k

ξf(i)

with the convention Sf(0)(ξ) = Sc
f(N+1)(ξ) = 0. To describe the set Λn = {1, ..., n}d,

we define the one to one map fn from [1, nd] ∩ N
∗ to Λn by: fn is the unique func-

tion such that for 1 ≤ k < l ≤ nd, f(k) <lex f(l). From now on, we consider two

independent fields (τ
(1)
i )i∈Zd and (τ

(2)
i )i∈Zd of i.i.d. random variables independent of

(εi)i∈Zd and I such that τ
(1)
0 and τ

(2)
0 have the standard normal law N (0, 1). We

introduce the two sequences of fields Xi = si(x, y)εi and γi = si(x, y)τi
√
η where

τi = τ
(1)
i + τ

(2)
i ∼ N (0, 2). Let h be any function from R to R. For 0 ≤ k ≤ l ≤ nd + 1,

we introduce hk,l(X) = h(Sf(k)(X) + Sc
f(l)(γ)). With the above convention we have

that hk,nd+1(X) = h(Sf(k)(X)) and also h0,l(X) = h(Sc
f(l)(γ)). In the sequel, we will

often write hk,l instead of hk,l(X) and si instead of si(x, y). We denote by B4
1(R) the

unit ball of C4
b (R): h belongs to B4

1(R) if and only if it belongs to C4(R) and satisfies
max0≤i≤4 ‖h(i)‖∞ ≤ 1.

3.1.1 Lindeberg’s decomposition

Let Z be a I-measurable random variable bounded by 1. It suffices to prove that
for all h in B4

1(R),

lim
n→+∞

E
(

Zh(Sf(nd)(X))
)

= E
(

Zh
(

(λ1τ
(1)
0 + λ2τ

(2)
0 )

√
η
))

.

We use Lindeberg’s decomposition:

E
(

Z
[

h(Sf(nd)(X)) − h
(

(λ1τ
(1)
0 + λ2τ

(2)
0 )

√
η
)])

=
nd
∑

k=1

E (Z[hk,k+1 − hk−1,k]) .

Now,
hk,k+1 − hk−1,k = hk,k+1 − hk−1,k+1 + hk−1,k+1 − hk−1,k.

Applying Taylor’s formula we get that:

hk,k+1 − hk−1,k+1 = Xf(k)h
′

k−1,k+1 +
1

2
X2

f(k)h
′′

k−1,k+1 +Rk

7



and

hk−1,k+1 − hk−1,k = −γf(k)h
′

k−1,k+1 −
1

2
γ2

f(k)h
′′

k−1,k+1 + rk

where |Rk| ≤ X2
f(k)(1 ∧ |Xf(k)|) and |rk| ≤ γ2

f(k)(1 ∧ |γf(k)|). Since (X, τi)i6=f(k) is
independent of τf(k), it follows that

E
(

Zγf(k)h
′

k−1,k+1

)

= 0 and E
(

Zγ2
f(k)h

′′

k−1,k+1

)

= E
(

Zs2
f(k)ηh

′′

k−1,k+1

)

Hence, we obtain

E
(

Z
[

h(Sn(X)) − h
(

(λ1τ
(1)
0 + λ2τ

(2)
0 )

√
η
)])

=

nd
∑

k=1

E(ZXf(k)h
′

k−1,k+1)

+

nd
∑

k=1

E

(

Z
(

X2
f(k) − s2

f(k)η
) h

′′

k−1,k+1

2

)

+

nd
∑

k=1

E (Rk + rk) .

Arguing as in Rio [23], it is proved that limn→+∞

∑nd

k=1E (|Rk| + |rk|) = 0. Let
us denote CN = [−N,N ]d ∩ Z

d for any positive integer N . If we define ηN =
∑

k∈CN−1
E (ε0εk|I), the upper bound E|η−ηN | ≤ 2

∑

k∈V N
0
E|E (ε0εk|I) | holds. Hence

according to condition (3) and the above proposition, we derive limN→+∞E|η−ηN | = 0
and consequently we have only to show

lim
N→+∞

lim sup
n→+∞

nd
∑

k=1

(

E(ZXf(k)h
′

k−1,k+1) + E

(

Z
(

X2
f(k) − s2

f(k)ηN

) h
′′

k−1,k+1

2

))

= 0.

(8)
3.1.2 First reduction

First, we focus on
∑nd

k=1E
(

ZXf(k)h
′

k−1,k+1

)

. For all N in N
∗ and all integer k in

[1, nd], we define

EN
k = f([1, k] ∩ N

∗) ∩ V N
f(k) and SN

f(k)(X) =
∑

i∈EN
k

Xi.

