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ON THE DISCRETIZATION OF BACKWARD DOUBLY STOCHASTIC
DIFFERENTIAL EQUATIONS

OMAR ABOURA

ABSTRACT. In this paper, we are dealing with the approximation of the process (X¢,Y:, Z¢)
solution to the backward doubly stochastic differential equation (BDSDE)

stgc—l—/ b(XT)dr—l—/ o(X,)dW,,
0 0

T T — T
Ys :d)(XT)—I—/ f(r,XT,YT,ZT)dr—I—/ g(r,XT,YT,ZT)dBT—/ ZrdW,..
s S s

After proving the L2-regularity of Z, we use the Euler scheme to discretize X and the Zhang
approach in order to give a discretization scheme of the process (Y, Z).

1. INTRODUCTION

Since the pioneering work of E. Pardoux and S. Peng [PP93], backward stochastic differential
equations (BSDEs) have been intensively studied during the two last decades. Indeed, this notion
has been a very useful tool to study problems in many areas, such as mathematical finance,
stochastic control, partial differential equations; see e.g. [MY99] where many applications are
described. Discretization schemes for BSDEs have been introduced and studied by several authors.
The first papers on this topic are that of V.Bally [Ba97] and D.Chevance [Ch97]. In his thesis,
Zhang made an interesting contribution which was the starting point of intense study among which
the works of B. Bouchard and N.Touzi [BT04], E.Gobet, J.P. Lemor and X. Warin[[GLWO0J,... The
notion of BSDE has been generalized by E. Pardoux and S. Peng [ to that of Backward
Doubly Stochastic Differential Equation (BDSDE) as follows. Let (£2, F,P) be a probability space,
T denote some fixed terminal time which will be used throughout the paper, (W;) <, and
(Bt)g<;<r be two independent standard Brownian motions defined on (£2, F,P) and with values

in R?, and R respectively. On this space we will deal with two families of o-algebras:
Foi=FONFELVN, Fo=FNFEVN, M= FY Vv FEVN, (1.1)

where ffT =0 (B, — Bt <r <T), ]—}m =0 (W, — Wy;0 <r <t)and N denotes the class of P

null sets. We remark that (F;) is a filtration, (H) is a decreasing family of o-albegras, while (F;) is
neither increasing nor decreasing. Given an initial condition = € R?, let (X;) be the d-dimensional
diffusion process defined by

Xt::c—i-/tb(XT)dr—i—/So(Xr)dWT. (1.2)
0 0

Let & € L?(Q) be an R?valued, Fr-measurable random variable, f and g be regular enough
coefficients; consider the BDSDE defined as follows:

T
Y, = s+/ F (XY, Z,) dr

T T
+/ g(r,XT,YT,ZT)d‘ET—/ Z,dW,. (1.3)
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2 OMAR ABOURA

In this equation, dW is the forward integral and dB is the backward integral (we send the reader
to [NP8J for more details on backward integration). A solution to ([L.J) is a pair of real-valued
process (Y;, Z;), such that X, and Y; are (F;) for every ¢ € [0, T}, such that ([L.J) is satisfied and

T

E( sup |YS|2) +IE/ |Z,|2ds < +oo. (1.4)
0<s<T 0

In [PP94 Pardoux and Peng have proved that under some Lipschitz property on f and g which

will be stated more precisely in section f], ([[.3) has a unique solution (Y, 2).

The aim of this paper is to study the discretization of a Backward Doubly Stochastic Differential
Equation For the sake of simplicity, as in Zhang’s paper [£04], we assume that Y and Z are
real-valued processes. The extension to higher dimension is cumbersome and without theoretical
problems. This discretization scheme of (Y, Z) is motivated by the link between ([L3) and the
following backward stochastic partial differential equation when £ = ¢(Xr) for a regular function

o:
u(t,z) = oz)+ /tT (Cu(s,x) + f(s,z,u(s,x), Vu(s,x)o(z)) )ds

T «—
+ [ 9(s.,u(s,0), Vuls.a)o(a) dB.. (15)
t
where L is the differential operator defined by:
1< 02 d )
Lu(t,z) = B ”2::1 (00%); (I)mu(t, ) + ; bi(ﬂf)a—%u(tﬁ)-

