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Improvement of the E�ieny of GenetiAlgorithms for Salable Parallel GraphPartitioning in a Multi-Level FrameworkCédri Chevalier and François PellegriniLaBRI and INRIA FutursUniversité Bordeaux I351, ours de la Libération, 33405 TALENCE, FRANCE{hevali|pelegrin}�labri.frAbstrat. Parallel graph partitioning is a di�ult issue, beause thebest sequential graph partitioning methods known to date are basedon iterative loal optimization algorithms that do not parallelize norsale well. On the other hand, evolutionary algorithms are highly paralleland salable, but onverge very slowly as problem size inreases. Thispaper presents methods that an be used to redue problem spae in adramati way when using graph partitioning tehniques in a multi-levelframework, thus enabling the use of evolutionary algorithms as possibleandidates, among others, for the realization of e�ient salable parallelgraph partitioning tools. Results obtained on the reursive bipartitioningproblem with a multi-threaded geneti algorithm are presented, whihshow that this approah outperforms existing state-of-the-art parallelpartitioners.1 IntrodutionGraph partitioning is an ubiquitous tehnique whih has appliations in many�elds of omputer siene and engineering, suh as workload balaning in parallelomputing, database storage, VLSI design or bio-informatis. It is mostly usedto help solving domain-dependent optimization problems modeled in terms ofweighted or unweighted graphs, where �nding good solutions amounts to om-puting, eventually reursively in a divide-and-onquer framework, small vertexor edge uts that balane evenly the weights of the graph parts.For instane, the obtainment of small and balaned bipartitions is essential tothe reordering of sparse matries by nested dissetion [5℄. This method onsistsin omputing a small vertex set that separates the adjaeny graph of the sparsematrix in two parts, ordering the separator verties with the highest indiesavailable, then proeeding reursively on the two separated subgraphs until theirsize is smaller than some spei�ed threshold. The smaller and more balanedthe separators are, the smaller the �ll-in inurred at the fatorization stage, andthus the number of operations required to fator the matrix (referred to as theoperation ount, or OPC), is likely to be.



Currently, general-purpose sequential ordering software suh as Soth [12℄or MeTiS [9℄ an handle graphs of about ten million verties on an averageworkstation. However, as the power of parallel mahines inreases, so does thesize of the problems to handle, and sine the large graphs whih model theseproblems annot be proessed on a single omputer without inurring swapping,it is neessary to resort to parallel graph ordering tools, based on parallel graphbipartitioning algorithms. Several suh tools have already been developed [9℄,but their outome is mixed. In partiular, they do not sale well, as partitioningquality tends to derease, and thus �ll-in to inrease muh, when the number ofproessors whih run the program inreases.The purpose of the PT-Soth software (�Parallel Threaded Soth�, anextension of the sequential Soth software), developed at LaBRI within theSAlApplix projet of INRIA Futurs, is to provide e�ient parallel tools topartition graphs with sizes up to a billion verties, distributed over a thousandproessors. Among our target appliations is the parallel ordering of large graphs.PT-Soth is still under development, but several results have already beenahieved. Setion 2 presents a onstrained banding tehnique whih, based onthe harateristis of the loal optimization algorithms that are used to re�nethe partitions, redues onsiderably the size of the problem spae without loss ofquality, already allowing one to develop semi-parallel programs that an omputee�ient bipartitions of graphs having a billion nodes. Setion 3 desribes howthis redution enables us to use geneti algorithms, whih are highly salable butslow to onverge, in a pratial way. Some graph ordering results are presented,using a multi-threaded shared-memory geneti algorithm, whih illustrate thequality of the orderings that an be produed. Then omes the onlusion.2 Reduing problem spae in a multi-level frameworkExperiene has shown that best partition quality is ahieved when using a multi-level framework. This method, whih derives from the multi-grid algorithms usedin numerial physis, repeatedly redues the size of the graph to partition by�nding mathings that ollapse verties and edges, omputes an initial partitionfor the oarsest graph obtained, and projets the result bak to the originalgraph [2, 6, 8℄. It is most often ombined with greedy iterative algorithms, suhas Kernighan-Lin [10℄ or Fiduia-Mattheyses [4℄ (FM), to re�ne the projetedpartitions at every level, so that the granularity of the solution is the one of theoriginal graph and not the one of the oarsest graph.Beause of the loal nature of both the FM and the unoarsening algorithms,it is most likely that the re�ned partition omputed at any level will not di�ermuh from the partition that was projeted bak to this level, as this latter isitself the projetion of a partition that was a loal optimum in the oarser levels.Therefore, to re�ne a partition, FM-like algorithms may not need to know moreof the graph topology than a small �band� around the boundary of the projetedpartition. The loality of the optimization proess is already exploited in manyimplementations of FM-like algorithms whih, in order to save time and memory,
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Graph Size (×103) Average
V E degreeaudikw1 944 38354 81.28b5tuer 163 3874 47.64bmw32 227 5531 48.65bmwra1 149 5248 70.55rankseg2 64 7043 220.64inline1 504 18156 72.09mt1 98 4828 98.96oilpan 74 1762 47.77ship001 35 2305 132.00shipse5 180 4967 55.23thread 30 2220 149.32x104 108 5030 92.81altr4 26 163 12.50hanel1m 81 527 13.07onesphere1m 1055 8023 15.21Table 1. Some of the test graphs that we use.ompute and update vertex swapping gains only for verties that have to beonsidered, that is, the ones that are in the immediate viinity of verties thaturrently belong to the separator. However, these verties annot be known inadvane. Our idea is that, sine the FM algorithm is loal, we an onstrainit to operate on a small, prede�ned band of graph verties without hangingsigni�antly its outome.To validate this assumption, we have instrumented our Soth sequentialpartitioning software in order to measure how muh re�ned partitions di�erfrom projeted partitions. Sine our urrent target appliation requires vertexseparators, we have foused on them for these experiments, but the same kindof measures ould be obtained from edge separation routines as well. The testgraphs we have used in all of our experiments are well-known ases of varioussizes, listed in Table 1.For every separator omputed in a nested dissetion proess (whih stopswhen subgraphs are of sizes of about a hundred verties), we aumulate thenumbers of re�ned separator verties that end up at a given distane from theprojeted separators. These results are presented in Table 2.As expeted, the overwhelming majority of re�ned separator verties is notloated at a distane greater than three from the verties of the projeted sep-arators. Therefore, it an be assumed that the quality of partitions should notbe impated if re�ned partitions are omputed on band graphs only. In orderto validate this seond assumption, we have developed in Soth a partition-ing method whih extrats a band subgraph of given width from a given graphand its given initial separator, applies a FM separator re�nement method tothe initial separator of the band subgraph, and projets bak the re�ned band