For any function Ψ from R to R, we define ΨN
k−1,l = Ψ(SN

f(k)(X) + Sc
f(l)(γ)) (we shall

apply this notation to the successive derivatives of the function h). Our aim is to show
that

lim
N→+∞

lim sup
n→+∞

nd
∑

k=1

E
(

Z
(

Xf(k)h
′

k−1,k+1 −Xf(k)

(

Sf(k−1)(X) − SN
f(k)(X)

)

h
′′

k−1,k+1

))

= 0.

(9)
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First, we use the decomposition

Xf(k)h
′

k−1,k+1 = Xf(k)h
′N
k−1,k+1 +Xf(k)

(

h
′

k−1,k+1 − h
′N
k−1,k+1

)

.

We consider a one to one map m from [1, |EN
k |]∩N

∗ to EN
k and such that |m(i)−f(k)| ≤

|m(i−1)−f(k)|. This choice ofm ensures that Sm(i)(X) and Sm(i−1)(X) are F
V

|m(i)−f(k)|
f(k)

-

measurable. The fact that γ is independent of X together with proposition 3 in [7]
imply that

E
(

ZXf(k)h
′ (

Sc
f(k+1)(γ)

)

)

= E
(

h
′ (

Sc
f(k+1)(γ)

)

)

E
(

ZE
(

Xf(k)|F−∞

))

= 0.

Therefore |E
(

ZXf(k)h
′N
k−1,k+1

)

| equals

∣

∣

∣

∣

|EN
k |
∑

i=1

E

(

ZXf(k)

[

h
′ (

Sm(i)(X) + Sc
f(k+1)(γ)

)

− h
′ (

Sm(i−1)(X) + Sc
f(k+1)(γ)

)

]) ∣

∣

∣

∣

.

Since Sm(i)(X) and Sm(i−1)(X) are F
V

|m(i)−f(k)|
f(k)

-measurable, we can take the conditional

expectation of Xf(k) with respect to F
V

|m(i)−f(k)|
f(k)

in the right hand side of the above

equation. On the other hand the function h
′
is 1-Lipschitz, hence

|h′ (

Sm(i)(X) + Sc
f(k+1)(γ)

)

− h
′ (

Sm(i−1)(X) + Sc
f(k+1)(γ)

)

| ≤ |Xm(i)|.

Consequently, the term
∣

∣

∣

∣

E

(

ZXf(k)

[

h
′ (

Sm(i)(X) + Sc
f(k+1)(γ)

)

− h
′ (

Sm(i−1)(X) + Sc
f(k+1)(γ)

)

]) ∣

∣

∣

∣

is bounded by
E|Xm(i)E|m(i)−f(k)|

(

Xf(k)

)

|
and

|E
(

ZXf(k)h
′N
k−1,k+1

)

| ≤
|EN

k |
∑

i=1

E|Xm(i)E|m(i)−f(k)|(Xf(k))|.

Hence,

∣

∣

∣

∣

nd
∑

k=1

E
(

ZXf(k)h
′N
k−1,k+1

)

∣

∣

∣

∣

≤
nd
∑

k=1

|sf(k)|
|EN

k |
∑

i=1

|sm(i)|E|εm(i)E|m(i)−f(k)|(εf(k))|

≤ A
∑

j∈V N
0

‖εjE|j|(ε0)‖1 < +∞ (A ∈ R
∗
+)

where (by Lemma 1) we used the fact that

sup
i∈Λn

|si| = O

(

1

(nhn)d/2

)

(10)
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and
∑

i∈Λn

|si| = O
(

(nhn)d/2
)

. (11)

Since (3) is satisfied, this last term is as small as we wish by choosing N large enough.
Applying again Taylor’s formula, it remains to consider

Xf(k)(h
′

k−1,k+1 − h
′N
k−1,k+1) = Xf(k)(Sf(k−1)(X) − SN

f(k)(X))h
′′

k−1,k+1 +R
′

k,

where |R′

k| ≤ 2|Xf(k)(Sf(k−1)(X) − SN
f(k)(X))(1 ∧ |Sf(k−1)(X) − SN

f(k)(X)|)|. It follows
that

nd
∑

k=1

E|R′

k| ≤ 2AE

(

|ε0|
(

∑

i∈ΛN

|εi|
)(

1 ∧
∑

i∈ΛN

|si||εi|
))

(A ∈ R
∗
+).

