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Abstract

We study well-posedness for elliptic problems under the form

b(u) − div a(x, u,∇u) = f,

where a satisfies the classical Leray-Lions assumptions with an exponent p that
may depend both on the space variable x and on the unknown solution u. A
prototype case is the equation u − div

(

| ∇u|p(u)−2 ∇u
)

= f .
We have to assume that infx∈Ω, z∈R

p(x, z) is greater than the space dimen-
sion N . Then, under mild regularity assumptions on Ω and on the nonlinearities,
we show that the associated solution operator is an order-preserving contraction
in L1(Ω).

In addition, existence analysis for a sample coupled system for unknowns
(u, v) involving the p(v)-laplacian of u is carried out. Coupled elliptic systems
with similar structure appear in applications, e.g. in modelling of stationary
thermo-rheological fluids.

Key words: variable exponent, p(u)-laplacian, thermo-rheological fluids,
well-posedness, Young measures
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1. Introduction

In the previous paper [4], we have studied the stability of solutions of the
variable exponent problems of the p(x)-laplacian kind problems under pertur-
bation of the summability exponent p(x). In the present paper, we study the
closely related issue of convergence of approximations for variable exponent
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problems with dependency of p on the unknown solution u itself. The goal is
to derive existence results for such p(x, u) variable exponent problems. We also
investigate the uniqueness and structural stability issues.

We first consider the case where the dependency of p on u is local. Namely,
we study the equation

b(u) − div a(x, u,∇u) = f, (1)

where b : R −→ R is nondecreasing, normalized by b(0) = 0. For the sake of
simplicity, we supplement (1) with the homogeneous Dirichlet boundary condi-
tion:

u = 0 on ∂Ω. (2)

The problem (1),(2) fits into a generalized Leray-Lions framework under the
assumptions that a : Ω × (R×R

N) −→ R
N is a Carathéodory function with

a(x, z, 0) = 0 for all z ∈ R and a.e. x ∈ Ω (3)

satisfying, for a.e. x ∈ Ω, for all z ∈ R, the strict monotonicity assumption

(a(x, z, ξ)−a(x, z, η)) · (ξ−η) > 0 for all ξ, η ∈ R
N , ξ 6= η , (4)

as well as the growth and coercivity assumptions with variable exponent:

|a(x, z, ξ)|p
′(x,z) ≤ C

(

|ξ|p(x,z) + M(x)
)

, (5)

a(x, z, ξ) · ξ ≥
1

C
|ξ|p(x,z). (6)

Here C is some positive constant, M ∈ L1(Ω),

p : Ω×R −→ [p−, p+] is Carathéodory, 1 < p− ≤ p+ < +∞, (7)

and p′(x, z) := p(x,z)
p(x,z)−1 is the conjugate exponent of p(x, z).

This set of assumptions is a straightforward generalization of the classical
hypotheses of Leray and Lions [18]; yet the existence issue for problems (1)-(2)
under the assumptions (3)-(7) remains open. Indeed, the possible non-denseness
of regular functions in the variable exponent Sobolev spaces undermines the
convergence analysis. In the present paper, we avoid this difficulty by requiring
that p = p(x, u(x)) is sufficiently regular. Therefore our analysis is reduced to
the case where p− > N (N being the dimension of the space domain) and where
p(x, z) is, roughly speaking, Hölder continuous. Notice that the situation where
the variable exponent p at the point x can depend on the unknown value u(x)
(or on the whole set of unknown values

(

u(x) )x∈Ω) is non-standard, because
problem (1),(2) cannot be written as equality in terms of duality in fixed Banach
spaces. Nonetheless, under mild regularity assumptions on p, a and Ω and under
the key restriction p ≥ p− > N , we prove that problem (1)-(2) is well-posed in
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L1(Ω). Following [9], we can interpret this result as the m − T -accretivity in
L1(Ω) of the closure of the operator u 7→ −div a(x, u, ∇u).

Although the p(x)-laplacian kind problems have been extensively used in
mathematical modelling in the last fifteen years (some of the references are
listed in [4]), the authors are not aware of models with variable exponent p(x)
explicitly depending on u(x). Yet a related, although far more complicated,
minimization problem with p = p(∇u) was suggested in [11], in the context of
image processing.

On the contrary, the second class of problems that we study appears quite
naturally in applications. Consider e.g. the toy problem

{

u − ∆p(x,v)u = f(x, u, v)
v − ∆v = g(x, u, v)

(8)

with homogeneous Dirichlet boundary conditions, under the assumption that f
and g are bounded Carathéodory functions. In this case, because p = p(x, v(x))
and because v is completely determined by u, we can consider that p depends
on u in a non-local way (we denote such a dependency by p = p[u]). For
examples of models having similar structure, we refer to [24, 25, 7, 26, 27]. In
order to demonstrate the applicability of the techniques of [4] for this kind of
coupled variable exponent problems, in this paper we only justify the existence
of solutions for the very simple problem (8). Notice that we heavily rely on the
a priori regularity of p[u], enforced by our assumptions.

Existence results for the non-local case were already obtained by Zhikov
[24, 25, 26, 27] and Antontsev and Rodrigues [7] for different elliptic systems
originating from the thermistor problem and from the modelling of thermorhe-
ological fluids. The existence proofs of [24, 25, 7] are based on the Schauder
fixed-point theorem, and the regularity of p[u] is crucial also for this argument.
We provide a complementary point of view, showing existence for the problem
(8) through convergence of Galerkin approximations.

Convergence of numerical finite volume approximations for (1) and for (8)
will be analyzed in the forthcoming paper [5], with essentially the same tools as
used in [4] and in the present paper.