Graph Distane0 1 2 3 ≥ 4598a 76.23 23.45 0.32 0.00 0.00aatken 77.00 20.45 2.27 0.24 0.04auto 77.89 21.89 0.22 0.00 0.00bsstk29 82.04 17.66 0.30 0.00 0.00bsstk30 87.17 12.53 0.29 0.01 0.00bsstk32 81.91 17.80 0.23 0.03 0.02body 67.49 30.20 2.08 0.20 0.04braket 72.47 26.19 1.08 0.16 0.10oupole8000 90.23 9.74 0.03 0.00 0.00m14b 78.65 21.17 0.18 0.00 0.00oean 60.43 32.86 4.58 1.29 0.84pwt 54.35 37.31 6.10 1.56 0.69rotor 77.09 21.99 0.75 0.11 0.06s3dkq4m2 78.72 20.34 0.89 0.04 0.00tooth 69.90 26.82 2.42 0.63 0.24

Graph Distane0 1 2 3 ≥ 4audikw1 91.44 8.55 0.01 0.00 0.00b5tuer 74.18 22.96 1.85 0.42 0.59bmw32 80.98 18.31 0.50 0.08 0.14bmwra1 91.29 8.58 0.13 0.00 0.00rankseg2 95.80 4.17 0.01 0.02 0.00inline1 87.57 12.35 0.08 0.00 0.00mt1 84.79 14.00 0.93 0.25 0.04oilpan 77.60 20.54 1.20 0.17 0.49ship001 91.43 8.51 0.05 0.00 0.00shipse5 82.29 17.28 0.41 0.03 0.00thread 91.40 8.53 0.06 0.00 0.00x104 86.64 12.81 0.51 0.03 0.00altr4 74.19 24.89 0.80 0.12 0.00hanel1m 74.65 24.09 1.16 0.10 0.00onesphere1m 82.16 17.67 0.17 0.00 0.00Table 2. Distane histogram (in % of the number of separator verties) of the loa-tion of re�ned separator verties with respet to projeted separators. These statistishave been olleted over all separators when performing nested dissetion on the givengraphs.separator to the full graph. We have then replaed all of our alls to the FMre�nement algorithm by alls to this band FM re�nement algorithm.The quality riterion that we have hosen is the operation ount (OPC)required to fator the reordered matrix using a Cholesky method; it is an indiretmeasurement of the overall quality of all bipartitions, in the pratial ontext ofnested dissetion ordering. The results that we obtain for all of our test matries,using band graphs with a width of three, show only marginal di�erenes in OPCompared to the original FM re�nement algorithm, and no di�erene on average.An explanation to this is that, even if the separator annot move more than threeverties away at any level, it has the ability to move again at the next levels toreah its loal optimum, therefore ompensating on several levels for the movesit ould not do on a single level.An interesting feature of band FM re�nement is that is seems to be morestable than the lassial FM algorithm. In the prodution version of Soth,two runs of multi-level bipartitioning were performed for eah subgraph, andthen the best separator of the two was kept. When using band FM re�nement,equivalent results are obtained with only one run, as presented in Table 3. Mostof the time, the quality of band FM lies between the one exhibited by one and tworuns of the lassial FM method. In terms of time, we an evidene a moderateover-ost with respet to a single run of lassial FM, beause of the omputationof the band graph. It seems that, by �amortizing� the move of the frontier, theband FM algorithm prevents it from exploring loal minima that di�er too muh