Keeping in mind that si → 0 as n → ∞ and applying the dominated convergence
theorem, this last term converges to zero as n tends to infinity and (9) follows.

3.1.3 The second order terms

It remains to control

W1 = E



Z
nd
∑

k=1

h
′′

k−1,k+1

(

X2
f(k)

2
+Xf(k)

(

Sf(k−1)(X) − SN
f(k)(X)

)

−
s2

f(k)ηN

2

)



 .

(12)
We consider the following sets:

ΛN
n = {i ∈ Λn ; d(i, ∂Λn) ≥ N} and IN

n = {1 ≤ i ≤ nd ; f(i) ∈ ΛN
n },

and the function Ψ from R
Z

d
to R such that

Ψ(ε) = ε2
0 +

∑

i∈V 1
0 ∩CN−1

2ε0εi.

For k in [1, nd], we set DN
k = ηN − Ψ ◦ T f(k)(ε). By definition of Ψ and of the set IN

n ,
we have for any k in IN

n

Ψ ◦ T f(k)(ε) = ε2
f(k) + 2εf(k)(Sf(k−1)(ε) − SN

f(k)(ε)).

Therefore for k in IN
n

s2
f(k)D

N
k = s2

f(k)ηN −X2
f(k) − 2Xf(k)(Sf(k−1)(X) − SN

f(k)(X)).

Since limn→+∞ n−d|IN
n | = 1, it remains to prove that

lim
N→+∞

lim sup
n→+∞

E



Z
nd
∑

k=1

s2
f(k)h

′′

k−1,k+1D
N
k



 = 0. (13)
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3.1.4 Conditional expectation with respect to the tail σ-algebra

Now, we are going to replace DN
k by E

(

DN
k |Ff(k),−∞

)

. We introduce the expression

HN
n =

nd
∑

k=1

E
(

s2
f(k)Zh

′′

k−1,k+1[Ψ ◦ T f(k)(ε) − E(Ψ ◦ T f(k)(ε)|Ff(k),−∞)]
)

.

For sake of brevity, we have written h
′′

k−1,k+1 instead of h
′′

k−1,k+1(X). Using the station-
arity of the field we get that

HN
n =

nd
∑

k=1

E
(

s2
f(k)Z(h

′′

k−1,k+1 ◦ T−f(k))(X)[Ψ(ε) − E(Ψ(ε)|F−∞)]
)

.

For any positive integer p, we decompose HN
n in two parts

HN
n =

nd
∑

k=1

J1
k(p) +

nd
∑

k=1

J2
k(p),

where

J1
k (p) = E

(

s2
f(k)Z(h

′′p
k−1,k+1 ◦ T−f(k))[Ψ(ε) − E(Ψ(ε)|F−∞)]

)

and J2
k (p) equals to

E
(

s2
f(k)Z[h

′′

k−1,k+1 ◦ T−f(k) − h
′′p
k−1,k+1 ◦ T−f(k)](X)[Ψ(ε) − E(Ψ(ε)|F−∞)]

)

.

From the definition of h
′′p
k−1,k+1, we infer that the variable h

′′p
k−1,k+1 ◦ T−f(k)(X) is FV p

0
-

measurable. Therefore, we can take the conditional expectation of Ψ(ε)−E(Ψ(ε)|F−∞)
with respect to FV p

0
in the expression of J1

k (p). Now, the backward martingale limit
theorem implies that

lim
p→+∞

E|E(Ψ(ε)|FV p
0
) − E(Ψ(ε)|F−∞)| = 0

and consequently

lim
p→+∞

lim sup
n→+∞

∣

∣

∣

∣

nd
∑

k=1

J1
k(p)

∣

∣

∣

∣

= 0.

On the other hand

∣

∣

∣

∣

nd
∑

k=1

J2
k (p)

∣

∣

∣

∣

≤ E

[



2 ∧
∑

|i|<p

s2
f(i)|εi|



 |Ψ(ε) − E(Ψ(ε)|F−∞)|
]

.
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Hence, applying the dominated convergence theorem, we conclude that HN
n tends to

zero as n tends to infinity. It remains to consider

W2 = E



Z
nd
∑

k=1

h
′′

k−1,k+1s
2
f(k)E(DN

k |Ff(k),−∞)



 .

3.1.5 Truncation

For any integer k in [1, nd] and any M in R
+ we introduce the two sets

BN
k (M) = E(DN

k |Ff(k),−∞) 11|ηN−E(Ψ◦T f(k)(ε)|Ff(k),−∞)|≤M

and
B

N

k (M) = E(DN
k |Ff(k),−∞) −BN

k (M).