Let us briefly explain the techniques used in the proofs.
Sequences of approximate solutions are constructed either by regularization

with the p+-laplacian, or by Galerkin approximations. Then the convergence
analysis is carried out in terms of Young measures associated with a weakly
convergent sequence of gradients of solutions, as in [4] (cf. [13, 17] and references
therein).

Our uniqueness proof for (1)-(2) uses the standard L1 techniques combined
with a regularity and density hint (cf. [6]). Indeed, the basic uniqueness and
continuous dependence theorem is valid for W 1,∞ solutions. This regularity is
always true for the one-dimensional problem (cf. [10, 20, 21, 22]); but in the case
several space directions, we need a Lipschitz regularity result for an L1-dense
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set of right-hand sides f . Such results are indeed available, for f ∈ L∞(Ω) (see
Alkhutov [2], Acerbi and Mingione [1], Fan and Zhao [14], Fan [15]), under some
restrictions on the regularity of ∂Ω and for p− > N . Therefore we are able to
give a complete well-posedness result, provided a(x, z, ξ) satisfies (6),(5) with a
sufficiently regular exponent p(x, z), p ≥ p− > N .

The outline of the paper is the following. The functional spaces framework is
set up in Section 2.1. Section 2.2 recalls the definitions given in [4] and states the
results obtained for the local p(u)-laplacian kind problems. Section 2.3 states
the results for the case of the Dirichlet problem for the coupled system (8). The
proofs are postponed to Sections 3 and 4, respectively.

2. Main definitions and results

2.1. Variable exponent Lebesgue and Sobolev spaces

The solutions to the Dirichlet problem (1),(2) are sought within the variable

exponent and the variable exponent Sobolev spaces W
1,π(·)
0 (Ω), Ėπ(·)(Ω) defined

below, with π(·) = p(·, u(·)). For the sake of completeness, we also recall the
definition of variable exponent Lebesgue spaces Lπ(·)(Ω).

Definition 2.1. Let π : Ω −→ [1, +∞) be a measurable function.

• Lπ(·)(Ω) is the space of all measurable functions f : Ω −→ R such that the
modular

ρπ(·)(f) :=

∫

Ω

|f(x)|π(x) dx < +∞

is finite, equipped with the Luxembourg norm

‖f‖Lπ(·) := inf
{

λ > 0
∣

∣

∣
ρπ(·)

(

f/λ
)

≤ 1
}

.

In the sequel, we will use the same notation Lπ(·)(Ω) for the space (Lπ(·)(Ω))N

of vector-valued functions.

• W 1,π(·)(Ω) is the space of all functions f ∈ Lπ(·)(Ω) such that the gradient
∇f of f (taken in the sense of distributions) belongs to Lπ(·)(Ω); the space
W 1,π(·)(Ω) is equipped with the norm

‖f‖W 1,π(·) := ‖f‖Lπ(·) + ‖∇f ‖Lπ(·) .

Further, W
1,π(·)
0 (Ω) is the closure of C∞

0 (Ω) in the norm of W 1,π(·)(Ω).

• Finally, Ėπ(·)(Ω) is the set of all f ∈ W 1,1
0 (Ω) such that ∇f ∈ Lπ(·)(Ω). This

space is equipped with the norm ‖f‖Ėπ(·) := ‖∇f ‖Lπ(·) .

When 1 < p− ≤ π(·) ≤ p+ < ∞, all the above spaces are separable reflexive
Banach spaces.

A difficulty in the interpretation and analysis of the variable exponent prob-

lems of the kind (1) lies in the fact that W
1,π(·)
0 (Ω) can be a strict subspace of

Ėπ(·)(Ω). Therefore there can be at least two different ways to interprete the
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homogeneous Dirichlet boundary condition (2). In this paper, we will always
avoid the difficulty by ensuring that π(x) := p(x, u(x)) satisfy the log-Hölder
continuity assumption (9) below. Indeed, from the results of Zhikov and Fan
we deduce

Lemma 2.2 (see [4, Corollary 2.6]). Assume that π(·) : Ω −→ [p−, p+] has
a representative which can be extended into a function continuous up to the
boundary ∂Ω and satisfying the log-Hölder continuity assumption:

∃L > 0 ∀x, y ∈ Ω, x 6= y, − (log |x − y|)
∣

∣π(x) − π(y)
∣

∣ ≤ L. (9)

Then D(Ω) is dense in Ėπ(·)(Ω). In particular, the spaces Ėπ(·)(Ω) and W
1,π(·)
0 (Ω)

are Lipschitz homeomorphic and therefore they can be identified.

2.2. Definitions and results: the p(u) case

First, let us recall the different definitions of a weak solution to problem
(1),(2).

Definition 2.3 (see [4]; cf. Zhikov [23], Alkhutov, Antontsev and Zhikov [3]).
Let f ∈ L1(Ω).

(i) A function u ∈ W
1,p(·,u(·))
0 (Ω) is called a narrow weak solution of problem

(1),(2), if b(u) ∈ L1(Ω) and the equation b(u) − div a(x, u,∇u) = f is
fulfilled in D′(Ω).

(ii) A function u ∈ Ėp(·,u(·))(Ω) is called a broad weak solution of problem
(1),(2), if b(u) ∈ L1(Ω) and for all φ ∈ Ėp(·,u(·))(Ω) ∩ L∞(Ω),

∫

Ω

b(u)φ + a(x, u,∇u) · ∇φ =

∫

Ω

f φ. (10)

(iii) A function u like in (ii) which satisfies (10) with test functions φ ∈

W
1,p(·,u(·))
0 (Ω) (or, equivalently, that satisfies b(u) − div a(x, u,∇u) = f

in D′(Ω)) is called an incomplete weak solution of problem (1),(2).

