
HAL Id: hal-00402946
https://hal.science/hal-00402946

Submitted on 8 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improvement of the Efficiency of Genetic Algorithms for
Scalable Parallel Graph Partitioning in a Multi-Level

Framework
Cédric Chevalier, François Pellegrini

To cite this version:
Cédric Chevalier, François Pellegrini. Improvement of the Efficiency of Genetic Algorithms for Scalable
Parallel Graph Partitioning in a Multi-Level Framework. Euro-Par, Aug 2006, Dresden, Germany.
pp.243-252, �10.1007/11823285�. �hal-00402946�

https://hal.science/hal-00402946
https://hal.archives-ouvertes.fr


Improvement of the E�
ien
y of Geneti
Algorithms for S
alable Parallel GraphPartitioning in a Multi-Level FrameworkCédri
 Chevalier and François PellegriniLaBRI and INRIA FutursUniversité Bordeaux I351, 
ours de la Libération, 33405 TALENCE, FRANCE{

hevali|pelegrin}�labri.frAbstra
t. Parallel graph partitioning is a di�
ult issue, be
ause thebest sequential graph partitioning methods known to date are basedon iterative lo
al optimization algorithms that do not parallelize nors
ale well. On the other hand, evolutionary algorithms are highly paralleland s
alable, but 
onverge very slowly as problem size in
reases. Thispaper presents methods that 
an be used to redu
e problem spa
e in adramati
 way when using graph partitioning te
hniques in a multi-levelframework, thus enabling the use of evolutionary algorithms as possible
andidates, among others, for the realization of e�
ient s
alable parallelgraph partitioning tools. Results obtained on the re
ursive bipartitioningproblem with a multi-threaded geneti
 algorithm are presented, whi
hshow that this approa
h outperforms existing state-of-the-art parallelpartitioners.1 Introdu
tionGraph partitioning is an ubiquitous te
hnique whi
h has appli
ations in many�elds of 
omputer s
ien
e and engineering, su
h as workload balan
ing in parallel
omputing, database storage, VLSI design or bio-informati
s. It is mostly usedto help solving domain-dependent optimization problems modeled in terms ofweighted or unweighted graphs, where �nding good solutions amounts to 
om-puting, eventually re
ursively in a divide-and-
onquer framework, small vertexor edge 
uts that balan
e evenly the weights of the graph parts.For instan
e, the obtainment of small and balan
ed bipartitions is essential tothe reordering of sparse matri
es by nested disse
tion [5℄. This method 
onsistsin 
omputing a small vertex set that separates the adja
en
y graph of the sparsematrix in two parts, ordering the separator verti
es with the highest indi
esavailable, then pro
eeding re
ursively on the two separated subgraphs until theirsize is smaller than some spe
i�ed threshold. The smaller and more balan
edthe separators are, the smaller the �ll-in in
urred at the fa
torization stage, andthus the number of operations required to fa
tor the matrix (referred to as theoperation 
ount, or OPC), is likely to be.