Graph Band FM (1 run) FM (2 runs) FM (1 run)OPC Time (s) OPC Time (s) OPC Time (s)aatken 1.72e+11 6.17 1.70e+11 10.79 1.73e+11 5.38auto 5.14e+11 47.09 4.98e+11 75.00 5.27e+11 39.40bsstk32 1.40e+9 1.16 1.28e+9 1.65 1.40e+9 1.02oupole8000 7.57e+10 210.15 7.48e+10 346.81 7.57e+10 183.72m14b 6.27e+10 21.4 6.31e+10 33.42 6.03e+10 17.56tooth 6.50e+9 5.66 6.51e+9 9.01 6.71e+9 4.64audikw1 5.58e+12 59.32 5.48e+12 86.78 5.64e+12 50.33bmw32 3.15e+10 4.52 2.75e+10 6.51 3.07e+10 4.08oilpan 2.92e+9 0.73 2.74e+9 0.95 2.99e+9 0.69thread 4.17e+10 1.62 4.14e+10 2.30 4.17e+10 1.44x104 1.84e+10 1.97 1.64e+10 2.60 1.80e+10 1.83altr4 3.68e+8 1.55 3.65e+8 2.52 3.84e+8 1.32onesphere1m 1.83e+12 122.03 1.85e+12 192.27 1.88e+12 100.19Table 3. Comparison between band FM and lassial FM. Tests have been run on a375MHz IBM SP3.from the �pseudo-global� solution omputed at the oarsest level and in whihit ould be trapped afterwards. Further experiments are required to investigatethis.By using this limitation of problem spae, we an already devise a way toompute high-quality partitions of distributed 3D mesh graphs of up to a billionverties: sine the expeted size of the separator of a n-vertex 3D mesh graph isin O(n2/3) [14℄, the order of magnitude of the �rst separator of a 3D graph ofabout a billion verties should be of about a million verties, whih an be han-dled by a sequential omputer. Therefore, basing on existing parallel oarseningalgorithms suh as the one of [13℄, one an oarsen a distributed graph so as toget a oarsened graph that �ts in the memory of a sequential omputer, omputean initial bipartition of this oarse graph using existing sequential partitioners,and projet bak this partition as follows. During eah unoarsening step, onethe separator has been projeted bak to the �ner distributed graph, a entral-ized opy of the distributed band graph surrounding the projeted separator isgathered on every proessor. All of the proessors an then run independentlya lassial sequential FM algorithm on their entralized band graph, leading toa better exploration of the redued problem spae, after whih the best re�nedseparator found is projeted bak to the �ner distributed graph. This unoars-ening proess is repeated up to obtain a distributed bipartition of the originalgraph. Reursive bipartitioning an then take plae on the two parts reated,with separators of smaller sizes.The above sheme, whih may be useful to handle large graphs at the expenseof quite little work on top of existing software, is learly not fully satisfatory,sine the re�nement of the partitions is sequential in nature, and thus not sal-able. In fat, loal optimization algorithms are not well suited, beause of their



