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In this paper we prove some new symmetry results for the extremals of the Caffarelli-Kohn-Nirenberg inequalities, in any dimension larger or equal than 2 .

Introduction

The Caffarelli-Kohn-Nirenberg inequality (see [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF]) in space dimension N ≥ 2 , can be written as follows,

(1) and C N a,b denotes the optimal constant. Typically, inequality (1) is stated with a < a c (see [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF]) so that the space D a,b is obtained as the completion of C ∞ c (R N ) , the space of smooth functions in R N with compact support, with respect to the norm u 2 = |x| -b u 2 p + |x| -a ∇u 2 2 . Actually (1) holds also for a > a c , but in this case D a,b is obtained as the completion with respect to • of the space {u ∈ C ∞ c (R N ) : supp(u) ⊂ R N \ {0}} that we shall denote by C ∞ c (R N \ {0}) . Inequality [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF] is sometimes called the Hardy-Sobolev inequality, as for N > 2 it interpolates between the usual Sobolev inequality (a = 0 , b = 0) and the weighted Hardy inequalities (see [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF]) corresponding to b = a + 1 .

R N |u| p |x| b p dx 2/p ≤ C N a,b R N |∇u| 2 |x| 2 a dx ∀ u ∈ D a,b with a ≤ b ≤ a + 1 if N ≥ 3 , a < b ≤ a + 1 if N = 2 ,
For b = a < 0 , N ≥ 3 , equality in (1) is never achieved in D a,b . For b = a+1 and N ≥ 2 , the best constant in [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF] is given by C N a,a+1 = (N -2-2 a) 2 /4 and it is never achieved (see [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF]Theorem 1.1, (ii)]). On the contrary, for a < b < a + 1 and N ≥ 2 , the best constant in (1) is always achieved, say at some function u a,b ∈ D a,b that we will call an extremal function. However u a,b is not explicitly known unless we have the additional information that it is radially symmetric about the origin. In the class of radially symmetric functions, the extremals of ( 1) are all given (see [START_REF] Chou | On the best constant for a weighted Sobolev-Hardy inequality[END_REF][START_REF] Horiuchi | Best constant in weighted Sobolev inequality with weights being powers of distance from the origin[END_REF][START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF]) up to a dilation, by

(2) u * a,b (x) = κ * 1 + |x| 2 (N-2-2 a)(1+a-b) N-2 (1+a-b) -N-2 (1+a-b) 2 (1+a-b)
for an arbitrary normalization constant κ * . See [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF][START_REF] Dolbeault | The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions[END_REF] for more details and in particular for a "modified inversion symmetry" property of extremal functions, based on a generalized Kelvin transformation, which relates the parameter regions a < a c and a > a c .

In the parameter region 0 ≤ a < a c , a ≤ b ≤ a + 1 , if N ≥ 3 , the extremals are radially symmetric (see [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF][START_REF] Talenti | Best constant in Sobolev inequality[END_REF][START_REF] Lieb | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF] and more specifically [START_REF] Chou | On the best constant for a weighted Sobolev-Hardy inequality[END_REF][START_REF] Horiuchi | Best constant in weighted Sobolev inequality with weights being powers of distance from the origin[END_REF]); in section 2.1, we give a simplified proof of the radial symmetry of all extremal functions in this range of parameters. On the other hand, extremals are known to be non radially symmetric for a certain range of parameters (a, b) identified first in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF] and subsequently improved in [START_REF] Felli | Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type[END_REF], given by the condition b < b FS (a) , a < 0 (see below). By contrast, few symmetry results are available in the literature for a < 0 . For instance, when N ≥ 3 , for a fixed b ∈ (a, a + 1) , radial symmetry of the extremals has been proved for a close to 0 (see [START_REF]Symmetry of extremal functions for the Caffarelli-Kohn-Nirenberg inequalities[END_REF][START_REF] Lin | Proc. Amer. Math. Soc[END_REF]; also see [START_REF] Smets | Partial symmetry and asymptotic behavior for some elliptic variational problems[END_REF]Theorem 4.8] for an earlier but slightly less general result). In the particular case N = 2 , a symmetry result was proved in [START_REF] Dolbeault | The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions[END_REF] for a in a neigbourhood of 0 -, which asymptotically complements the symmetry breaking region found in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF][START_REF] Felli | Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type[END_REF][START_REF] Dolbeault | The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions[END_REF], as a → 0 -.