Notice that, under the growth assumption (5), a(x, u,∇u) belongs to L1(Ω)
and even to Lp′(·,u(·))(Ω), so the formulations (i)–(iii) make sense.

Remark 2.4. Narrow and broad solutions are also incomplete. Note that
uniqueness of incomplete solutions cannot be expected, unless the notions of
broad and narrow solutions coincide. In this paper, we are not interested in
incomplete solutions.

In [4], we have shown that both narrow and broad weak solutions defined
below appear as natural notions of solutions for the case where p only depends
on x; in particular, each of these notions is stable under the ad hoc monotone
approximation of p(x) by a sequence pn(x).

5



The general problem (1),(2) with (x, u(x))-dependent p is not yet well un-
derstood; we now turn to partial well-posedness results for this framework. In

the present paper, we need a framework which ensures that W
1,p(·,u(·))
0 (Ω) and

Ėp(·,u(·))(Ω) coincide a priori, i.e. without any additional information on the
function u(·) ∈ Ėp(·,u(·)). Clearly, narrow and broad weak solutions would coin-
cide in this case. A sufficient condition is

∣

∣

∣

∣

p : Ω × R −→ [p−, p+] with inf p > N, and for all M > 0,

p is log-Hölder continuous in (x, z) uniformly on Ω × [−M, M ].
(11)

Notice that assumption
N < inf p

in (11) ensures that L1(Ω) ⊂
(

Ėp(·,u(·))(Ω)
)∗

. Therefore the notion of a weak
solution is sufficient (cf. [4], where we also consider renormalized solutions of
problem (1),(2)).

Remark 2.5. Let us stress that existence of an incomplete solution is a simpler
problem; we guess that restriction (11) can be dropped in this context. The
technique to be used is the one of Zhikov [27, Theorem 3]. Another useful
approach is the one of Dolzmann, Hungerbühler and Müller [12].

The role of assumption (11) for the existence theory is explained in Re-
mark 3.2 in § 3.

We prove the following existence result (see Remark 3.1 for more details):

Theorem 2.6. Assume a = a(x, z, ξ) satisfies (3)-(6), and p satisfies (11).
Then there exists a map f ∈ L1(Ω) 7→ uf ∈ C(Ω), such that uf is (both narrow

and broad) weak solution to (1),(2); moreover, for all f, f̂ ∈ L1(Ω),

∫

Ω

(

b(uf) − b(u
f̂
)
)+

≤

∫

Ω

(f − f̂) sign +(uf − u
f̂
) +

∫

[

uf =u
f̂

]

(f − f̂)+. (12)

In the other words, there exists an m − T -accretive operator A on L1(Ω)
such that w ∈ L1(Ω) fulfills w + A(w) = f if and only w = b(uf) and uf is the
weak solution of (1),(2) constructed in Theorem 2.6 (see e.g. [9] for information
on accretive operators in Banach spaces).

The following structural stability result analogous to the one of [4, Theorem
3.8] holds; notice that the regularity assumption (11) is only needed at the limit.

Theorem 2.7. Assume a = a(x, z, ξ) satisfies (3)-(6), and p satisfies (11).
Assume

(

an

)

n
is a sequence of diffusion flux functions of the form an(x, z, ξ)

such that (3),(4) hold for all n. Assume (5),(6) hold with C, p± independent of
n, and with a sequence

(

Mn

)

n
equi-integrable on Ω. Assume that the associated

exponents pn featuring in assumptions (5),(6) satisfy (7). Assume

∣

∣

∣

∣

for all bounded subset K of R×R
N ,

sup(z,ξ)∈K |an(·, z, ξ) − a(·, z, ξ)| converges to zero in measure on Ω,
(13)
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∣

∣

∣

∣

for all bounded subset K of R,
supz∈K |pn(·, z) − p(·, z)| converges to zero in measure on Ω.

(14)

Finally, assume (fn)n is a sequence of data weakly convergent to f in L1(Ω).
Denote by (1n),(2) the problem associated with an, fn. Assume (un)n is a

sequence of (broad or narrow) weak solutions to problems (1n),(2).
Then there exists u ∈ C(Ω) and a subsequence (nk)k such that unk

,∇unk

converge to u,∇u, respectively, a.e. on Ω, and u is a weak (broad and narrow)
solution of the limit problem (1),(2).

Clearly, extraction of a subsequence is not needed when the solution to the
limit problem is unique. Concerning the uniqueness of solutions to (1),(2), we
are able to prove the following conditional result, which does not rely directly on
assumption (11) but depends on a priori regularity1 of bounded weak solutions
of (1),(2).

Theorem 2.8. Assume b is strictly increasing. Assume that a = a(x, z, ξ)
satisfies (3)-(6), and the function M in (5) can be taken constant. Assume in
addition that a satisfies

∣

∣

∣

∣

∣

∣

for all bounded subset K of R×R
N there exists a constant C(K)

such that for a.e. x ∈ Ω, for all (z, ξ), (ẑ, ξ) ∈ K,
∣

∣a(x, z, ξ) − a(x, ẑ, ξ)
∣

∣ ≤ C(K) |z − ẑ|.
(15)

Finally, suppose the following regularity property for weak solutions holds true:

∣

∣

∣

∣

∣

∣

there exists a dense set F in L1(Ω) such that for all f ∈ F ,
there exists a weak solution2 of (1),(2)

which is Lipschitz continuous on Ω.
(16)

Then for all f ∈ L1(Ω) there exists at most one function u such that u is a
narrow weak solution of (1),(2) or a broad weak solution of (1),(2).