iterative nature, while global heuristis, although more salable, are usually notonsidered as good andidates beause of the size of the problem spaes to ex-plore. However, taking advantage of the redution of problem spae that we haveevidened, they ould be, as desribed in the following.3 Using geneti algorithms in the redued problem spaeCurrently, there exist only few software that do graph ordering in parallel, andtheir quality is not equivalent to the one of sequential algorithms. For instane,ParMeTiS [9℄ implements a parallel version of a FM algorithm to re�ne itsbipartitions but, in order to relax the strong sequentiality onstraint of the algo-rithm when moving verties that have neighbors on other proessors, only suhmoves that improve the quality of the solution are aepted, therefore limitingthe hill-limbing feature of the FM algorithm and reduing further the qual-ity of the solutions as the number of proessors (and thus, of potential distantneighbors) inrease.To avoid this intrinsi sequentiality problem, we have deided to turn toa ompletely di�erent lass of algorithms. Geneti algorithms (GA) are highlysalable meta-heuristis whih allow to solve multi-riteria optimization prob-lems using an evolutionary method. It is an iterative method that onsists insimulating the evolution of a population of individuals whih represent solutionsto the problem, seleting best-�tting individuals as andidates for breeding thenext generation. GA are known to onverge very slowly and annot therefore beapplied to large graphs [1, 3℄, but might be of use in the redued problem spaesof band graphs. In the graph separation problem, every vertex an belong tothree di�erent domains: the separator, or any of the two separated parts. There-fore, every individual in the population is implemented as a linear array, similarin priniple to a hromosome, whih assoiates a number between 0 and 2 to anygraph vertex index.The reprodution operator is a lassial multi-points ross-over operator,whih is applied at a randomly-seleted position of two mated individuals, andswaps one part of their arrays to produe two desendants. The mutation oper-ator onsists in swapping the part of randomly hosen verties on some individ-uals. Sine these naive operators annot enfore that the rossed-over and mu-tated individuals be valid solutions, they are post-proessed with a onsisteny-heking phase whih adds verties to the separator whenever neessary, andremoves unneeded separator verties.Individuals are evaluated by means of a �tness funtion, whih linearly om-bines dimensionless numbers suh as the ratio of graph verties that belong tothe separator, the imbalane between the two parts, and the ratio of graph edgesthat link separator verties. The �rst generation is made up of individuals thatare mutations of the projeted partition, plus some entirely random individualswhih provide geneti diversity. To selet and mate individuals, we have imple-mented several lassial algorithms [7, 11℄. Although all methods behave quitesimilarly, best results were ahieved with a mix of the elitism and roulette meth-



Deme size # Demes Generations OPC Time (s)40 1 25 5.322334e+08 4.0580 1 25 5.370016e+08 7.9580 1 100 4.355475e+08 25.7240 2 25 4.653384e+08 6.6140 2 100 4.569806e+08 20.1780 8 100 3.751443e+08 50.90Table 4. OPC of the reordered bsstk29 matrix when multi-level band GA is used forall levels of nested dissetion. Classial multi-level FM yields an OPC of 3.43e + 8 in
0.74s.ods: the 5% best individuals are kept unonditionally, and eah of the remainingones is kept with a probability proportional to its �tness. Then, individuals aremated by pairs of desending �tness, and bred so as to keep onstant population.In order to inrease onurreny in the GA algorithm, all of the individualsthat are loated on the same proessor are onsidered as an isolated popula-tion (also alled �deme�) living on an island [15℄. Only oasionally an a few�hampions� move from one island to another, to propagate their suessful hro-mosomes into other populations whih an have been trapped in loal optima.In our urrent sequential implementation, every deme is handled by a di�erentthread. Migration is performed when the variety of the population in some demedereases, i.e. when individuals are too similar to their loal hampion.To evaluate the onvergene speed of our GA algorithm, we have omputednested dissetion orderings of several test graphs with our multi-level band GAmethod. All of our tests were run on the M3PEC mahine of the Université Bor-deaux I, an eleven-node IBM mahine with eight 1.5 MHz dual-ore proessorsand 32 GB of memory per node. Sine our urrent implementation is thread-based only, timings of tests involving more than sixteen threads (written betweenparentheses) are estimated: these tests are still run on a single SMP node, withas many threads per ore as neessary, and the running time is divided by theappropriate ratio. ParMeTiS, however, uses MPI, and runs fully in parallel.Table 4 provides some results for graph bsstk29. These results show that GAonverges quite well, and that quality an be improved by inreasing omputationtime and/or population size. As expeted, running times are high, but GA arehighly salable, so that omputation time an be redued by adding proessors,and partitioning quality an be inreased by giving more time.The seond lass of experiments that we have run aimed at evaluating thesalability of our method in terms of quality and running time. In order toompare our ordering software to ParMeTiS in similar onditions, we ran ourmethod on numbers of proessors p that are powers of two (while our methoddoes not require it), and performed band GA on the �rst log