Currently, general-purpose sequential ordering software su
h as S
ot
h [12℄or MeTiS [9℄ 
an handle graphs of about ten million verti
es on an averageworkstation. However, as the power of parallel ma
hines in
reases, so does thesize of the problems to handle, and sin
e the large graphs whi
h model theseproblems 
annot be pro
essed on a single 
omputer without in
urring swapping,it is ne
essary to resort to parallel graph ordering tools, based on parallel graphbipartitioning algorithms. Several su
h tools have already been developed [9℄,but their out
ome is mixed. In parti
ular, they do not s
ale well, as partitioningquality tends to de
rease, and thus �ll-in to in
rease mu
h, when the number ofpro
essors whi
h run the program in
reases.The purpose of the PT-S
ot
h software (�Parallel Threaded S
ot
h�, anextension of the sequential S
ot
h software), developed at LaBRI within theS
AlApplix proje
t of INRIA Futurs, is to provide e�
ient parallel tools topartition graphs with sizes up to a billion verti
es, distributed over a thousandpro
essors. Among our target appli
ations is the parallel ordering of large graphs.PT-S
ot
h is still under development, but several results have already beena
hieved. Se
tion 2 presents a 
onstrained banding te
hnique whi
h, based onthe 
hara
teristi
s of the lo
al optimization algorithms that are used to re�nethe partitions, redu
es 
onsiderably the size of the problem spa
e without loss ofquality, already allowing one to develop semi-parallel programs that 
an 
omputee�
ient bipartitions of graphs having a billion nodes. Se
tion 3 des
ribes howthis redu
tion enables us to use geneti
 algorithms, whi
h are highly s
alable butslow to 
onverge, in a pra
ti
al way. Some graph ordering results are presented,using a multi-threaded shared-memory geneti
 algorithm, whi
h illustrate thequality of the orderings that 
an be produ
ed. Then 
omes the 
on
lusion.2 Redu
ing problem spa
e in a multi-level frameworkExperien
e has shown that best partition quality is a
hieved when using a multi-level framework. This method, whi
h derives from the multi-grid algorithms usedin numeri
al physi
s, repeatedly redu
es the size of the graph to partition by�nding mat
hings that 
ollapse verti
es and edges, 
omputes an initial partitionfor the 
oarsest graph obtained, and proje
ts the result ba
k to the originalgraph [2, 6, 8℄. It is most often 
ombined with greedy iterative algorithms, su
has Kernighan-Lin [10℄ or Fidu

ia-Mattheyses [4℄ (FM), to re�ne the proje
tedpartitions at every level, so that the granularity of the solution is the one of theoriginal graph and not the one of the 
oarsest graph.Be
ause of the lo
al nature of both the FM and the un
oarsening algorithms,it is most likely that the re�ned partition 
omputed at any level will not di�ermu
h from the partition that was proje
ted ba
k to this level, as this latter isitself the proje
tion of a partition that was a lo
al optimum in the 
oarser levels.Therefore, to re�ne a partition, FM-like algorithms may not need to know moreof the graph topology than a small �band� around the boundary of the proje
tedpartition. The lo
ality of the optimization pro
ess is already exploited in manyimplementations of FM-like algorithms whi
h, in order to save time and memory,



Graph Size (×103) Average
V E degree598a 111 742 13.37aatken 43 88 4.14auto 449 3315 14.77b
sstk29 14 303 43.27b
sstk30 29 1007 69.65b
sstk32 45 985 44.16body 45 164 7.26bra
ket 63 367 11.71
oupole8000 1768 41657 47.12m14b 215 1679 15.64o
ean 143 410 5.71pwt 37 145 7.93rotor 100 662 13.30s3dkq4m2 90 2365 52.30tooth 78 453 11.58

Graph Size (×103) Average
V E degreeaudikw1 944 38354 81.28b5tuer 163 3874 47.64bmw32 227 5531 48.65bmw
ra1 149 5248 70.55
rankseg2 64 7043 220.64inline1 504 18156 72.09mt1 98 4828 98.96oilpan 74 1762 47.77ship001 35 2305 132.00shipse
5 180 4967 55.23thread 30 2220 149.32x104 108 5030 92.81altr4 26 163 12.50
hanel1m 81 527 13.07
onesphere1m 1055 8023 15.21Table 1. Some of the test graphs that we use.
ompute and update vertex swapping gains only for verti
es that have to be
onsidered, that is, the ones that are in the immediate vi
inity of verti
es that
urrently belong to the separator. However, these verti
es 
annot be known inadvan
e. Our idea is that, sin
e the FM algorithm is lo
al, we 
an 
onstrainit to operate on a small, prede�ned band of graph verti
es without 
hangingsigni�
antly its out
ome.To validate this assumption, we have instrumented our S
ot
h sequentialpartitioning software in order to measure how mu
h re�ned partitions di�erfrom proje
ted partitions. Sin
e our 
urrent target appli
ation requires vertexseparators, we have fo
used on them for these experiments, but the same kindof measures 
ould be obtained from edge separation routines as well. The testgraphs we have used in all of our experiments are well-known 
ases of varioussizes, listed in Table 1.For every separator 
omputed in a nested disse
tion pro
ess (whi
h stopswhen subgraphs are of sizes of about a hundred verti
es), we a