To be precise, in the conclusion of Theorem 2.8 we mean that there could
exist at most one narrow solution, at most one broad solution, and if both exist,
then they coincide.

Condition (16) goes back to an idea of [6]. In practice, L∞(Ω) is a good
candidate for being F in the above statement. Indeed, the results of Fan [15]
(see also [2, 1, 14]) can be applied, provided ∂Ω is Hölder regular and, moreover,
the log-Hölder regularity of p(·, z) in assumption (11) is upgraded to the Hölder
continuity with some non-zero exponent α. In this way, we deduce the following
well-posedness result, which applies for instance to the problem

u − ∆p(x,u)u = f, u|∂Ω = 0, (17)

1regularity that probably relies on assumption (11): see [15]!
2under the assumptions of Theorem 2.8, broad and narrow weak solutions that are Lipschitz

continuous coincide
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assuming that p is locally Lipschitz continuous on Ω × R and p(x, z) > N for
all (x, z).

Assumption (19) below is a combination of (15) and of the hypothesis made
by Fan [15]; this assumption is natural when a(x, z, ξ) grows as |ξ|p(x,z) and p
satisfies (18), in view of the fact that, for p, p̂ ≥ p− > 1,

∣

∣ |ξ|p−1−|ξ|p̂−1
∣

∣ ≤ |ξ|max{p,p̂}−1 ln(|ξ|) |p−p̂|.

Theorem 2.9. Assume that b is strictly increasing. Assume that a = a(x, z, ξ)
satisfies (3)-(6), and the function M in (5) can be taken constant. Assume that
ess inf p > N and that

∣

∣

∣

∣

∣

∣

∣

there exist α > 0 such that for all bounded subset K of R,
∣

∣ p(x, z) − p(x̂, ẑ)
∣

∣ ≤ C(K)
(

|x−x̂|α + |z−ẑ|
)

for all x, x̂ ∈ Ω and all z, ẑ ∈ K,

(18)

where p = p(x, z) is the variable exponent in (5),(6).
In addition, assume that ∂Ω belongs to some Hölder class C0,α, that a(x, z, ξ)

is continuously differentiable in ξ on R
N\{0}, and that a satisfies the assumption

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

there exist α > 0 such that for all δ > 0 and all bounded K ⊂ R,
∣

∣

∣
a(x, z, ξ) − a(x̂, ẑ, ξ)

∣

∣

∣

≤ C(δ, K)
(

|x−x̂|α + |z−ẑ|
) (

1 + |ξ|max{p(x,z),p(x̂,ẑ)}−1+δ
)

for all x, x̂ ∈ Ω, for all z, ẑ ∈ K and all ξ ∈ R
N .

(19)

Then for all f ∈ L1(Ω), there exists one and only one weak broad solution uf

to problem (1),(2) (it is also the unique narrow weak solution of the problem).
Moreover, the solution uf depends continuously on the datum f in the sense
(12).

Remark 2.10. A very particular case where the assumptions of Theorems 2.6,
2.7, 2.8 can be simplified is the case N = 1. We do not formulate the exact
assumptions, because the framework of growth and coercivity assumptions of
the kind (5),(6) is too restrictive. Indeed, for N = 1, any weak solution is
automatically bounded; moreover, any weak solution is Lipschitz continuous
under a mild uniform boundedness assumption on a

−1(x, z, ·). In addition, in
the one-dimensional case, D(Ω) is dense in Ėπ(·)(Ω) for all p : Ω −→ [p−, p+]
measurable. Therefore the one-dimensional problem (17) is well-posed also for a
discontinuous in x exponent p satisfying (7), provided that p is locally Lipschitz
continuous in z uniformly in x.

The case N = 1 has been investigated, under fairly general coercivity and
growth conditions on a, in the works of Bénilan and Touré [10], Ouaro and
Touré [22], and Ouaro [20, 21].
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2.3. The p[u] case

For system (8) endowed with the homogeneous Dirichlet boundary condi-

tions, we can simply seek of u ∈ W
1,p(u)
0 (Ω) and v ∈ H1

0 (Ω). The assumptions
we make on the reaction terms f, g and on p(·, ·) entail a Hölder regularity of
these solutions. We prove

Theorem 2.11. Let Ω be a bounded domain of R
N with C0,α boundary, with

some α > 0. Let g, h : Ω× (R×R) −→ R be globally bounded Carathéodory
functions. Assume p is a locally C0,α continuous function on Ω × R taking
values in [p−, p+] ⊂ (1, +∞).

Then there exists a couple of functions u, v : Ω −→ R such that v ∈ H1
0 (Ω),

u ∈ W
1,p(v)
0 (Ω), and

{

u − ∆p(x,v)u = f(x, u, v)
v − ∆v = g(x, u, v)

is fulfilled in D′(Ω).

Moreover, we have u, v ∈ C0,β(Ω) for some β ∈ (0, 1).

This theorem is obtained from the fact that the suitably constructed Galerkin
approximations of the homogeneous Dirichlet problem (8) converge. In a similar
manner, convergence of numerical methods for (8) can be justified (see [5]).