In terms of a and b, we first prove that the symmetry region admits the half-line b = a + 1 as part of its boundary.

Theorem 1. Let N ≥ 2 . For every A < 0 , there exists ε > 0 such that the extremals of (1) are radially symmetric if a+1-ε < b < a+1 and a ∈ (A, 0). So they are given by u * a,b defined in (2), up to a scalar multiplication and a dilation.

We also prove that the regions of symmetry and symmetry breaking are separated by a continuous curve, that can be parametrized in terms of p. In fact, using that a , b and p satisfy the relation: On the curve p → (p, a * (p)) , radially symmetric and non radially symmetric extremals for (1) may eventually coexist.

(3) b = a + 1 + N 1 p - 1 2 = N p - N -2 -2 a 2 ,
In a refinement of the results of [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF], for N ≥ 3 , V. Felli and M. Schneider proved in [START_REF] Felli | Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type[END_REF] that in the region a < b < b FS (a) , a < 0 , extremals are non-radially symmetric, where

b FS (a) := N (N -2 -2 a) 2 (N -2 -2 a) 2 + 4 (N -1) - N -2 -2 a 2 .
The proof is based on the linearization of a functional associated to admits the same asymptotic behavior as p → 2 + . Hence, it is natural to conjecture that the curve p → (a * (p), b * (p)) coincides with the curve a → (a, b FS (a)) .

Preliminary results

2.1. Known cases of radial symmetry. For completeness, let us state some already known symmetry results. We also provide a simplified proof in case N ≥ 3 , a ≥ 0 . Lemma 3. If N ≥ 3 , 0 ≤ a < a c and a ≤ b < a + 1 , extremal functions for (1) are radially symmetric. If N = 2 , for any ε > 0 , there exists η > 0 such that extremal functions for (1) are radially symmetric if -η < a < 0 and -ε a ≤ b < a + 1 .

Proof. The case N = 2 has been established in [START_REF] Dolbeault | The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions[END_REF]. The result for N ≥ 3 is also known; see [START_REF] Chou | On the best constant for a weighted Sobolev-Hardy inequality[END_REF][START_REF] Horiuchi | Best constant in weighted Sobolev inequality with weights being powers of distance from the origin[END_REF]. However, we give here a simpler proof (for N ≥ 3 ), which goes as follows.

Let u ∈ C ∞ c (R N \ {0}) and consider v(x) = |x| -a u(x) for any x ∈ R N . Inequality (1) amounts to C N a,b -1 R N |v| p |x| (b-a) p dx 2 p ≤ R N ∇v + a x |x| 2 v 2 dx = R N |∇v| 2 dx + a 2 R N |v| 2 |x| 2 dx + a R N x |x| 2 • ∇(v 2 ) dx .
Integrating by parts, we find that

R N x |x| 2 •∇(v 2 ) dx = -(N -2) R N |v| 2 |x| 2 dx .
Hence, radial symmetry for the extremal functions of Inequality ( 1) is equivalent to prove that extremal functions for

C N a,b -1 R N |v| p |x| (b-a) p dx 2 p + a [(N -2) -a] R N |v| 2 |x| 2 dx ≤ R N |∇v| 2 dx are radially symmetric. Since the coefficient a [(N -2) -a] = a (2 a c -a)
is positive in the considered range for a , the result follows from Schwarz's symmetrization. Both terms of the left hand side (resp. the term of the right hand side) are indeed increased (resp. is decreased) by symmetrization, and equality only occurs for radially symmetric decreasing functions; see [10] for details. The result can then be extended to D a,b by density.