umulate thenumbers of re�ned separator verti
es that end up at a given distan
e from theproje
ted separators. These results are presented in Table 2.As expe
ted, the overwhelming majority of re�ned separator verti
es is notlo
ated at a distan
e greater than three from the verti
es of the proje
ted sep-arators. Therefore, it 
an be assumed that the quality of partitions should notbe impa
ted if re�ned partitions are 
omputed on band graphs only. In orderto validate this se
ond assumption, we have developed in S
ot
h a partition-ing method whi
h extra
ts a band subgraph of given width from a given graphand its given initial separator, applies a FM separator re�nement method tothe initial separator of the band subgraph, and proje
ts ba
k the re�ned band



Graph Distan
e0 1 2 3 ≥ 4598a 76.23 23.45 0.32 0.00 0.00aatken 77.00 20.45 2.27 0.24 0.04auto 77.89 21.89 0.22 0.00 0.00b
sstk29 82.04 17.66 0.30 0.00 0.00b
sstk30 87.17 12.53 0.29 0.01 0.00b
sstk32 81.91 17.80 0.23 0.03 0.02body 67.49 30.20 2.08 0.20 0.04bra
ket 72.47 26.19 1.08 0.16 0.10
oupole8000 90.23 9.74 0.03 0.00 0.00m14b 78.65 21.17 0.18 0.00 0.00o
ean 60.43 32.86 4.58 1.29 0.84pwt 54.35 37.31 6.10 1.56 0.69rotor 77.09 21.99 0.75 0.11 0.06s3dkq4m2 78.72 20.34 0.89 0.04 0.00tooth 69.90 26.82 2.42 0.63 0.24

Graph Distan
e0 1 2 3 ≥ 4audikw1 91.44 8.55 0.01 0.00 0.00b5tuer 74.18 22.96 1.85 0.42 0.59bmw32 80.98 18.31 0.50 0.08 0.14bmw
ra1 91.29 8.58 0.13 0.00 0.00
rankseg2 95.80 4.17 0.01 0.02 0.00inline1 87.57 12.35 0.08 0.00 0.00mt1 84.79 14.00 0.93 0.25 0.04oilpan 77.60 20.54 1.20 0.17 0.49ship001 91.43 8.51 0.05 0.00 0.00shipse
5 82.29 17.28 0.41 0.03 0.00thread 91.40 8.53 0.06 0.00 0.00x104 86.64 12.81 0.51 0.03 0.00altr4 74.19 24.89 0.80 0.12 0.00
hanel1m 74.65 24.09 1.16 0.10 0.00
onesphere1m 82.16 17.67 0.17 0.00 0.00Table 2. Distan
e histogram (in % of the number of separator verti
es) of the lo
a-tion of re�ned separator verti
es with respe
t to proje
ted separators. These statisti
shave been 
olle
ted over all separators when performing nested disse
tion on the givengraphs.separator to the full graph. We have then repla
ed all of our 
alls to the FMre�nement algorithm by 
alls to this band FM re�nement algorithm.The quality 
riterion that we have 
hosen is the operation 
ount (OPC)required to fa
tor the reordered matrix using a Cholesky method; it is an indire
tmeasurement of the overall quality of all bipartitions, in the pra
ti
al 
ontext ofnested disse
tion ordering. The results that we obtain for all of our test matri
es,using band graphs with a width of three, show only marginal di�eren
es in OPC
ompared to the original FM re�nement algorithm, and no di�eren
e on average.An explanation to this is that, even if the separator 
annot move more than threeverti
es away at any level, it has the ability to move again at the next levels torea
h its lo
al optimum, therefore 
ompensating on several levels for the movesit 
ould not do on a single level.An interesting feature of band FM re�nement is that is seems to be morestable than the 
lassi
al FM algorithm. In the produ
tion version of S
ot
h,two runs of multi-level bipartitioning were performed for ea
h subgraph, andthen the best separator of the two was kept. When using band FM re�nement,equivalent results are obtained with only one run, as presented in Table 3. Mostof the time, the quality of band FM lies between the one exhibited by one and tworuns of the 
lassi
al FM method. In terms of time, we 
an eviden
e a moderateover-
ost with respe
t to a single run of 
lassi
al FM, be
ause of the 
omputationof the band graph. It seems that, by �amortizing� the move of the frontier, theband FM algorithm prevents it from exploring lo
al minima that di�er too mu
h