3. Well-posedness results for (1),(2) with p = p(u)

In the subsequent proofs, a number of references is made to the proof of
[4, Theorems 3.8, 3.11]. We also use without proofs the properties of Young
measures stated in [16] and in [4, Theorem 2.10]

3.1. Existence of weak solutions

Recall that we need to assume (11), therefore we are in the case where
D(Ω) is dense in the space where weak solutions belong to. In this framework,
existence can be shown by the Galerkin method, as in the work [8] of Antontsev
and Shmarev. We give another proof, using a regularization technique (cf.
[3]). Then in Remark 3.2, we isolate and discuss the point where the possible

discrepancy between W
1,p(·,u(·))
0 (Ω) and Ėp(·,u(·))(Ω) becomes the obstacle for

proving the general existence result.

Proofof Theorem 2.6:

• Step 1. For n ∈ N, introduce an(x, z, ξ) := a(x, z, ξ) + 1
n
|ξ|p+−2ξ. Notice

that an verifies the assumptions (3)-(6) with p(x, z) replaced by the constant
exponent p+, and with C,M that depend on n. Denote by (1n) the equation
of the form (1) associated with the diffusive flux an.

Because p+ ≥ p− > N , L1(Ω) ⊂ W
−1,p+

0 (Ω); therefore for all f ∈ L1(Ω),

there exists a weak solution un
f of (1n),(2) in W

1,p+

0 (Ω) (see e.g. [4, Theo-
rem 3.11]). Moreover, without loss of generality, we can assume that the T -
contraction property in L1(Ω) holds for all n:

∫

Ω

(

b(un
f ) − b(un

f̂
)
)+

≤

∫

Ω

(f − f̂) sign +(un
f − un

f̂
) +

∫

[

un
f
=un

f̂

]
(f − f̂)+. (20)
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It is easy to deduce (20) by the technique on the proof of Theorem 2.8 below,
provided an is Lipschitz continuous in z, more exactly,

∀x ∈ Ω ∀ξ ∈ R
N sup

|z|,|ẑ|≤L

|an(x, z, ξ)−an(x, ẑ, ξ)| ≤ C(an, L) |ξ|p+−1 |z−ẑ|. (21)

In order to get rid of the regularity assumption (21), we approximate a by a
sequence of regular, in the sense (21), diffusion fluxes constructed by convolu-
tion in (x, z) and normalized as in (3). The so constructed sequence of fluxes
verifies the standard coercivity and growth assumptions with the constant and
fixed exponent p+ and with common C > 0, M ∈ L1(Ω). Thus we can use
the classical Minty-Browder argument (or, alternatively, the appropriately sim-
plified arguments of Step 2 below) to pass to the limit. As a result, we justify

inequalities (20), at least for f, f̂ in some countable subset F of L1(Ω).

• Step 2. Now, fix a countable family F of right-hand sides f such that F
is dense in L1(Ω). In the sequel, we will write un for un

f , meaning that f ∈ F ;
moreover, extracting subsequences, we will do it simultaneously for all f ∈ F ,
using the standard diagonal procedure.

In this way, we now pass to the limit in (a subsequence of) (un)n, as n →
+∞. We cannot apply [4, Theorem 3.8] directly, but we adapt its proof to the
present case. Let us set

ãn(x, ξ) := a(x, un(x), ξ);

then
pn(x) := p(x, un(x))

is the corresponding variable exponent, which we now consider as a function of
x alone. Let us repeat the itinerary of the proof of [4, Theorem 3.11], that we
now sketch. Firstly, we show that un converges a.e. on Ω to some function u.
Secondly, we deduce that pn, ãn converge to p∞, ã in the sense

pn converges to p∞ in measure on Ω, (22)
∣

∣

∣

∣

for all bounded subset K of R
N ,

supξ∈K |ãn(·, ξ) − ã(·, ξ)| converges to zero in measure on Ω.
(23)

Here and in the sequel of the proof, we will write p∞(x) for p(x, u(x)); and ã(x, ξ)
denotes a(x, u(x), ξ). Finally, we apply the passage-to-the limit arguments from
the proof of [4, Theorem 3.8], taking a particular care of Claim 9 of the proof.

Let us give the key details. Thanks to (6) and the definition of an, the
sequence (un)n verifies the standard estimates

∫

Ω

(

b(un)un + |∇un|
p(x,un(x)) +

1

n
|∇un|

p+
)

≤ C,

with C that depends on f but not on n. Thus we deduce that 1
n
|∇un|

p+−2 ∇un

converges to zero in L1(Ω); moreover,

∫

Ω

|∇un|
pn(x) ≤ C. Thus, up to extraction
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of a subsequence, un converges a.e. on Ω (and also weakly in W
1,p−

0 (Ω)) to a
limit u; using the representation of weakly convergent sequences in L1(Ω) in
terms of Young measures, we can write

∇u =

∫

RN

λdνx(λ). (24)

Further, we have shown in the proof of [4, Theorem 3.11] that, because un

converges strongly to u, (23) is true. Similarly, (22) holds (the proof of (22)
under assumption (11) is immediate, because p is continuous on Ω×R, and thus
locally uniformly continuous; and un converges to u in C(Ω), by the standard
embedding argument). Now we can apply Claim 4 of the proof of [4, Theorem
3.8], where we formally put γ = ∞, and get u ∈ Ėp∞(·)(Ω). We also apply
Claims 6,7 to χn := ãn(x,∇un) and conclude that χn converge weakly in L1(Ω)
to the limit χ given by

χ(x) =

∫

RN

ã(x, λ) dνx(λ). (25)

Now, let us concentrate on deducing the key inequality
∫

Ω

χ ·∇u ≥ lim inf
n→∞

∫

Ω

χn ·∇un. (26)

For all e ∈ D(Ω), we have

∫

Ω

(

b(un) e + ãn(x,∇un) · ∇e +
1

n
|∇un|

p+−2 ∇un ·∇e
)

=

∫

Ω

f e. (27)

We can pass to the limit as n → ∞ and infer
∫

Ω

(

b(u) e + χ · ∇e
)

=

∫

Ω

f e (28)

for all e ∈ D(Ω); here χ is given by (25). Because for all n, ∇un ∈ Lp+(Ω)
by construction, by the density argument we can replace e with un in (27).