The paper is organized as follows: first we prove the L2-regularity of Z in section E This a crucial
step in order to the scheme using Zhang’s method, which is done in section . Finally, a numerical
scheme is described in the last section. To ease notations, we set 0, := (X,.,Y;., Z,.) for r € [0, T].
As usual, we denote by C), a constant which depends on some parameter p, and which can change
from on line to the next one. Finally, for some function h(t, x,y, z) defined on [0, T] x R?x R x R, we
let Oyh(t,x,y,z) (resp. O.h(t,x,y, z)) the partial derivatives of h with respect to the real variable
y (resp. z), while 0,h(t, z,y, z) will denote the vector (9,,h(t,z,y,2),i=1,---,d).

2. REGULARITY PROPERTIES

In this section we give some regularity properties of the process X,Y and Z.

The following assumptions which ensure existence and uniqueness of the solution will be in
force throughout the paper. For every integer n > 1, let M?([0,7],R™) denote the set of R™-
valued jointly measurable processes (¢, t € [0,T]) such that ¢; is Fy-measurable for almost every

t and EfOT ot |2dt < +o0.

Assumption 1 (for the forward process X). The maps b : R? — R? and o : R? — R4 gre of
class C3.

Assumption 2 (for the backward process (Y,Z)). Let f : Q@ x [0,T] x R¥ x R xR — R, g :
Qx[0,T]xRYxR xR — R be such that f and g are jointly measurable, for every (z,y,z) € R4+2,
f(,x,y,2) and g(.,z,y, z) belong to M?([0,T],R), and such that:

(i) There exist some nonnegative constants Ly, Ly and a constant o € [0, 1) such that for every
weQ, t,t' €0,T)], z,2’ €RY, y,y €R and 2,2/ €R

F oy )= f (g O < Ly (=t + o=+ ly—y 12— =)

IN

l9(ta,y,2) =g (2 2N < Ly (b= 1+ Jo =Py /) +alz - 2P,

(ii) For all s € [0,T) f(s,.) and g(s,.) are of class C® with bounded partial derivatives up to
order 3, uniformly in time.
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(iii) For a function h(t,x,y,z), set h(t,0) := h(t,0,0,0). Then

sup |f(r,0)|+ sup [g(r,0)| < oo.
re(0,T] re0,T]

Assumption 3. Suppose that & := ¢(Xr) for some function ¢ : R? — R of class C? and that for
every w € €,

sup |8Zg (tvxvya Z)| < 1

t,x,y,z
2.1. Some classical properties of the forward process X. We at first recall without proof the
following well known results on diffusion processes. Define the R?*?-valued process (VX¢)y<;cr
by: o

9
VX, = (—XZ, =1, ,d).
¢ al'j trhJ

Then VX, is an invertible d x d matrix, solution to a linear stochastic differential equation with
coeflicients depending on X;. Furthermore, the assumptions on the coefficients ¢ and b yield the
following classical result:

Proposition 2.1. (i) For all p > 1, there exist a constant Cp, > 0 such that for all t,s € [0,T]:

2% -1 —1|?P
E|X, - X,/* +E|(VX,) " - (VX)) ‘ <Ot — s

(11) For all p € [1,400], there exist a constant Cp, > 0 such that

P
IE( sup |X¢|*” + sup ‘(VXt) 1} )ng.
te[0,T] te[0,T]

2.2. Time increments of Y and L?-regularity of Z. The following lemma provides upper
bounds for time increments of Y.

Lemma 2.2. Set & = ¢(X1) for some function ¢ : R? — R be of class Cl. Then we have
(i) For all p > 2, there exist a constant Cp, > 0 depending on T such that for all t,s € [0,T]

E|Y, — Y,|" < C,|t —s|%. (2.1)
(i1) For all p > 1, there exist a constant C > 0 such that
sup E|Z, | <C. (2.2)
0<r<T

Notice that the inequality (R.J) is different from equation (2.11) in [Z04].