Graph Band FM (1 run) FM (2 runs) FM (1 run)OPC Time (s) OPC Time (s) OPC Time (s)aatken 1.72e+11 6.17 1.70e+11 10.79 1.73e+11 5.38auto 5.14e+11 47.09 4.98e+11 75.00 5.27e+11 39.40b
sstk32 1.40e+9 1.16 1.28e+9 1.65 1.40e+9 1.02
oupole8000 7.57e+10 210.15 7.48e+10 346.81 7.57e+10 183.72m14b 6.27e+10 21.4 6.31e+10 33.42 6.03e+10 17.56tooth 6.50e+9 5.66 6.51e+9 9.01 6.71e+9 4.64audikw1 5.58e+12 59.32 5.48e+12 86.78 5.64e+12 50.33bmw32 3.15e+10 4.52 2.75e+10 6.51 3.07e+10 4.08oilpan 2.92e+9 0.73 2.74e+9 0.95 2.99e+9 0.69thread 4.17e+10 1.62 4.14e+10 2.30 4.17e+10 1.44x104 1.84e+10 1.97 1.64e+10 2.60 1.80e+10 1.83altr4 3.68e+8 1.55 3.65e+8 2.52 3.84e+8 1.32
onesphere1m 1.83e+12 122.03 1.85e+12 192.27 1.88e+12 100.19Table 3. Comparison between band FM and 
lassi
al FM. Tests have been run on a375MHz IBM SP3.from the �pseudo-global� solution 
omputed at the 
oarsest level and in whi
hit 
ould be trapped afterwards. Further experiments are required to investigatethis.By using this limitation of problem spa
e, we 
an already devise a way to
ompute high-quality partitions of distributed 3D mesh graphs of up to a billionverti
es: sin
e the expe
ted size of the separator of a n-vertex 3D mesh graph isin O(n2/3) [14℄, the order of magnitude of the �rst separator of a 3D graph ofabout a billion verti
es should be of about a million verti
es, whi
h 
an be han-dled by a sequential 
omputer. Therefore, basing on existing parallel 
oarseningalgorithms su
h as the one of [13℄, one 
an 
oarsen a distributed graph so as toget a 
oarsened graph that �ts in the memory of a sequential 
omputer, 
omputean initial bipartition of this 
oarse graph using existing sequential partitioners,and proje
t ba
k this partition as follows. During ea
h un
oarsening step, on
ethe separator has been proje
ted ba
k to the �ner distributed graph, a 
entral-ized 
opy of the distributed band graph surrounding the proje
ted separator isgathered on every pro
essor. All of the pro
essors 
an then run independentlya 
lassi
al sequential FM algorithm on their 
entralized band graph, leading toa better exploration of the redu
ed problem spa
e, after whi
h the best re�nedseparator found is proje
ted ba
k to the �ner distributed graph. This un
oars-ening pro
ess is repeated up to obtain a distributed bipartition of the originalgraph. Re
ursive bipartitioning 
an then take pla
e on the two parts 
reated,with separators of smaller sizes.The above s
heme, whi
h may be useful to handle large graphs at the expenseof quite little work on top of existing software, is 
learly not fully satisfa
tory,sin
e the re�nement of the partitions is sequential in nature, and thus not s
al-able. In fa
t, lo
al optimization algorithms are not well suited, be
ause of their