2
(p) levels only,using band FM afterwards; we will refer to this method as �limited GA� (LGA)in all of the following. When running GA, the population is evenly spread onall of the threads, with at least 100 individuals on the whole and at least 25



individuals per deme; therefore, above 4 threads, the population doubles alongwith the number of threads.Our results, whih are summarized in Table 5, are extremely enouraging.First of all, partitioning quality is not degraded too muh when the number ofproessors inreases: on our worst ase, bmw32, we loose about 60% in OPCquality between 1 and 64 proessors, and the quality is almost onstant foroupole8000. Above 8 proessors, our results learly outperform the ones ofParMeTiS, by a fator greater than two for thread. As expeted, the higherthe degree of the graph is, the bigger the di�erene is, beause ParMeTiS anonly do gradient loal optimizations on nodes whih have neighbors on otherproessors.Partitioning times are very good, too. Although the running time of a singlesequential band GA re�nement algorithm is between 30 and 80 times higherthan the one of its sequential band FM ounterpart, the overall running timeof our LGA ordering program does not inrease too muh when the numberof proessors inrease. While a doubling of the number of proessors impliesthe turning of a whole level of band FM re�nements into band GA re�nements,the running time of LGA inreases reasonably along with the number of threads,beause when the number of proessors inreases it is levels of smaller subgraphsthat are passed to the GA, whih only results in a limited inrease in the overallrunning time ompared to the time taken by the �rst GA levels. Muh hope istherefore plaed in the development of a fully parallel, distributed-memory LGAalgorithm.4 Conlusion and future workIn this paper, we have presented a onstrained banding approah whih dramati-ally dereases problem size during the re�nement phase of multi-level partition-ing shemes. This method, whih an be used with any re�nement algorithm,allows us to take advantage of heuristis whih are usually too expensive to beonsidered, suh as geneti algorithms. We have implemented a shared memorymulti-threaded GA, and tried it on numerous test ases. Although our GA isslower than distributed FM-like algorithms, it is salable and provides betterresults, and its quality an be parametrized more easily (in terms of popula-tion size and of number of generations) to aount for eventual time or qualityonstraints.We are urrently developing a distributed memory version of our GA al-gorithm, based on MPI, whih will allow us to run tests on a larger numberof proessors, and to investigate the limits of using GA as a band re�nementmethod for very large graphs. Sine the testbed that we will use for this newversion will be the parallel ordering routine of PT-Soth, we will be ableto ompare its running time with the one of other parallel ordering software.Moreover, in order to have a referene for the quality of orderings, we are alsourrently ompleting the oding in PT-Soth of the entralized band FM re-



�nement algorithm desribed at the end of Setion 2, whih will allow us toompute, in a semi-parallel fashion, high quality orderings of very large graphs.Referenes1. S. Areibi and Zeng Y. E�etive memeti algorithms for VLSI design automa-tion = geneti algorithms + loal searh + multi-level lustering. EvolutionaryComputation, 12(3):327�353, 2004.2. S. T. Barnard and H. D. Simon. A fast multilevel implementation of reursivespetral bisetion for partitioning unstrutured problems. Conurreny: Pratieand Experiene, 6(2):101�117, 1994.3. T. N. Bui and B. R. Moon. Geneti algorithm and graph partitioning. IEEE Trans.Comput., 45(7):841�855, 1996.4. C. M. Fiduia and R. M. Mattheyses. A linear-time heuristi for improving net-work partitions. In Pro. 19th Design Automat. Conf., pages 175�181. IEEE, 1982.5. A. George and J. W.-H. Liu. Computer solution of large sparse positive de�nitesystems. Prentie Hall, 1981.6. B. Hendrikson and R. Leland. A multilevel algorithm for partitioning graphs. InProeedings of Superomputing, 1995.7. J. Horn, N. Nafpliotis, and D. E. Goldberg. A nihed Pareto geneti algorithm formultiobjetive optimization. In IEEE World Congress on Computational Intelli-gene, volume 1, pages 82�87, 1994.8. G. Karypis and V. Kumar. A fast and high quality multilevel sheme for parti-tioning irregular graphs. SIAM J. on Sienti� Computing, 20(1):359�392, 1998.9. MeTiS: Family of multilevel partitioning algorithms. http://glaros.dt.umn.edu/gkhome/views/metis.10. B. W. Kernighan and S. Lin. An e�ient heuristi proedure for partitioninggraphs. Bell System Tehnial Journal, 49:291�307, February 1970.11. P. Mosato. On evolution, searh, optimization, geneti algorithms and martialarts, towards memeti algorithms. Tehnial Report 826, California Intitute ofTehnology, Pasadena, CA 91125, U.S.A., 1989.12. Soth: Stati mapping, graph partitioning, and sparse matrix blok orderingpakage. http://www.labri.fr/�pelegrin/soth/.13. K. Shloegel, G. Karypis, and V. Kumar. Parallel multilevel algorithms for multi-onstraint graph partitioning. In Proeedings of EuroPar, pages 296�310, 2000.14. H. D. Simon and S.-H. Teng. How good is reursive bipartition. SIAM J. S.Comput., 18(5):1436�1445, 1995.15. D. Whitley, S. Rana, and R. B. Hekendorn. The island model geneti algorithm:On separability, population size and onvergene. Journal of Computing and In-formation Tehnology, 7:33�47, 1999.