The stationarity of the field ensures that E|BN

k (M)| = E|BN

1 (M)| for any k in [1, nd].

Now, applying the dominated convergence theorem, we have limM→+∞E|BN

1 (M)| = 0.
It follows that

lim
M→+∞

nd
∑

k=1

E
(

h
′′

k−1,k+1s
2
f(k)B

N

k (M)
)

= 0.

Therefore instead of W2 it remains to consider

W3 = E



Z

nd
∑

k=1

h
′′

k−1,k+1s
2
f(k)B

N
k (M)



 .

3.1.6 An ergodic lemma

The next result is the central point of the proof.

Lemma 2 For all M in R
+, we introduce

βN (M) = E
(

[ηN −E (Ψ(ε)|F−∞)] 11|ηN−E(Ψ(ε)|F−∞)|≤M

∣

∣I
)

.

Then

lim
M→+∞

βN(M) = 0 a.s. and lim
n→+∞

E

∣

∣

∣

∣

βN(M) −
nd
∑

k=1

s2
f(k)B

N
k (M)

∣

∣

∣

∣

= 0.

Proof of Lemma 2. Let

u(ε) = [ηN − E (Ψ(ε)|F−∞)] 11|ηN−E(Ψ(ε)|F−∞)|≤M .

Using the function u, we write βN (M) = E(u(ε)|I). The fact that βN(M) tends to
zero as M tends to infinity follows from the dominated convergence theorem. In fact
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limM→∞ u(ε) = ηN −E(Ψ(ε)|F−∞) and u(ε) is bounded by |ηN −E(Ψ(ε)|F−∞)| which
belongs to L1. This implies that

lim
M→∞

βN (M) = E
(

ηN − E(Ψ(ε)|F−∞)
∣

∣I
)

a.s.

Since I is included in the P-completion of F−∞ (see the above proposition) and keeping
in mind that ηN is I-measurable, it follows that

lim
M→∞

βN (M) = ηN − E(Ψ(ε)|I) a.s.

By stationarity of the random field, we know that E(ε0εk|I) = E(ε0ε−k|I) which
implies that E(Ψ(ε)|I) = ηN and the result follows.
We are going to prove the second point of Lemma 2. Noting that Bk(M) = u◦T f(k)(ε),
we have

nd
∑

k=1

s2
f(k)B

N
k (M) =

∑

i∈Λn

s2
i u ◦ T i(ε).

Finally, the proof of lemma 2 is completed by the following lemma which the proof is
left to the reader.

Lemma 3

lim
n→∞

∥

∥

∥

∥

∑

i∈Λn

s2
i u ◦ T i(ε) − E(u(ε)|I)

∥

∥

∥

∥

2

= 0.

As a direct application of lemma 2, we see that

∣

∣

∣

∣

E



Z
nd
∑

k=1

h
′′

k−1,k+1s
2
f(k)βN(M)





∣

∣

∣

∣

≤ E|βN(M)|

is as small as we wish by choosing M large enough. So instead of W3 we consider

W4 = E



Z
nd
∑

k=1

h
′′

k−1,k+1s
2
f(k)[B

N
k (M) − βN(M)]



 .

3.1.7 Abel transformation

In order to control W4, we use the Abel transformation:

W4 = E

[ nd
∑

k=1

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN (M)]

)

Z(h
′′

k−1,k+1 − h
′′

k,k+2)

]

+ E



Zh
′′

nd,nd+2

nd
∑

k=1

s2
f(k)[B

N
k (M) − βN(M)]



 .
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Now

∣

∣

∣

∣

E



Zh
′′

nd,nd+2

nd
∑

k=1

s2
f(k)[B

N
k (M) − βN(M)]





∣

∣

∣

∣

≤ E

∣

∣

∣

∣

βN(M) −
nd
∑

k=1

s2
f(k)B

N
k (M)

∣

∣

∣

∣

.

Then applying lemma 2, we obtain

lim
n→+∞

∣

∣

∣

∣

E



Zh
′′

nd,nd+2

nd
∑

k=1

s2
f(k)[B

N
k (M) − βN (M)]





∣

∣

∣

∣

= 0.

Therefore it remains to prove that for any positive integer N and any positive real M ,

lim
n→+∞

E

[ nd
∑

k=1

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN(M)]

)

Z(h
′′

k−1,k+1 − h
′′

k,k+2)

]

= 0.