iterative nature, while global heuristi
s, although more s
alable, are usually not
onsidered as good 
andidates be
ause of the size of the problem spa
es to ex-plore. However, taking advantage of the redu
tion of problem spa
e that we haveeviden
ed, they 
ould be, as des
ribed in the following.3 Using geneti
 algorithms in the redu
ed problem spa
eCurrently, there exist only few software that do graph ordering in parallel, andtheir quality is not equivalent to the one of sequential algorithms. For instan
e,ParMeTiS [9℄ implements a parallel version of a FM algorithm to re�ne itsbipartitions but, in order to relax the strong sequentiality 
onstraint of the algo-rithm when moving verti
es that have neighbors on other pro
essors, only su
hmoves that improve the quality of the solution are a

epted, therefore limitingthe hill-
limbing feature of the FM algorithm and redu
ing further the qual-ity of the solutions as the number of pro
essors (and thus, of potential distantneighbors) in
rease.To avoid this intrinsi
 sequentiality problem, we have de
ided to turn toa 
ompletely di�erent 
lass of algorithms. Geneti
 algorithms (GA) are highlys
alable meta-heuristi
s whi
h allow to solve multi-
riteria optimization prob-lems using an evolutionary method. It is an iterative method that 
onsists insimulating the evolution of a population of individuals whi
h represent solutionsto the problem, sele
ting best-�tting individuals as 
andidates for breeding thenext generation. GA are known to 
onverge very slowly and 
annot therefore beapplied to large graphs [1, 3℄, but might be of use in the redu
ed problem spa
esof band graphs. In the graph separation problem, every vertex 
an belong tothree di�erent domains: the separator, or any of the two separated parts. There-fore, every individual in the population is implemented as a linear array, similarin prin
iple to a 
hromosome, whi
h asso
iates a number between 0 and 2 to anygraph vertex index.The reprodu
tion operator is a 
lassi
al multi-points 
ross-over operator,whi
h is applied at a randomly-sele
ted position of two mated individuals, andswaps one part of their arrays to produ
e two des
endants. The mutation oper-ator 
onsists in swapping the part of randomly 
hosen verti
es on some individ-uals. Sin
e these naive operators 
annot enfor
e that the 
rossed-over and mu-tated individuals be valid solutions, they are post-pro
essed with a 
onsisten
y-
he
king phase whi
h adds verti
es to the separator whenever ne
essary, andremoves unneeded separator verti
es.Individuals are evaluated by means of a �tness fun
tion, whi
h linearly 
om-bines dimensionless numbers su
h as the ratio of graph verti
es that belong tothe separator, the imbalan
e between the two parts, and the ratio of graph edgesthat link separator verti
es. The �rst generation is made up of individuals thatare mutations of the proje
ted partition, plus some entirely random individualswhi
h provide geneti
 diversity. To sele
t and mate individuals, we have imple-mented several 
lassi
al algorithms [7, 11℄. Although all methods behave quitesimilarly, best results were a
hieved with a mix of the elitism and roulette meth-