Notice that the proof is exactly the same for N ≥ 3 , a c < a ≤ N -2 = 2 a c and a ≤ b < a + 1 . For N = 2 , a result similar to that of Lemma 3 has been achieved when (2 + ε) a ≤ b < a + 1 , 0 < a < η . Radial symmetry has also been established for N ≥ 3 , a < 0 , |a| small, and 0 < b < a + 1 , see [START_REF] Smets | Partial symmetry and asymptotic behavior for some elliptic variational problems[END_REF][START_REF]Symmetry of extremal functions for the Caffarelli-Kohn-Nirenberg inequalities[END_REF].

2.2.

Emden-Fowler transformations. It is convenient to formulate the Caffarelli-Kohn-Nirenberg inequality in cylindrical variables (see [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF]). By means of the Emden-Fowler transformation

(4) t = log |x| , θ = x |x| ∈ S N -1 , w(t, θ) = |x| N-2-2 a 2 u(x) ,
inequality (1) for u is equivalent to a Gagliardo-Nirenberg-Sobolev inequality on the cylinder

C := R × S N -1 , that is (5) w 2 L p (C) ≤ C N a,b ∇w 2 L 2 (C) + Λ w 2 L 2 (C) , for any w ∈ H 1 (C) , with Λ = Λ(N, a) := 1 4 (N -2 -2 a) 2 , p = 2 N N -2 + 2 (b -a) ,
and the same optimal constant C N a,b as in [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF]. In what follows, we will denote the cylinder variable by y :

= (t, θ) ∈ R × S N -1 = C .
We may observe that if (5) holds for a < a c , it also holds for a > a c , with same extremal functions. Hence, the inequality

w 2 L p (C) ≤ C N a,b ∇w 2 L 2 (C) + Λ(N, a) w 2 L 2 (C) holds for any a = a c , b ∈ [a, a + 1] and p = 2 N/(N -2 + 2 (b -a)) if N ≥ 3 , or any a = 0 = a c , b ∈ (a, a + 1] and p = 2/(b -a) if N = 2
. Now there is no more need to make distinctions between the cases a < a c and a > a c as it was the case for inequality [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF], in order to give the correct definition of the functional spaces D a,b . Moreover, as in [START_REF] Dolbeault | The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions[END_REF], we may observe that

C N a,b = C N a ′ ,b ′ with a ′ = N -2 -a = 2 a c -a and b ′ = b + N -2 -2 a = b + 2 (a c -a) .
We shall therefore restrict a to (-∞, a c ) without loss of generality.

2.3. Reparametrization. For simplicity, we shall reparametrize

{(a, b) ∈ R 2 : a < b < a + 1 , a < a c } in terms of (Λ, p) ∈ (0, ∞) × (2, 2 * ) using the relations (6) Λ = 1 4 (N -2 -2 a) 2 ⇐⇒ a = N -2 2 - √ Λ and p = 2 N N -2 + 2 (b -a) with b ∈ [a, a + 1] if N ≥ 3 b ∈ (a, a + 1] if N = 2 (7) ⇐⇒ b = N p - √ Λ with 2 ≤ p ≤ 2 * if N ≥ 3 2 ≤ p < ∞ if N = 2
so that, with the above rules, the constant

C N Λ,p := C N a,b is such that the minimum of the functional (8) F Λ,p [w] = ∇w 2 L 2 (C) + Λ w 2 L 2 (C) w 2 L p (C) on H 1 (C \ {0}) takes the value C N Λ,p -1 . 
For a given p , we are interested in the regime a < a c , parametrized by Λ > 0. The function