Further, because we have assumed (11), u ∈ W
1,p∞(·)
0 (Ω) ⊂ W

1,p−

0 (Ω) is Hölder
continuous and the exponent p∞, p∞(x) = p∞(x, u(x)), verifies (9). Thus D(Ω)
is dense in Ėp∞(·)(Ω), therefore we can pick u ∈ Ėp∞(·)(Ω) for the test function
in (28). Passing to the limit as n → ∞, we infer the desired inequality

∫

Ω

χ ·∇u ≥ lim inf
n→∞

∫

Ω

(

χn ·∇un +
1

n
|∇un|

p+
)

≥ lim inf
n→∞

∫

Ω

χn ·∇un. (29)

Continuing as in the proof of [4, Theorem 3.8] (but with γ = ∞, thus avoiding
the technicalities of the renormalized formulation), from the representation for-
mulas (24),(25), the inequality (26) and the monotonicity (4) of ã we infer that
a.e. on Ω, the measure νx reduces to the Dirac measure δ∇u(x). Therefore we
identify χ(x) with ã(x, ∇u(x)).
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We conclude that u is a weak solution of (1),(2) with f ∈ F . Fixing arbi-
trarily the extracted subsequence, we denote by uf the solution u obtained in
Step 2.

• Step 3. Note that we also have un
f −→ uf in L1(Ω). Therefore we can pass

to the limit in (20) and infer (12) with f, f̂ ∈ F . Indeed, the right-hand side of

(12) is the so-called “L1 bracket” [u, f ]+ =

∫

Ω

f sign +u +

∫

f+1l[
u=0

], which

is known to be upper-semicontinuous in L1 (see e.g. [9]).

• Step 4. Now we approximate f, f̂ ∈ L1(Ω) by sequences (fi)i, (f̂i)i ∈ F .
The arguments of the above Step 2 permit to deduce that the corresponding
solution ufi

converges to a weak solution uf of (1),(2), up to extraction of a
subsequence. In order to define correctly the map f 7→ uf , we can simply fix,
for all f , the corresponding approximating sequence (fi)i.

Inequalities (12) can now be extended to all f, f̂ ∈ L1(Ω), by the same
argument as in Step 3. ⋄

Remark 3.1. In the above proof, we have justified the convergence of a par-
ticular approximation un

f to uf only for f in a dense countable subset of L1(Ω).
Notice that under the additional assumption that b is strictly increasing, this
convergence remains true for all f ∈ L1(Ω), thanks to (20) and (12). Thus for
a strictly increasing b, the image of the map f 7→ uf consists of the limits, as
n → ∞, of approximate solutions un

f obtained by the approximation procedure
employed in the proof of Theorem 2.6.

Proofof Theorem 2.7 (sketched): This is a straightforward combination
of the arguments of the proofs of [4, Theorems 3.8,3.11] and of Theorem 2.6.
We only notice that, upon writing

|pn(x, un(x))−p(x, u(x))| ≤ |pn(x, un(x))−p(x, un(x))|+|p(x, un(x))−p(x, u(x))|,

from the a.e. convergence of un to u, from assumption (14) and from the Lusin
theorem applied to the map

p : Ω 7→ p(x, ·) ∈ C(R)

we deduce that pn(·, un(·)) converges to p(·, u(·)) in measure on Ω. In the same
way, we convert assumption (13) into assumption (23) for the nonlinearities
ãn(x, ξ) := an(x, un(x), ξ) and ã(x, ξ) := a(x, u(x), ξ). ⋄

Remark 3.2. Let us clarify the role of the restriction inf p > N for the existence
result of Theorem 2.6. It is only needed in order to ensure that

D(Ω) is dense in Ėp(·,u(·))(Ω), i.e., Ėp(·,u(·))(Ω) = W
1,p(·.u(·))
0 (Ω). (30)
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Indeed, in the beginning of the existence proof we are able to show that u ∈

Ėp(·,u(·))(Ω); and we need that u belong to W
1,p(·.u(·))
0 (Ω) in order to conclude

the proof 3.
The difficulty stems from the fact that, in the above proofs, we have to

justify that u (u being the accumulation point of a sequence (un)n of suitably
constructed approximate solutions) is an admissible test function in the formu-
lation (28) obtained by the passage to a weak limit in (27). In this way we
infer (29), which is the starting point for the monotonicity-based identification
argument.

To make the difficulty apparent, let us ask the following simple question : the
set of weak (broad, or narrow) solutions of (1),(2) is it closed, in the sense of the
a.e. convergence of the solutions and gradients ? This is a very particular case
of Theorem 2.7. In this context, we omit the regularization term in (27),(29)
and refer to the passage from (27),(28) to (29). Then we are able to prove that:

- any accumulation point u belongs to the “broad” space Ėp(·,u(·))(Ω);
- the passage from (27) to (28) is possible with test functions e such that for n

large enough, e ∈ W
1,pn(·)
0 (Ω) (if un are narrow solutions) or e ∈ Ėpn(·)(Ω) (if

un are the broad ones).

Functions e ∈ D(Ω) are always suitable; by the density argument, we are able

to pick any function from the “narrow” space W
1,p(·.u(·))
0 (Ω) as test function in

(28). This is how condition (30) arises.