Proof. We at first prove (ii). Let (VY}),<,«r = (02Y7)o<i<7 denote the real-valued process defined
by differentiation of ¥ as function of the initial condition z of the diffusion process (X;). We recall
the following representation of Z (see [PP94] Proposition 2.3):

Z = VY, (VX)) o (X)), (2.3)

where (VYy, VZ,) satisfies the linear BDSDE with the forward process (X, VX;) and the evolution
equation:

T
VY = (X0) VX1 + [ (£0:0,)VX, 4 £,(r.0,)9Y; + £.0:0,)VZ, ) dr

T T
n / (gm(T, 0,)VX, + g,(r,0,)VY; + g.(r, @T)VZT)d(ET - / VZ,dW,.  (2.4)
t t
By E.Pardoux and S.Peng [ page 217, we deduce
IE( sup |VY,g|p) < 0. (2.5)
0<t<T

Then Hoélder’s inequality and Proposition yield

1
3

B\ < (BI9%/")’ (E}(VX»‘I}GP)% (Bl (xf*)
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This concludes the proof of (ii).
(i) Suppose that s < ¢, then using ([L.3), we deduce that

P

t p t
|}/t_}/5|p < O;D / f(r7@7")_f(TaXTa}/TaO)dT +O;D / f(T,X,,«,}/,,«,O)dT

t
/ ZrdW,

Recall that 7, and H; have been defined in (D) The process (fot Z,dW,. 0 <t<T)isa (ﬁt)—

martingale, while the process ( ftTg(r, @T)d}_?T,O < t < T) is a backward martingale for (H;).
Hence, the Burkholder-Davies-Gundy and Hélder inequalities yield
t
/ | Z,.| dr

t z t 3
+C,E </ |g(r,®r)|2dr> +O,E </ |ZT|2dr) . (2.6)

Assumption [ (i) and (ii), Proposition B.1] and ([L4) yield

t » t 5 t 5

B [ lotreorar)’ < e ( [ oo - gm0l ar) +GE( [ o oar)
. t 5 t 5
<Cylt— % +C,E (/ (|XT|2+|YT|2)dr> +cpE</ |ZT|2dr>

t 5
<Clt— s/t +C,E (/ |ZT|2dr> . 2.7)

Similarly,

P
+Cp

p

t —
+C, / g(r,0,)dB,

t P
E|Y; - Ysf < Op|t—s|P*1E/ |f (r, X, Y, 0)|P dr + C,E

B [ 150500 ar < GE [0 ar 4GB [ 1 (%0, %,,0) £ (0P dr
ngE/t |f (r,0)[" dr + C, /tE(|XT|p + Y, ") dr < Cp |t — s|. (2.8)
Hence, the inequaditiesS (R.6)-(R.g) imply S
E|Y; — Y." < Cylt — 5|2 + C,E (/t |ZT|2dr>§

Using Hélder’s inequality and (R.2) we conclude the proof of (R.1)). O

Since equation (R.4) proves that the pair (VY,VZ) is the solution of a BDSDE with forward
process (X, VX) € LP for every p € [1,+o0[, we deduce from (@) that for every function ¢ :
R? — R of class CZ, we have for 0 < s < ¢ < T and p € [1,+o0]:

E|VY; — VY.|P < C,|t — 5|, (2.9)

for some constant C), > 0. We now establish some control of time increments of the process Z,
following the idea of J.Zhang [£04].

Theorem 2.3 (L2-regularity of Z). There exists a non negative constant C such that for every
subdivision ™ = {to =0 < t1--- < t, = T} with mesh |r|, one has
ti
3 E/ (]Zt—Zti71\2+|Zt—Zti|2) dt < Clrl. (2.10)
1<i<n Jti-1
Proof. Using the representation of Z as a product, we deduce @),
Zy— 7y, = VY, (VX)) o (X)) — VY, (VX)) o (Xy,).
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Then,
2 2 —1)? 2
%= Zu <319Y, - VY, | (VX) | e (X))
2 -1 —1]? 2
+3[VYL[T|[(VXy) ™ = (VX4) o (X))
2 —1)? 2
+ 39V |(9X0) 7 o (X0) = 0 (X))
To conclude the proof, we use Holder’s inequality, Proposition and (@) O

Theorem E immediatly yields the following
Corollary 2.4.

tit1
> IE/ |Z, — Zy,|*dr < Cln|.