Test Number of proessors or threadsase 1 2 4 8 16 32 64bsstk32
CLGA 1.60e+9 1.55e+9 1.67e+9 1.82e+9 1.83e+9 1.53e+9 2.07e+9
CPM 1.29e+9 1.55e+9 1.62e+9 3.09e+9 4.11e+9 5.85e+9 4.01e+9
tLGA 0.42 0.88 0.84 0.97 2.07 (2.86) (4.06)audikw1
CLGA 5.68e+12 5.91e+12 5.70e+12 5.82e+12 5.99e+12 6.44e+12 6.02e+12
CPM � � � 7.78e+12 8.88e+12 8.91e+12 1.07e+13
tLGA 19.78 22.77 29.55 32.89 60.24 (74.64) (91.78)bmw32
CLGA 3.04e+10 3.44e+10 3.75e+10 4.13e+10 4.64e+10 4.57e+10 5.01e+10
CPM 2.84e+10 3.22e+10 4.09e+10 5.11e+10 5.61e+10 5.74e+10 6.31e+10
tLGA 1.69 1.79 2.48 2.36 3.67 (5.11) (7.80)altr4
CLGA 3.46e+8 3.71e+8 4.23e+8 4.06e+8 4.31e+8 4.92e+8 4.71e+8
CPM 4.25e+8 4.20e+8 4.49e+8 4.46e+8 4.64e+8 5.03e+8 5.16e+8
tLGA 0.65 1.78 2.25 1.95 3.36 (5.43) (7.20)
tPM 0.58 0.31 0.20 0.13 0.11 0.27 0.31onesphere1m
CLGA 1.90e+12 1.92e+12 1.99e+12 2.37e+12 2.34e+12 2.53e+12 2.63e+12
CPM 2.04e+12 2.20e+12 2.46e+12 2.78e+12 2.96e+12 2.99e+12 3.29e+12
tLGA 44.03 69.66 86.47 90.44 120.87 (134.85) (158.07)oupole8000
CLGA 7.64e+10 7.64e+10 7.62e+10 7.65e+10 7.66e+10 7.68e+10 7.66e+10
CPM � � � 8.17e+10 8.26e+10 8.58e+10 8.71e+10
tLGA 125.69 75.40 55.19 49.16 52.59 (61.93) (77.26)thread
CLGA 4.10e+10 3.99e+10 4.41e+10 4.64e+10 4.43e+10 4.59e+10 5.19e+10
CPM 3.65e+10 3.98e+10 6.60e+10 1.03e+11 1.24e+11 1.53e+11 1.28e+11
tLGA 0.56 2.33 3.10 2.93 4.22 (5.02) (5.92)Table 5. Comparison between ParMeTiS (PM) and our multi-level limited band ge-neti algorithm (LGA) for several graphs. CLGA and CPM are the OPC for LGA andPM, respetively. Dashes indiate abortion due to memory shortage. LGA timings be-tween parentheses are extrapolated times for ases requiring more than 16 threads, aswe had to run several threads per ore on a single SMP node. Timings for ParMeTiSare provided for graph altr4 to give an idea of its speed, but tPM and tLGA annotbe ompared, beause PM is a fully parallel program, while our LGA testbed is thepurely sequential nested dissetion routine of Soth, whih has been parametrizedso as to run the multi-threaded LGA algorithm only during the unoarsening phasesof the �rst log

2
(p) stages of the nested dissetion proess.