Deme size # Demes Generations OPC Time (s)40 1 25 5.322334e+08 4.0580 1 25 5.370016e+08 7.9580 1 100 4.355475e+08 25.7240 2 25 4.653384e+08 6.6140 2 100 4.569806e+08 20.1780 8 100 3.751443e+08 50.90Table 4. OPC of the reordered b
sstk29 matrix when multi-level band GA is used forall levels of nested disse
tion. Classi
al multi-level FM yields an OPC of 3.43e + 8 in
0.74s.ods: the 5% best individuals are kept un
onditionally, and ea
h of the remainingones is kept with a probability proportional to its �tness. Then, individuals aremated by pairs of des
ending �tness, and bred so as to keep 
onstant population.In order to in
rease 
on
urren
y in the GA algorithm, all of the individualsthat are lo
ated on the same pro
essor are 
onsidered as an isolated popula-tion (also 
alled �deme�) living on an island [15℄. Only o

asionally 
an a few�
hampions� move from one island to another, to propagate their su

essful 
hro-mosomes into other populations whi
h 
an have been trapped in lo
al optima.In our 
urrent sequential implementation, every deme is handled by a di�erentthread. Migration is performed when the variety of the population in some demede
reases, i.e. when individuals are too similar to their lo
al 
hampion.To evaluate the 
onvergen
e speed of our GA algorithm, we have 
omputednested disse
tion orderings of several test graphs with our multi-level band GAmethod. All of our tests were run on the M3PEC ma
hine of the Université Bor-deaux I, an eleven-node IBM ma
hine with eight 1.5 MHz dual-
ore pro
essorsand 32 GB of memory per node. Sin
e our 
urrent implementation is thread-based only, timings of tests involving more than sixteen threads (written betweenparentheses) are estimated: these tests are still run on a single SMP node, withas many threads per 
ore as ne
essary, and the running time is divided by theappropriate ratio. ParMeTiS, however, uses MPI, and runs fully in parallel.Table 4 provides some results for graph b
sstk29. These results show that GA
onverges quite well, and that quality 
an be improved by in
reasing 
omputationtime and/or population size. As expe
ted, running times are high, but GA arehighly s
alable, so that 
omputation time 
an be redu
ed by adding pro
essors,and partitioning quality 
an be in
reased by giving more time.The se
ond 
lass of experiments that we have run aimed at evaluating thes
alability of our method in terms of quality and running time. In order to
ompare our ordering software to ParMeTiS in similar 
onditions, we ran ourmethod on numbers of pro
essors p that are powers of two (while our methoddoes not require it), and performed band GA on the �rst log

2
(p) levels only,using band FM afterwards; we will refer to this method as �limited GA� (LGA)in all of the following. When running GA, the population is evenly spread onall of the threads, with at least 100 individuals on the whole and at least 25



individuals per deme; therefore, above 4 threads, the population doubles alongwith the number of threads.Our results, whi
h are summarized in Table 5, are extremely en
ouraging.First of all, partitioning quality is not degraded too mu
h when the number ofpro
essors in
reases: on our worst 
ase, bmw32, we loose about 60% in OPCquality between 1 and 64 pro
essors, and the quality is almost 
onstant for
oupole8000. Above 8 pro
essors, our results 
learly outperform the ones ofParMeTiS, by a fa
tor greater than two for thread. As expe
ted, the higherthe degree of the graph is, the bigger the di�eren
e is, be
ause ParMeTiS 
anonly do gradient lo
al optimizations on nodes whi
h have neighbors on otherpro
essors.Partitioning times are very good, too. Although the running time of a singlesequential band GA re�nement algorithm is between 30 and 80 times higherthan the one of its sequential band FM 
ounterpart, the overall running timeof our LGA ordering program does not in
rease too mu
h when the numberof pro
essors in
rease. While a doubling of the number of pro
essors impliesthe turning of a whole level of band FM re�nements into band GA re�nements,the running time of LGA in
reases reasonably along with the number of threads,be
ause when the number of pro
essors in
reases it is levels of smaller subgraphsthat are passed to the GA, whi
h only results in a limited in
rease in the overallrunning time 
ompared to the time taken by the �rst GA levels. Mu
h hope istherefore pla
ed in the development of a fully parallel, distributed-memory LGAalgorithm.4 Con
lusion and future workIn this paper, we have presented a 
onstrained banding approa
h whi
h dramati-
ally de
reases problem size during the re�nement phase of multi-level partition-ing s
hemes. This method, whi
h 
an be used with any re�nement algorithm,allows us to take advantage of heuristi
s whi
h are usually too expensive to be
onsidered, su
h as geneti
 algorithms. We have implemented a shared memorymulti-threaded GA, and tried it on numerous test 
ases. Although our GA isslower than distributed FM-like algorithms, it is s
alable and provides betterresults, and its quality 
an be parametrized more easily (in terms of popula-tion size and of number of generations) to a