1<i<n—1 Yti-1

3. THE DISCRETIZATION OF (X,Y, Z)

3.1. Discretization of the process X: The Euler scheme. We briefly recall the Euler scheme
and send the reader to [KP9J| for more details. Let m := {t{c = 0 < t; < ... < t, = T} be a
subdivision of [0,T]. We define the process X[, called the Euler scheme, by

t t
XZT:X;’)—l-/ b(X;’ﬂ)ds—l—/ (X7 )dWs,

to to

where s, := max{t; < s}. The following result is well known:

Proposition 3.1. There exists a constant C > 0 such that for every subdivision m,

t;
maxE | X, - X7|* < Clnl, E/ X, — X7 |* dr < Ol
ti—1
3.2. Discretization of the process (Y, Z): The step process. In this section, we construct
an approximation of (Y, Z) using Zhang’s approach.
Let m:tg =0 < ... < t, =T be any subdivision on [0,T]. Set G; = G for t;_; <t < t;, where we
let
cticn ST <T) by <t <ty

and define the (G;)-adapted process (Y;’T, zZ7 ) o recursively (in a backward manner), as follows:
Set Y" = ¢(X[ ), Z7' =05 fori =n—1,...,0, let

1 1 tit1
700 = E Z7d .
ti Aty (/tl rar ftl) ’

At =t;—ti_1,AB,, = B, — B,,_,, 07" := (Xg;, o Zgyl) ,

Gii=o(W,—=Wp;0<r<t)Vo (B, — B
<t<T

and for i =n, ..., 1, let

t;
VS =Y+ f (ti,@z_’l) Ati+g (t @ff) AB;, — / ZTdW,, Vte[tint).  (3.1)
t

Note that the equation (B.])) is not a BDSDE in the sense of [PP94]; however, we have the following:

Proposition 3.2. For every i = 1,...,n, there exists a process (Y™, Z[ )icjt,_, +,) adapted to the
filtration (G, t;—1 <t < t;), such that @) holds. Furthermore, Y,T € Fy,.

Proof. The proof is similar to that in [ page 212 and relies on the martingale representation
theorem. Fix an integer ¢ > 0 and suppose that the processes (Y;7) and (Z]) have been defined for
t > t;, (G¢)-adapted, and that Y;T is F;, -measurable for k = i,--- ,n. We denote by (M})
the process defined by

M =B (Y7 + f (4,07") Ati+ g (1, 07") AB,,

tE[ti—1,ti]

QZ) , tion <<t
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By the martingale representation theorem, there exists a (gg’, tio1 <t< ti)—adapted and square
integrable process (Nti,ti_l <t< ti) such that for ¢;,_1 < t < t;, Mtl = Mfii1 + f:-71 NsidWs.
Therefore, M{ = M} — ftti NidW,. Clearly, G contains F,, X[ is F}¥ C F;, measurable and

@Z’l is F;,-measurable; hence
M = Y7+ f (4,07") Aty + g (1, 07") AB,.
Furthermore, note that gg’if . = Fti_y, so that Mtzf , is Fy,-measurable. This completes the proof
by setting: Y7 = M}, ZF = N} for t;_1 <t < t;. O
Before stating the main theorem of this section, we introduce the following

Definition 3.3. Let k > 1 be a constant. The subdivision 7 is said to be k-uniform if KAt; > ||
for every i € {1,...,n} .

The main example of a k-uniform subdivision is a uniform subdivision (i.e. for all i, At; = |x])
where x = 1. The following lemma gives an upper estimate of Z;, — ZZ:"l.
Lemma 3.4. For any i =0,....,n — 1, any k-uniform subdivision © and 3 > 0 we have:
tit1

2 tit1
<wep) [ iz -zPaanes) [ 12~ 2

ti ti

ALE |2, - 25 2 dr.