Λ → a = N -2 2 - √ Λ , b = N p - √ Λ
parametrizes an open half-line contained in a ≤ b ≤ a + 1 , a < a c (and therefore parallel to the line b = a) in the (a, b)-plane. As a consequence of Lemma 3, we know that extremal functions are radially symmetric for Λ > 0 , small enough. On the other hand, the region

a < 0 , a < b ≤ b FS (a) = N (N -2 -2 a) 2 (N -2 -2 a) 2 + 4 (N -1) - N -2 -2 a 2
is given in terms of Λ and p by the condition Λ > Λ FS (p) where Λ = Λ FS (p) is uniquely defined by the condition

N p - √ Λ = b FS (a) = N √ Λ 2 √ Λ + N -1 - √ Λ , that gives (9) Λ FS (p) := 4 p 2 -4 (N -1) .
To interpret this condition in terms of the variational nature of the radial extremal, see Proposition 8 below.

We can summarize the above considerations as follows: For given Λ > 0 and p ∈ (2, 2 * ) , the corresponding extremals of (5) are not radially symmetric if Λ > Λ FS (p) . As a consequence, we can define (10) Λ * (p) := sup{Λ > 0 : F Λ,p has a radially symmetric minimizer } and observe that 0 < Λ * (p) ≤ Λ FS (p) for any p ∈ (2, 2 * ) .

Euler-Lagrange equations in the cylinder and properties of the extremals. For any

Λ > 0 , p ∈ (2, 2 * ] if N ≥ 3, or p ∈ (2, ∞) if N = 2 , the inequality (11) C N Λ,p -1 w 2 L p (C) ≤ ∇w 2 L 2 (C) + Λ w 2 L 2 (C)
is achieved in H 1 ∩L p (C) by at least one extremal positive function w = w Λ,p satisfying on C the Euler-Lagrange equation ( 12)

-∆ y w + Λ w = w p-1 .
For N ≥ 2 , we have

C N Λ,p -1 = w Λ,p p-2 L p (C) = inf w∈H 1 (C)\{0} F Λ,p [w] .
According to [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF], by virtue of the properties of the extremal function w Λ,p and the translation invariance of (11) in the t-variable, we can further assume that (13)

       w Λ,p (t, θ) = w Λ,p (-t, θ) ∀ (t, θ) ∈ R × S N -1 = C , (w Λ,p ) t (t, θ) < 0 ∀ (t, θ) ∈ (0, +∞) × S N -1 , max C w Λ,p = w Λ,p (0, θ 0 ) .
for some θ 0 ∈ S N -1 . A solution of (12) which does not depend on θ therefore satisfies on R the ODE -w tt + Λ w = w p-1 .

Multiplying it by w t and integrating with respect to t , we find that

- 1 2 w 2 t + Λ 2 w 2 = 1 p w p + c
for some constant c ∈ R . Due to the integrability conditions, namely the fact that w t and w are respectively in L 2 (R) and L 2 ∩ L p (R) , it turns out that c = 0 . Since we assume that w achieves its maximum at t = 0 , this uniquely determines w(0) > 0 using the relation: Λ w 2 (0)/2 = w p (0)/p . In turn this yields a unique θ-independent solution w * Λ,p defined by ( 14)

w * Λ,p (t) := 1 2 Λ p 1 p-2 cosh 1 2 √ Λ (p -2) t -2 p-2 ∀t ∈ R .
Such a solution is an extremal for (5) in the set of functions which are independent of the θ-variable, and satisfies:

(15) (C N, * Λ,p ) -1 := |S N -1 | 1-2/p w * Λ,p p-2 L p (R) = inf f ∈H 1 (R)\{0} F Λ,p [f ] ,
where functions on R are considered as θ-independent functions on C.