ount for eventual time or quality
onstraints.We are 
urrently developing a distributed memory version of our GA al-gorithm, based on MPI, whi
h will allow us to run tests on a larger numberof pro
essors, and to investigate the limits of using GA as a band re�nementmethod for very large graphs. Sin
e the testbed that we will use for this newversion will be the parallel ordering routine of PT-S
ot
h, we will be ableto 
ompare its running time with the one of other parallel ordering software.Moreover, in order to have a referen
e for the quality of orderings, we are also
urrently 
ompleting the 
oding in PT-S
ot
h of the 
entralized band FM re-



�nement algorithm des
ribed at the end of Se
tion 2, whi
h will allow us to
ompute, in a semi-parallel fashion, high quality orderings of very large graphs.Referen
es1. S. Areibi and Zeng Y. E�e
tive memeti
 algorithms for VLSI design automa-tion = geneti
 algorithms + lo
al sear
h + multi-level 
lustering. EvolutionaryComputation, 12(3):327�353, 2004.2. S. T. Barnard and H. D. Simon. A fast multilevel implementation of re
ursivespe
tral bise
tion for partitioning unstru
tured problems. Con
urren
y: Pra
ti
eand Experien
e, 6(2):101�117, 1994.3. T. N. Bui and B. R. Moon. Geneti
 algorithm and graph partitioning. IEEE Trans.Comput., 45(7):841�855, 1996.4. C. M. Fidu

ia and R. M. Mattheyses. A linear-time heuristi
 for improving net-work partitions. In Pro
. 19th Design Automat. Conf., pages 175�181. IEEE, 1982.5. A. George and J. W.-H. Liu. Computer solution of large sparse positive de�nitesystems. Prenti
e Hall, 1981.6. B. Hendri
kson and R. Leland. A multilevel algorithm for partitioning graphs. InPro
eedings of Super
omputing, 1995.7. J. Horn, N. Nafpliotis, and D. E. Goldberg. A ni
hed Pareto geneti
 algorithm formultiobje
tive optimization. In IEEE World Congress on Computational Intelli-gen
e, volume 1, pages 82�87, 1994.8. G. Karypis and V. Kumar. A fast and high quality multilevel s
heme for parti-tioning irregular graphs. SIAM J. on S
ienti�
 Computing, 20(1):359�392, 1998.9. MeTiS: Family of multilevel partitioning algorithms. http://glaros.dt
.umn.edu/gkhome/views/metis.10. B. W. Kernighan and S. Lin. An e�
ient heuristi
 pro
edure for partitioninggraphs. Bell System Te
hni
al Journal, 49:291�307, February 1970.11. P. Mos
ato. On evolution, sear
h, optimization, geneti
 algorithms and martialarts, towards memeti
 algorithms. Te
hni
al Report 826, California Intitute ofTe
hnology, Pasadena, CA 91125, U.S.A., 1989.12. S
ot
h: Stati
 mapping, graph partitioning, and sparse matrix blo
k orderingpa
kage. http://www.labri.fr/�pelegrin/s
ot
h/.13. K. S
hloegel, G. Karypis, and V. Kumar. Parallel multilevel algorithms for multi-
onstraint graph partitioning. In Pro
eedings of EuroPar, pages 296�310, 2000.14. H. D. Simon and S.-H. Teng. How good is re
ursive bipartition. SIAM J. S
.Comput., 18(5):1436�1445, 1995.15. D. Whitley, S. Rana, and R. B. He
kendorn. The island model geneti
 algorithm:On separability, population size and 
onvergen
e. Journal of Computing and In-formation Te
hnology, 7:33�47, 1999.