Proof. For any i =0,...,n — 1, Z;, is F;,-measurable, and At; < || < kAt;y1; thus

2 1 tit1
Aty t

2
ALE |2, - 25

At; ton ’
(Atiy1) ti
K tit1 2 tit1 5
< E / (Zs, — Z7) dr SKE/ |Ze, — ZT | dr.
Atprl ti ! t; '

where the last step is deduced from Schwarz’s inequality. Using the usual estimate |Z;, — Z7|* <
A+8)ZF = Z > + (1 + 71| 2, — Z, ], we conclude the proof. O

The following theorem is the main result of this section. It proves that as |7| — 0, (Y™, Z7)
converges to (Y, Z).

Theorem 3.5. Let 7 be a k-uniform subdivision with sufficiently small mesh ||, o < %, let ¢ € C?
and & = ¢(Xr). Then we have

T
max E|Yti—Ytﬂ2+E/ \Z, — ZT > dr < C|x|. (3.2)
0

0<i<n

Proof. Set I, = E|p(Xr1) — ¢(XF)|? and for i = 1,...,n, let

Liov =E|Yy, , — }/t?:,

1

2 ti
+]E/ \Z, — ZT| dr.

ti—1

Using ([L.J) with ¢ = ¢(Xr) and (B.]), we deduce

ti
mm—m;ﬁ/<a—ﬂmm=m—m+/

ti—1 ti—1

+ /ti (90~0,) —g (t.07")) dB.. (3.3)

ti—1

(f (r,0,) — f (ti,GZ_’l)) dr
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By construction, Y;, , — Y™ is F,_, = G{  measurable while for r € [t;_1,t;), Z, — Z] is
(Gr)-adapted. Hence, Y;, , — Y7  is orthogonal to ftt_il (Z, — ZTF)dW,. Therefore,

2

t;
L1 =E|Y,_, - Y] | +/ (Z, = Z7)dW,
ti—1

Since g(r, ©,) (resp. g(t;, @Z’l)) is F,. ( resp. F3,)-measurable, the random variables Y;, — Y, and

f:_il (g(r, X Y.)—g (ti, X7, Yt’r)) d%r are orthogonal. Hence for every € > 0, using assumption

E, the L%-isometry of backward stochastic integrals, Schwarz’s inequality and @), we deduce

)
iy < (1+ )JE\Yt ~ Y7 + (HQA;) E /tt (fn00) =1 (t07")) dr
2
+ ( Aﬁ“) E /tt (g (r0,)—g (ti,GZ’l)) dB,
<(1+Ate YEY;, — V7 + (At + 26)1E/:i1 F(re,) —f (ti,GZ_’l) ’2 dr
+ (14 Atge™! / iy (t @;’1) *dr
< [1 + Atie" 4 205 (AE? + 2eAL) + 2L, (At; + At2e)) } E|Y;, — Y|
+ {Lf (At; +26) + Ly (1 + Atie ™)) }E/t;il(w X = X7 42y, - v, 2) dr

1 2
Zy — Z 7| dr.

i

t;
+ {Lf (At + 2€) + a(l + Atie’l)}E/
ti—1
For |r| <1, At? < At;; using Proposition @ with p = 2 and Proposition @, we deduce

ti
B[ (i + X - XI[P 4 21% - Vi) dr < Claf
ti—1

for some constant C' > 0. Hence for any v > 0

Ty <14 (7 +2L5(1+20) +2L, (1 + 1) ) At E ¥, - 77

+ C{Lf (At +€) + Ly (1 + Atye™) } |m[?

t;
+ (1497 [Ly (At +26) + o (14 Atge™) ] E/ |20 = Zu|" dr

ti—1

1 2
Zy, — 77

+(1+79) [Ly (At; +2€) + a (14 Atie ') JALE
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Lemma B.4 yields for some positive constants C, C ., and C. g, we have:

t;
L < (14 CALE|Y;, - YT|* +C. |7r|2+CWE/ |Z, — Zy, % dr
ti—1
tita 5
+r(14+7)(1+73) [Lf (Ati+26)+o¢(1+Atie_l)}E/ |ZT — Z, | dr
t;
tit1 5
+r(l4+7) (1+871) [Lf (Ati+2e)+a(1+Atie_l)}E/ |Z, — Zy,|” dr
t;