Of course, by the coordinate change (4), w is independent of θ if and only if u is radially symmetric. This change of coordinates also tranforms the function u * a,b defined in (2) into w * Λ,p , with a , b and p related by ( 6)-( 7) and

κ * = N (N -2-2 a) 2 N -2 (1+a-b) N-2 (1+a-b) 4 (1+a-b) . Lemma 4. Let N ≥ 2 , p ∈ (2, 2 *
) . For any Λ = 0 , we have

C N Λ,p -p p-2 = w Λ,p p L p (C) ≤ w * Λ,p p L p (C) = 4 |S N -1 | (2 Λ p) p p-2 cp 2 p √ Λ
where c p is an increasing function of p such that

lim p→2 + 2 2 p p-2 p -2 c p = √ 2π .
Proof. Observe that

w Λ,p p L p (C) = C N Λ,p -p p-2 = (F Λ,p [w Λ,p ]) p p-2 ≤ F Λ,p [w * Λ,p ] p p-2 = w * Λ,p p L p (C) . On the other hand, w * Λ,p p L p (C) = |S N -1 | 1 2 Λ p p p-2 ∞ -∞ cosh 1 2 √ Λ (p -2) t -2 p p-2 dt = 2 |S N -1 | 1 2 Λ p p p-2 ∞ 0 2 2 p p-2 e - √ Λ p t 1 + e - √ Λ (p-2) t 2 p p-2 dt = 4 |S N -1 | 1 2 Λ p p p-2 2 2 p p-2 2 √ Λ p 1 0 ds 1 + s (p-2)/p 2 p p-2
.

Hence by setting

c p = 1 0 ds 1 + s (p-2)/p 2 p p-2
, we easily check that c p is monotonically increasing in p . The asymptotic behaviour of c p as p → 2 + follows from the fact that c p can be expressed as

c p = 2 -2 p p-2 √ π Γ(x + 1 2 ) Γ(x) with x = 1 2 + p p -2 .
Then we conclude using Sterling's formula that Γ(x + 1 2 )/Γ(x) ∼ √ x as x → +∞ , which completes the proof.

Proof of Theorem 1

We argue by contradiction. Because of ( 6), we may suppose that there exist sequences (Λ n ) n∈N and (p n ) n∈N , with Λ n > 0,

lim n→+∞ Λ n = Λ ≥ (N -2) 2 /4 , lim n→+∞ p n = 2 + ,
such that the corresponding global minimizer, w n := w Λn, pn satisfies:

F Λ,p [w Λn, pn ] < F Λ,p [w * Λn, pn ] , -∆ y w n + Λ n w n = w p-1 n in C ,
together with [START_REF] Smets | Partial symmetry and asymptotic behavior for some elliptic variational problems[END_REF], for each n ∈ N. In particular, 0 < max C w n = w n (0, θ 0 ), for some fixed θ 0 ∈ S N -1 .

Let us define c n > 0 and W n as follows:

c 2 n = (Λ n p n ) -pn pn-2 2 pn pn-2 p n -2 and W n := c n w n . The function W n satisfies -∆W n + Λ n W n = c 2-pn n W pn-1 n in C , and C |∇W n | 2 dy + Λ n C W 2 n dy = c 2 n C
w pn n dy .

Note that lim n→+∞ Λ n = 0 is possible only if N = 2 . In such a case, the conclusion follows from Theorem 3.2, (i) in [START_REF] Dolbeault | The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions[END_REF]. Hence assume from now on that lim n→+∞ Λ n = Λ > 0 . By definition of c n and Lemma 4,

lim sup n→+∞ c 2 n C w pn n dy ≤ |S N -1 | 2 π/Λ, so that (W n ) n∈N is bounded in H 1 (C) . Moreover, lim n→+∞ c 2-pn n = Λ .
Therefore, by elliptic regularity, up to subsequences, (W n ) n∈N converges weakly in H 1 (C) , and uniformly in every compact subset of C , towards a function W . Again by definition of c n , this function satisfies

-∆W + Λ W = Λ W in C .
Hence W is constant but also in H 1 (C) , and therefore W ≡ 0 . Let χ n be any component of ∇ θ W n . By differentiating both sides of the equation of W n with respect to θ , we know that