3.2. Uniqueness of weak solutions

Proofof Theorem 2.8:

• Step 1. Let u be a Lipschitz continuous (broad or narrow) weak solution of
(1),(2) with f ∈ F , and û be a weak solution in the same sense with a source

term f̂ ∈ L1(Ω). For γ > 0, set

Tγ : z ∈ R 7→ Tγ(z) = max{min{z, γ},−γ}, γ > 0.

Then the test function 1
γ

Tγ(u − û) is admissible in the weak formulations for
both u, û.

Indeed, because u is bounded,

φ :=
1

γ
Tγ(u − û) =

1

γ
Tγ(u − Tγ+‖u‖L∞

(û)). (31)

Therefore φ belongs to W 1,1
0 (Ω) and we have

∇φ =
1

γ
(∇u − ∇Tγ+‖u‖L∞

(û)) 1l[
|u−û|<γ

] = (∇u − ∇û) 1l[
|u−û|<γ

]. (32)

3Notice that the aforementioned difficulty does not arise in the identification argument of
Dolzmann, Hungerbühler and Müller [12], nor in the proof of Zhikov [27]. With the help of
any of these arguments, one can study the existence of incomplete solutions of (1),(2) without
imposing the restriction (11).
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Now we use the fact that∇u is bounded. By the assumptions of the theorem,
|a(x, u,∇u)| ≤ C(| ∇u|p(x,u(x)) + 1) ∈ L∞(Ω). This readily implies that φ ∈
W 1,1

0 (Ω) ∩ L∞(Ω) is admissible as a test function in the weak formulation for
the solution u. Because u ∈ W 1,∞(Ω) ∩W 1,1

0 (Ω), this also allows to assert that
u is necessarily both narrow and broad solution to (1),(2).

Further, if û ∈ Ėp(·,û(·))(Ω), then by (32), φ ∈ Ėp(·,û(·))(Ω)∩L∞(Ω) and thus
it is an admissible test function in the broad weak formulation for the solution
û. If û ∈ W

1,p(·,û(·))
0 (Ω), then by (31), by [4, Lemma 2.9] and because u ∈

W
1,p+

0 (Ω) ⊂ W
1,p(·,û(·))
0 (Ω), we have φ ∈ W

1,p(·,û(·))
0 (Ω) ∩ L∞(Ω); we conclude

that φ is an admissible test function in the narrow weak formulation for û.

• Step 2. With the test function of Step 1, we deduce

∫

Ω

1

γ
Tγ(u − û) (b(u) − b(û))

+
1

γ

∫

[

0<|u−û|<γ
]

(

a(x, u,∇u) − a(x, û,∇û)
)

· (∇u −∇û)

=

∫

Ω

1

γ
Tγ(u − û) (f − f̂).

(33)

We add and subtract the term a(x, û,∇u). As γ → 0, by the monotonicity of a

we infer
∫

Ω

|b(u) − b(û)| ≤

∫

Ω

|f − f̂ |

+ lim inf
γ↓0

1

γ

∫

[

0<|u−û|<γ
]

∣

∣an(x, u,∇u) − a(x, û,∇u)
∣

∣ |∇u −∇û|.
(34)

Denote the lim inf term in (33) by R. Since u is bounded, also û is bounded on
the set

[

0 < |u− û| < γ
]

; thus we can use the Lipschitz continuity assumption
(15) to get

R ≤ C(‖u‖L∞ , ‖∇u‖L∞) lim inf
γ↓0

1

γ

∫

[

0<|u−û|<γ
]

|u − û| |∇u −∇û|

≤ C lim
γ↓0

∫

Eγ

|∇u −∇û|,

where Eγ :=
[

0 < |u − û| < γ
]

. Because∇u,∇û ∈ L1(Ω) and meas (Eγ) tends
to zero as γ → ∞, we deduce that the last term in (34) is zero.

• Step 3. Now assume u, û are two weak solutions of (1),(2); either of them
can be a narrow or a broad weak solution. Take a sequence (gi)i ⊂ F , and let
(ûi)i be the corresponding sequence of Lipschitz continuous weak solutions. By
the result of Step 2, we have

∫

Ω

|b(u) − b(û)| ≤

∫

Ω

(

|b(u)− b(ûi)| + |b(û) − b(ûi)|
)

≤

∫

Ω

(

|f − f̂i|+ |f̂ − f̂i|
)

,
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so that at the limit as i → ∞ we infer that b(u) = b(û). Because b is assumed
to be strictly increasing, we conclude that u and û coincide. ⋄

Proofof Theorem 2.9: We only need to justify the uniqueness of a weak
solution; existence and continuous dependence then follow by Theorem 2.6.

Uniqueness is obtained from Theorem 2.8, with the help of the global (up-
to-the-boundary) regularity result of [15] (see also [2, 14]). This result applies
to solutions which are a priori bounded, and in the case the source term f is in
L∞(Ω). The boundedness is trivial because u ∈ W

1,p−

0 (Ω) and we have assumed
that p− > N . Notice that, more generally, the boundedness of u is guaranteed
by the maximum principle, for the L∞ source terms. The maximum principle
for (1),(2) is easily obtained with the technique of the proof of Theorem 2.8,
Step 2, thanks to assumption (3). ⋄

4. Non-local dependence of p on u: existence of weak solutions

Proofof Theorem 2.11:

• Step 1. Let us construct a sequence of approximate solutions.
Pick a countable set (wi)i ⊂ D(Ω) which is dense, e.g., in the weak topology

of W 1,∞(Ω). Take n ∈ N. Consider the nonlinear algebraic system of 2n
equations with the 2n unknowns (cn

i )n
i=1, (d

n
i )n

i=1:



































un(x) :=
∑n

i=1
cn
i wi(x),

∫

Ω

(

un wi + |∇un|
p(x,vn)−2 ∇un ·∇wi

)

=

∫

Ω

f(x, un, vn)wi,

vn(x) :=
∑n

i=1
dn

i wi(x),

∫

Ω

(

vn wi +∇vn ·∇wi

)

=

∫

Ω

g(x, un, vn)wi,

i = 1..n.
(35)

It is easy to check the coercivity condition of [19, Ch.I,Lemma 4.3]; therefore
existence of a solution to system (35) follows from the Brouwer fixed-point
theorem.