2 ar

tit1
< (1+O€Ati)E’}/ti_}/15?‘2+OE|7T|2+C€»’YﬁE/ |ZT—Zti
1

i—

FR4) (14 8) Ly (At +20) +a (L4 At ™) | / Yz -z (3.4)

i

Recall that a < % and let 0 < § < 1 — ka. Then choose positive constants  and ~ small

enough to ensure k(1 +v)(1+6)a < 1 — %‘5. Finally, let € > 0 small enough to ensure that

26(1+7) (1+B)Lye < %. Then (B.4) implies the existence of C' > 0 such that for every i =
1 n—1

g eeny 5

5 ti+1 ti+1
Lyt gE/ 27— Zo[Pdr < (14 CAL) I + Claf2 + C]E/ \Z, = Z, Pdr. (35)

t; ti—1

Using the discrete Gronwall lemma in [Z04] (Lemma 5.4 page 479), we deduce

tit1
max I; gOeCTE(In + > / \Z, — Zy,

0<i<n ¢
1<i<n—17ti-1

2 dr + |7T|)

<o) o0+ Y [ (172 4122

1<i<n Y ti-1

2) dr + |7r|).

Since ¢ is Lipschitz, Proposition B.] implies that E|¢p(X7) — ¢(X7)|> < C|r|; thus Theorem P.3
implies

max E|V;, — Y7 |* < Clx|. (3.6)

0<i<n

Moreover, summing both sides of (B.§) over i from 1 to n — 1 and using Corollary .4 we obtain:

R 2
Z Ii-i-gE/l |ZT—ZT| dr < Z (1+0Ati)Il‘+C|ﬂ'|

0<i<n—2 t 1<i<n

tit1
ve Y e[ iz -zl

1<i<n Jti-1

<Clr|+ > (1+CAL)IL.

1<i<n—1
Therefore,
5" 2
Io+ 3 E/ 27 = Z,[Pdr <C|x|+ I, .1 +C Y A4
t1 1<i<n—1
Since § < 1 — ka < 3, using (B.4) we deduce

5 T tn T
3 E/ \ZT — Z,|? dr <C|x| +E/ |Z" — Z,.|2dr + C|7T|E/ \ZF — Z,|dr. (3.7)
0 t7171 0
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The equations ([L.J) and (B.J) imply

tn
/ (27 — Z,)dW, =(Y7 — Vi) — (7, = Yi )

tn—1

tn
+/ (f (t"’Xgl’}/t?;’O) _f(T5X”’7}/T7Z’I")) dr

tn—1
tn

[ (0 XD YE0) ~ 9 (X0 Y5 2)) d B
tn—1

The L2-isometry, Schwarz’s inequality, (@), Lemma E, Propositions and @

tn 2
IE/ |27 — Z,[Pdr <AE|YT -V, [P +4B|YS_ - Vi, ,

tn—1

tn
+4|7T|]E/ |f(tnan;5}/t:70) _f(TaXTa}/’r‘aZT)‘2d,r

tn—1

tn
+4IE/ |9 (tns X7, Y,0) = g (r, X, Yy, Z,)| dr

tn—1

<Clr|+C|r| sup E(|X, —Xr|*+|X] — X7[*)

tro1 <r<t,
+Cln| sup  E(|Yr —Yr[?+ Y] = Yr[*+|Z, %)
b1 <r<t,
<Cn|. (3.8)
For || small enough, we have C|x| < §/6; thus (B.7) and (B.§) conclude the proof. O

4. A NUMERICAL SCHEME

In this section we propose a numerical scheme based on the results of the previous sections.
First of all, given 2 € R%, s < t we set:

Xi(s,z)i=ax+ (t—95)b(x)+o(z) (W — Ws).

We clearly have X[ = X, (ti,l, XZZ,l) forevery i = 1,...,n. Then, given a vector (g, . .., Ti; Tit1,-- -
RO 5 R set x,41 = 0 and for i =0,...,n— 1, let
Xi = (xo, ,LL’l) s Xi41 = (J,'H_l, ,LL’n) .