-∆χ n + Λ n χ n = (p n -1) c 2-pn n W pn-2 n χ n in C .
So, multiplying this equation by χ n and integrating by parts, we get

0 = C |∇χ n | 2 dy + Λ n C |χ n | 2 dy -(p n -1) c 2-pn n C W pn-2 n |χ n | 2 dy .
The function W n is bounded by W n (0, θ 0 ) and lim n→+∞ W n (0, θ 0 ) = 0 . Since S N-1 ∇ θ W n (t, θ) dθ = 0 , an expansion of χ n in spherical harmonics tells us that

C |∇χ n | 2 dy ≥ (N -1) C |χ n | 2 dy .
By collecting these estimates, we get

0 ≥ N -1 + Λ n -(p n -1) c 2-pn n W n (0, θ 0 ) pn-2 C |χ n | 2 dy .
Since lim n→+∞ Λ n = Λ and lim sup n→+∞ (p n -1) c 2-pn n W n (0, θ 0 ) pn-2 ≤ Λ , for n large enough, χ n ≡ 0 and w n is radially symmetric.

Proof of Theorem 2

In this section, we prove the existence of a function Λ * which describes the boundary of the symmetry region (see Corollary 6). Then we establish the upper semicontinuity of p → Λ * (p) and, using spectral properties, its continuity (see Corollary 9), which completes the proof of Theorem 2. As a consequence, we observe that Proof. To prove (i), apply (16) with w σ = w Λ,p , λ = σ 2 Λ, σ < 1 and w(t, θ) = w Λ,p (t/σ, θ) :

C N, * σ 2 Λ,p -1 = F σ 2 Λ,p (w * σ 2 Λ,p ) = σ 1+2/p C N, * Λ,p -1 = σ 1+2/p F Λ,p (w * Λ,p ) .
C N λ,p -1 = F σ 2 Λ,p (w Λ,p ) = σ 1+ 2 p F Λ,p [w] + σ -1+ 2 p (1 -σ 2 ) C |∇ θ w| 2 dy C |w| p dy 2 p ≥ σ 1+ 2 p C N, * Λ,p -1 + σ -1+ 2 p (1 -σ 2 ) C |∇ θ w| 2 dy C |w| p dy 2 p = C N, * λ,p -1 + σ -1+ 2 p (1 -σ 2 ) C |∇ θ w| 2 dy C |w| p dy 2 p
.

By definition, C N λ,p ≥ C N, * λ,p and from the above inequality the first claim follows.

Assume that w Λ,p is a non radially symmetric extremal function and apply (16) with w = w Λ,p , w σ (t, θ) := w(σ t, θ), λ = σ 2 Λ and σ > 1:

C N λ,p -1 ≤ F σ 2 Λ,p (w σ ) = σ 1+ 2 p C N Λ,p -1 -σ -1+ 2 p (σ 2 -1) C |∇ θ w Λ,p | 2 dy C |w Λ,p | p dy 2 p ≤ σ 1+ 2 p C N, * Λ,p -1 -σ -1+ 2 p (σ 2 -1) C |∇ θ w Λ,p | 2 dy C |w Λ,p | p dy 2 p < C N, * λ,p -1 ,
since ∇ θ w Λ,p ≡ 0 . This proves the second claim with λ = σ 2 Λ .

Lemma 5 implies the following properties for the function Λ * defined in (10): and we take into account the zero mean average of ψ over S N -1 to write

Q[ψ] = +∞ k=1 f ′ k 2 L 2 (R) + γ k f k 2 L 2 (R) -(p -1) R |w * Λ,p | p-2 |f k | 2 dt with γ k := Λ + k (k + N -2) .
The minimum is achieved for k = 1 and