3.1.8 Last reductions

We are going to finish the proof. We use the same decomposition as before:

h
′′

k,k+2 − h
′′

k−1,k+1 = h
′′

k,k+2 − h
′′

k,k+1 + h
′′

k,k+1 − h
′′

k−1,k+1.

Applying Taylor’s formula, we have h
′′

k,k+2 − h
′′

k,k+1 = −γf(k+1)h
′′′

k,k+2 + tk and h
′′

k,k+1 −
h

′′

k−1,k+1 = Xf(k)h
′′′

k−1,k+1 + Tk where |tk| ≤ γ2
f(k+1) and |Tk| ≤ X2

f(k). To examine the
remainder terms, we consider:

E





nd
∑

k=1

s2
f(k)

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN(M)]

)

Zε2
f(k)



 .

The definition of BN
i (M) and of βN(M) enables us to write for all integer k in [1, nd],

k
∑

i=1

s2
f(i)|BN

i (M) − βN(M)| ≤ 2M.

Therefore

E

∣

∣

∣

∣

nd
∑

k=1

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βn(M)]

)

s2
f(k)Zε

2
f(k) 11|εf(k)|>K

∣

∣

∣

∣

≤ 2ME
(

ε2
0 11|ε0|>K

)

and applying the dominated convergence theorem this last term is as small as we wish
by choosing K large enough. Now, for all K in R

+, Lemma 2 ensures that

lim
n→+∞

E





nd
∑

k=1

s2
f(k)

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN (M)]

)

Zε2
f(k) 11|εf(k)|≤K



 = 0.
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So, we have proved that

lim
n→+∞

E





nd
∑

k=1

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN (M)]

)

ZTk



 = 0.

In the same way, we obtain that

lim
n→+∞

E





nd
∑

k=1

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN (M)]

)

Ztk



 = 0.

Moreover since (ε, (τi)i6=f(k+1)) is independent of τf(k+1) we have

E

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN(M)]γf(k+1)Zh

′′′

k,k+2

)

= 0.

Finally, it remains to consider

W5 = E

[ nd
∑

k=1

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN (M)]

)

ZXf(k)h
′′′

k−1,k+1

]

.

Let p be a fixed positive integer. Since h
′′′

is 1-Lipschitz, we have the upper bound
|h′′′

k−1,k+1 − h
′′′p
k−1,k+1| ≤ |Sf(k−1)(X) − Sp

f(k)(X)|. Now, we can apply the same trunca-
tion argument as before: first we choose the level of our truncation by applying the
dominated convergence theorem and then we use Lemma 2. So, it follows that

lim
n→+∞

E

[ nd
∑

k=1

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN(M)]

)

ZXf(k)(h
′′′

k−1,k+1 − h
′′′p
k−1,k+1)

]

= 0.

Therefore, to prove our theorem it is enough to show that

lim
p→+∞

lim sup
n→+∞

E

[ nd
∑

k=1

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN (M)]

)

ZXf(k)h
′′′p
k−1,k+1

]

= 0. (14)

We consider a one to one map m from [1, |Ep
k|]∩N

∗ to Ep
k and such that |m(i)−f(k)| ≤

|m(i− 1) − f(k)|. Now, we use the same argument as before:

h
′′′p
k−1,k+1 − h

′′′

(Sc
f(k)(γ)) =

|Ep
k |

∑

i=1

h
′′′

(Sm(i)(X) + Sc
f(k)(γ)) − h

′′′

(Sm(i−1)(X) + Sc
f(k)(γ))

≤
|Ep

k |
∑

i=1

|Xm(i)|.
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Here recall that BN
i (M) is Ff(i),−∞-measurable and βN (M) is I-measurable. We have

E(εf(k)|I) = 0, E(εf(k)|Ff(k),−∞) = 0 and E(εf(k)|Ff(i),−∞) = 0 for any positive integer
i such that i < k. Consequently, for any positive integer i such that i ≤ k, we have

E
(

s2
f(i)[B

N
i (M) − βN(M)]Zsf(k)εf(k)h

′′′

(Sc
f(k)(γ))

)

= 0.

Therefore using the conditional expectation, we find

E

[ nd
∑

k=1

(

k
∑

i=1

s2
f(i)[B

N
i (M) − βN(M)]

)

ZXf(k)h
′′′p
k−1,k+1

]

≤ 2M

nd
∑

k=1

|sf(k)|
|Ep

k |
∑

i=1

|sm(i)|E|εm(i)E|m(i)−f(k)|(εf(k))|

= 2M
nd
∑

k=1

|sf(k)|
∑

j∈V p
0

|sj+f(k)|E|εjE|j|(ε0)|

≤ 2AM
∑

j∈V p
0

E|εjE|j|(ε0)| (A ∈ R
∗
+) by (10) and (11).