Define by induction, the functions uf, vff : RO*De x R*~* — R (resp. the random variables
UF, V7 ROFDE 5 x R*71 — R) as follows:

U (20, ooy Tn) == @ (Tn), V5 (T0,..., Tn) =0,
and fort=0,...,n—1 let
U (x',w,Xi42) ==ulyy (x', Xopy (B, 20) , Xi42) (4.1)
+ f(ti+l7Xt»;+1 (tuxl) 7u;'r+1 (Xi7Xt»;+1 (tuxl) 7xi+2) )

v?—i—l (Xia Xti+1 (tia Il) ;Xi+2) )AtiJrl;

V7 (x', w, Xi42) =g (ti+1, Xiy (tiy i) uly (x5 Xy (bi,25) , Xiy2)

’U?:Fl (xiv Xti+1 (tlu (Ei) 7Xi+2) )7 (42)
uf (x'5xiq) =EUT (x, @, %i11) + 2 n BV (3 w,%i41) (4.3)
. 1 _
o] (x'3Xi41) izAt‘HE (UF (%', w,%i41) AWy, ,,)

+ X;*l E (V7 (X', w,xi41) AW, . (4.4)
i+1

,Tp) €
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Theorem 4.1. We have for all i =0,...,n

V[ =ul (X7, ., X5 ABy, s ABy) (4.5)
Z5t =0 (X[, o, X7 ABy, . ABy) (4.6)

Proof. We proceed by backward induction. For i = n, by definition ¥, = ¢ (Xg; ), SO (@) and
() hold trivially.
Suppose that the result is true for j =n,n —1,--- ,4i. The scheme described in (@) implies that

t;
Vi, =Y f (6,007 ) Aty 4 g (4,671) ABy, — / Zrdw,. (4.7)

ti—1

To prove ([L.), we take the conditional expectation of (J.7) with respect to Fo, | = Fh v .EfT;
Fi) =E (71 ) +E(f (07") An| 7))

this yields
}"tH) ~E (/ ZrdW, fm> .
ti—1

E (Y
Using the fact that ftil Z7dW, is orthogonal to any ﬁtifl—measurable random variable, and the

ti—1

+E (g (t @;31) AB;,

induction hypothesis we deduce:
E (}/;: ﬁti—l) +E (f (ti, @Z’l) Atz fti—l) +E (g (ti, s @Z’l) ’j}ti—l) ABtI

= (a7 (X7, X7, X0, (b1, X7, ABuyss s ABy, ) i )

}/tﬂ'

i—1

+ AL E(f(ti,Xti(ti_l,ngl),uf (Xg;, o XE Xy (ti0, XT ), ABy, ...,ABtn) ,
ﬁti—l)

XX, (ti,l,ngl),ABtM,...,ABtn),

T ™
v; (Xt07"

GXE Xy (i, XF ). AB,,,, ., AB,, ) )

tor " i1 i

+ AB, E(g (t X, (tia, X )oul (X”

oF (X0 X7y X (b1, X)), ABuy o ABy, ) )| B,

—1

Since all ABy,, Il =1,...,n and X7,k =0,...,i—1 are .7?,51.71 measurable while W, — Wy, | is
independent of ]—A'tFI; we deduce (@)
To prove ([L.6), multiply ([E7) by AW;, = W;, — W;, , and take the conditional expectation with

respect to ]?tifl, this yields
E(Y7, AW,

Fiy) =E(v7am,

Fisi) +E(f (1.07") Ataw,

7))

+E (g (ti, @;’;1) AB;, AW,

ti
Fi)-E <AWti/ ZrdW,
ti—1

Since YT € .7?,51.71 and AW;, is independent of ﬁti71 and centered we deduce

E (YtjflAWti ﬁtH) = 0.
Furthermore,
ti R ti N
E(AW, / zzaw, |7, =E( / zZrar| 7,
ti—1 ti—1
t;
= (/ ZTdr ftH) = Atz
ti—1
this completes the proof of (f£.4). O
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