µ 1 Λ,p = inf f ′ 2 L 2 (R) + γ 1 f 2 L 2 (R) -(p-1) R |w * Λ,p | p-2 |f | 2 dt ,
where the infimum is taken over {f ∈ H 1 (R) : f L 2 (R) = 1} . In order to calculate µ 1 Λ,p and the corresponding extremal function f , we have to solve the ODE are also uniformly bounded in L pn/(pn-1) (C), with p n → p ∈ (2, 2 * ). Hence, by elliptic regularity and the Sobolv embedding, we deduce that w n is uniformly bounded in C 2,α loc (C) . So we can find a subsequence along which w n converges pointwise, and uniformly in every compact subset of C . Since Λ < Λ * (p) , by Corollary 6, this limit is w * Λ,p . Next, for any ε > 0 take R ε > 0 such that w * Λ,p (R) < ε for all R ≥ R ε . By the decay in |t| of w n and w * Λ,p we see that w The limit of Λ * (q) = +∞ as q → 2 + follows from Theorem 1. Moreover in dimension N = 2 we know also the slope of the curve separating the symmetry and the symmetry breaking regions near the point (a, b) = (0, 0), and as remarked before, it coincides with that of the Felli-Schneider curve (a, b F S (a). All this motivates our conjecture that the functions Λ * and Λ F S coincide over the whole range (2, 2 * ).

-f ′′ -β V f = λ f , in H 1 (R) , with β = Λ p (p -1)/2 and V (t) := cosh( 1 2 (p -2) √ Λ t) -2 . Fi- nally, the eigenfunction f (t) = V (t) p/(

  and a = a c defined bya c = a c (N ) := N --2 + 2 (ba) is determined by scaling considerations. Furthermore, D a,b := |x| -b u ∈ L p (R N , dx) : |x| -a |∇u| ∈ L 2 (R N , dx)

Theorem 2 .

 2 the condition a < b < a+1 can be expressed in terms of a and p, by requiring that a = a c and p ∈ (2, 2 * ), with 2 * := 2 N/(N -2) if N ≥ 3 or 2 * := +∞ if N = 2 . Constant values of p define lines parallel to b = a and in particular the line b = a + 1 coincides with p = 2. For all N ≥ 2 , there exists a continuous function a * : (2, 2 * ) -→ (-∞, 0) such that lim p→2 * -a * (p) = 0 , lim p→2 + a * (p) = -∞ and (i) If (a, p) ∈ (a * (p), a c ) × (2, 2 * ) , (1) has only radially symmetric extremals. (ii) If (a, p) ∈ (-∞, a * (p)) × (2, 2 * ) , none of the extremals of (1) is radially symmetric.

  (1) around the radial extremal u * a,b . Above the curve b = b FS (a), all corresponding eigenvalues are positive and u * a,b is a local minimum, while there is at least one negative eigenvalue if b < b FS (a) and u * a,b is then a saddle point. As a → -∞ , b = b FS (a) is asymptotically tangent to b = a + 1. But recalling (3), also the function b * (p) := a * (p) + 1 + N 1 p -1 2

4. 1 .

 1 Scaling and consequences. If w ∈ H 1 (C) \ {0} , let w σ (t, θ) := w(σ t, θ) for any σ > 0 . A simple calculation shows that (16)F σ 2 Λ,p (w σ ) = σ 1+2/p F Λ,p (w)σ -1+2/p (σ 2 -1) C |∇ θ w| 2 dy C |w| p dy 2/p .

Lemma 5 .

 5 If N ≥ 2 , Λ > 0 and p ∈ (2, 2 * ) , the following properties hold.(i) If C N Λ,p = C N, * Λ,p , then C N λ,p = C N, *λ,p and w λ,p = w * λ,p , for any λ ∈ (0, Λ) . (ii) If there is a non radially symmetric extremal function w Λ,p , then C N λ,p > C N, * λ,p for all λ > Λ .

Corollary 6 .

 6 Let N ≥ 2 . For all p ∈ (2, 2 * ), Λ * (p) ∈ (0, Λ FS (p)] and (i) If λ ∈ (0, Λ * (p)), then w λ,p = w * λ,p and clearly, C N λ,p = C N, * λ,p . (ii) If λ = Λ * (p), then C N λ,p = C N, * λ,p .