Since (3) is realised the last term is as small as we wish by choosing p large enough,
hence W4 is handled. Finally, the main theorem is proved. �

3.2 Proof of the corollary

As observed in [7], the proof of the corollary is a direct consequence of Theorem 1.1 in
Rio [22]. In fact, for any k in V 1

0 , we have

E|εkE|k|(ε0)| ≤ 4

∫ α1,∞(|k|)

0

Q2
ε0

(u) du.

The proof of the corollary is complete. �

4 Application

The direct consequence of our result is that it allows the construction of statistical
tests able to quantify the estimation error. For this purpose, we show the construction
of such a test that can be used in image denoising [10, 15, 27]. In the context given by
the model (1), let us consider the following situation : a true image g is affected by a
correlated additive noise ǫ, that gives Y for the observed image.

For the original function two images were considered. The first one is a simulated
image, a two-dimensional sinusoide, whereas the second one is the very well known Lena
image. The first image since it represents a continuous function, perfectly matches the
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hypothesis of our results. The second one represents a piece-wise continuous function,
so the hypothesis of our result are not completely verified, still this is a much more
realistics situation.

These images are gray levels images with pixels values in the interval [0, 255]. The
size of an image is 256 × 256 pixels. The correlated noise we consider is a Gaussian
field (εk)k∈Z2 built using an exponential covariance function

C(k) = E(ε0εk) = Cst × exp{−|k|
a
}.

The choice of such random field ensures the validity of the projective criterion (3)
(see [8], p.59, Corollary 2). There exist several methods for simulating such a random
field, here we have opted for the spectral method [14]. In order to obtain an important
visual effect of how the noise affects the original image Cst was set to 200 and a = 1.
The noisy image is obtained by adding pixel by pixel the original image to the simulated
noise. The estimator of the original image is computed using the Epanechnikov kernel

K(x) =
3

8
(1 − |x|2)I{|x|≤1}, x = (x1, x2) ∈ R

2.

In order to compute the expectation of the estimated function, several realisation
of the noisy image are needed. Here we have considered 50 such images, constructed
by adding the original Lena image with a noise realisation. Using (2), for each noisy
image, an estimate gn of the original function g was computed using the kernel K
defined above. The expectation E(gn) is computed by just taking the pixel by pixel
arithmetical means corresponding to the images previously restored.

Clearly, it is now possible to estimate the difference gn − E(gn). Following our
theoretical result, the normalised square of this difference follows a χ2 distribution
with one degree of freedom. Since this quantity is observable, p-values pixel by pixel
can be computed.

The obtained results for the synthetic and real image restoration are shown in Fig-
ure 1 and 2, respectively. In both situation, it can be noticed that in the “dirty”
pictures, spots are formed, due to the noise correlation. The expectations of the esti-
mated original images exhibit almost no such spots. Furthermore, the visual quality
of the restored images is close to the originals. A more quantitative evaluation of this
result is given by the image of p-values of the proposed statistical test given in. The
light-coloured pixels represent p-values close to 1, whereas the dark-coloured pixels in-
dicate values close to 0. For the real image case, we have counted 83% of the pixels for
which we have obtained a p-value higher than 0.01. This ratio is quite a reliable indi-
cator concerning the restored image. Together with the visual analysis of the results,
it provides a detailed description of the obtained result. We conclude that, under these
considerations, the theoretical results developed in this paper may be used as a basis
for the development of practical tools in image analysis.
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a) b)

c) d)

Figure 1: Results of the image restoration procedure : a) original sinusoide image,
b) realisation of a noisy image, c) expectation of the restored images, d) obtained
p−values as a gray level image (white pixels represent values close to 1, whereas black
pixels indicate values close to 0).

a) b)

c) d)

Figure 2: Results of the image restoration procedure : a) original Lena image, b)
realisation of a noisy image, c) expectation of the restored images, d) obtained p−values
as a gray level image (white pixels represent values close to 1, whereas black pixels
indicate values close to 0).
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[21] A. Rényi. On stable sequences of events. Sankhya Ser. A, 25:189–206, 1963.

[22] E. Rio. Covariance inequalities for strongly mixing processes. Ann. Inst. H.
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