Test Number of pro
essors or threads
ase 1 2 4 8 16 32 64b
sstk32
CLGA 1.60e+9 1.55e+9 1.67e+9 1.82e+9 1.83e+9 1.53e+9 2.07e+9
CPM 1.29e+9 1.55e+9 1.62e+9 3.09e+9 4.11e+9 5.85e+9 4.01e+9
tLGA 0.42 0.88 0.84 0.97 2.07 (2.86) (4.06)audikw1
CLGA 5.68e+12 5.91e+12 5.70e+12 5.82e+12 5.99e+12 6.44e+12 6.02e+12
CPM � � � 7.78e+12 8.88e+12 8.91e+12 1.07e+13
tLGA 19.78 22.77 29.55 32.89 60.24 (74.64) (91.78)bmw32
CLGA 3.04e+10 3.44e+10 3.75e+10 4.13e+10 4.64e+10 4.57e+10 5.01e+10
CPM 2.84e+10 3.22e+10 4.09e+10 5.11e+10 5.61e+10 5.74e+10 6.31e+10
tLGA 1.69 1.79 2.48 2.36 3.67 (5.11) (7.80)altr4
CLGA 3.46e+8 3.71e+8 4.23e+8 4.06e+8 4.31e+8 4.92e+8 4.71e+8
CPM 4.25e+8 4.20e+8 4.49e+8 4.46e+8 4.64e+8 5.03e+8 5.16e+8
tLGA 0.65 1.78 2.25 1.95 3.36 (5.43) (7.20)
tPM 0.58 0.31 0.20 0.13 0.11 0.27 0.31
onesphere1m
CLGA 1.90e+12 1.92e+12 1.99e+12 2.37e+12 2.34e+12 2.53e+12 2.63e+12
CPM 2.04e+12 2.20e+12 2.46e+12 2.78e+12 2.96e+12 2.99e+12 3.29e+12
tLGA 44.03 69.66 86.47 90.44 120.87 (134.85) (158.07)
oupole8000
CLGA 7.64e+10 7.64e+10 7.62e+10 7.65e+10 7.66e+10 7.68e+10 7.66e+10
CPM � � � 8.17e+10 8.26e+10 8.58e+10 8.71e+10
tLGA 125.69 75.40 55.19 49.16 52.59 (61.93) (77.26)thread
CLGA 4.10e+10 3.99e+10 4.41e+10 4.64e+10 4.43e+10 4.59e+10 5.19e+10
CPM 3.65e+10 3.98e+10 6.60e+10 1.03e+11 1.24e+11 1.53e+11 1.28e+11
tLGA 0.56 2.33 3.10 2.93 4.22 (5.02) (5.92)Table 5. Comparison between ParMeTiS (PM) and our multi-level limited band ge-neti
 algorithm (LGA) for several graphs. CLGA and CPM are the OPC for LGA andPM, respe
tively. Dashes indi
ate abortion due to memory shortage. LGA timings be-tween parentheses are extrapolated times for 
ases requiring more than 16 threads, aswe had to run several threads per 
ore on a single SMP node. Timings for ParMeTiSare provided for graph altr4 to give an idea of its speed, but tPM and tLGA 
annotbe 
ompared, be
ause PM is a fully parallel program, while our LGA testbed is thepurely sequential nested disse
tion routine of S
ot
h, whi
h has been parametrizedso as to run the multi-threaded LGA algorithm only during the un
oarsening phasesof the �rst log

2
(p) stages of the nested disse
tion pro
ess.