1 Λ,pn χ n 2 L 2 ( 2 L 2

 12222 nw * Λ,p L ∞ (C) ≤ 2 w nw * Λ,p L ∞ (|t|≤Rε) + 2 |w * Λ,p (R ε )|, and this, together with the uniform local convergence, proves that w n converges towards w * Λ,p uniformly in the whole cylinder C. Let us now consider one of the components of ∇ θ w n , that we denote by χ n . Then χ n ≡ 0 satisfies-∆χ n + Λ χ n = (p n -1) w pn-2 n χ n in C .Multiplying the above equation by χ n and integrating by parts we getC |∇χ n | 2 + Λ |χ n | 2 -(p n -1) w pn-2 n |χ n | 2 dy = 0 .By Proposition 8, since Λ < Λ * (p) ≤ Λ F S (p), we haveC |∇χ n | 2 + Λ |χ n | 2 -(p n -1) (w * Λ,pn ) pn-2 |χ n | 2 dy ≥ µ C) ,with lim inf n→+∞ µ 1 Λ,pn > 0. This contradicts the fact thatC |w * Λ,pn | pn-2 -|w n | pn-2 |χ n | 2 dy = o χ n 2 L 2 (C)as n → +∞ , which follows by the uniform convergence of w n and w * Λ,pn towards w * Λ,p , since, by assumption χ n (C) = 0 for n large enough.

  2(p-2)) corresponds to the first eigenvalue, λ = -p 2 Λ/4 . See[START_REF] Landau | Physique théorique. Tome III: Mécanique quantique. Théorie non relativiste[END_REF][START_REF] Felli | Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type[END_REF] for a more detailed discussion of the above eigenvalue problem.

4.4. Continuity. Corollary 9. Let N ≥ 2 . The function Λ * is continuous on (2, 2 * ) and lim q→2 + Λ * (q) = +∞ . Proof. We have to prove that for all p ∈ (2, 2 * ) , for all p n ∈ (2, 2 * ) converging to p , lim n→+∞ Λ * (p n ) = Λ * (p). Taking into account Lemma 7, assume by contradiction that there exists a sequence (p n ) n∈N such that lim n→+∞ p n = p and lim n→+∞ Λ * (p n ) = Λ < Λ * (p). Choose Λ ∈ (Λ * (p n ), Λ * (p)) for n large. By definition of Λ * , the extremals w n := w Λ,pn > 0 are not radially symmetric for n large enough. Now, by (15), the functions w n are uniformly bounded in H 1 (C) and the functions w pn-1 n
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(iii) If λ > Λ * (p), then C N λ,p > C N, * λ,p .

From the above results, note that Λ * can be defined in three other equivalent ways:

Note also that for p ∈ (2, 2 * ) and Λ = Λ * (p) , the equality

holds, but there might be simultaneously a radially symmetric extremal function and a non radially symmetric one. 

Let Λ ∈ (Λ * (p), Λ). The functions w * Λ,pn are extremal and converge to w * Λ,p which is also extremal by continuity of C N Λ,p with respect to p. This contradicts Lemma 5, (ii).

4.3.

A spectral result. On H 1 (C) , let us define the quadratic form

where the infimum is taken over the set of all functions ψ ∈ H 1 (C) such that S N-1 ψ(t, θ) dθ = 0 for t ∈ R a.e. and

4 Λ is positive for any Λ ∈ (0, Λ F S (p)) and it is achieved by the function

where ϕ 1 is any eigenfunction of the Laplace-Beltrami operator on S N -1 corresponding to the eigenvalue N -1 .

Proof. Let us analyze the quadratic form Q[ψ] in the space of functions ψ ∈ H 1 (C) such that S N-1 ψ(t, θ) dθ = 0 for a.e. t ∈ R . To this purpose, we use the spherical harmonics expansion of ψ ,