• Step 2. The functions un, vn constructed in Step 1 verify the uniform
estimate

∫

Ω

(

u2
n + |∇un|

p(x,vn) + v2
n + |∇vn|

2
)

≤ C(‖f‖L∞, ‖g‖L∞, Ω). (36)

This estimate is standard; it permits to assert that, upon extracting a (not
relabelled) subsequence, vn → v in H1

0 (Ω) weakly and a.e. on Ω, that un → u
in W 1,p−(Ω) ∩ L2(Ω) weakly and also a.e. on Ω, and, moreover, that

∇u(x) =

∫

RN

λdνx(λ), (37)
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where (νx)x is the family of Young measures associated with the weakly conver-
gent in L1(Ω) sequence (∇un)n (see e.g. [4, Theorem 2.10]).

• Step 3. Estimate (36) implies that∇u ∈ Lp(x,v(x)).
This is made by showing that |λ|p(x,v(x)) is summable wrt measure dνx(λ) dx

on R
N ×Ω (then the Jensen inequality is applied). To this end, let us first point

out that pn(·) := p(·, vn(·)) converges to p∞(·) := p(·, v(·)) a.e. on Ω, because p
is uniformly continuous on Ω×R and vn converges pointwise. In particular, by
[4, Theorem 2.10(iii)], the Young measure (µx)x on R×R

N associated with (an
extracted subsequence of) the sequence

(

vn, ∇un

)

n
is equal to δv(x) ⊗ νx.

Then we apply the nonlinear weak-* convergence property of [4, Theorem
2.10(i)] to the function

F :
(

x, (λ0, λ)
)

∈ Ω × (R × R
N ) 7→ |hm(λ)|p(x,λ0),

where (hm)m is the sequence of truncations defined by

hm : R
N −→ R

N , hm(λ) =

{

λ, |λ| ≤ m

m λ
|λ| , |λ| > m,

(38)

m > 0. Hence
∫

Ω×RN

|hm(λ)|p(x,v(x)) dνx(λ) dx =

∫

Ω×(R×RN )

|hm(λ)|p(x,λ0) dµx(λ0, λ) dx

= lim
n→∞

∫

Ω

|hm(∇un)|p(x,vn(x)) dx ≤ lim inf
n→∞

∫

Ω

|∇un|
pn(x) dx ≤ C.

As m ↑ ∞, from the monotone convergence theorem we deduce our claim.

• Step 4. The sequence (χn)n, χn := |∇un|
p(x,vn(x))−2 ∇un, is relatively

weakly compact in L1(Ω), the weak L1 limit χ of (an extracted subsequence of)
(χn)n belongs to Lp′

∞
(·)(Ω) , and we have for a.e x ∈ Ω,

χ(x) =

∫

RN

|λ|p∞(x)−2 λ dνx(λ). (39)

The claim follows by [4, Theorem 2.10(i)] applied to the function F
(

x, (λ0, λ)
)

=

|λ|p(x,λ0)−2 λ and to the Young measure (µx)x = δv(x)⊗νx introduced in Step 3.
We only have to show that (χn)n is equi-integrable on Ω. The proof of the equi-
integrability of (χn)n, based on estimate (36) and on the generalized Hölder
inequality for variable exponent spaces, is technical. It is detailed in Claim 6 of
the proof of [4, Theorem 3.8].

• Step 5. For all fixed i, we can pass to the limit in (35) with the test function
wi. By the density of the family (wi)i in D(Ω) supplied with the weak W 1,∞(Ω)
topology, we infer that

{

u − div χ = f(x, u, v)
v − ∆v = g(x, u, v)

(40)
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in D′(Ω). Thus v ∈ H1
0 (Ω) is a variational solution of the second equation in

(40). Because g ∈ L∞(Ω) and ∂Ω is assumed to be sufficiently regular, by the
classical regularity result we conclude that v ∈ C0,β(Ω) for some β > 0.

• Step 6. We deduce that u ∈ W
1,p∞(·)
0 (Ω). Indeed, we already know that

u ∈ W
1,p−

0 (Ω) and that ∇u ∈ Lp∞(·)(Ω). Thus u belongs to the space Ėp∞(·)(Ω)
introduced in Definition 2.1.

Moreover, by the Hölder regularity of p and v (see the assumptions of the
theorem and Step 5, respectively), p∞(·) = p(·, v(·)) is also Hölder continuous
of some order γ > 0. Thus p∞ also satisfies the weaker log-Hölder continuity

condition (9), and Ėp∞(·)(Ω) = W
1,p∞(·)
0 (Ω) by Lemma 2.2.

• Step 7. The “div-curl” inequality holds:
∫

Ω×RN

(

|λ|p∞(x)−2 λ − |∇u|p∞(x)−2 ∇u
)

·
(

λ − ∇u
)

dνx(λ) dx ≤ 0. (41)

In order to justify this claim, we use the first equation of (8) with the test
function un, and the first equation of (40) with the test function u. Let us stress

that u is an admissible test function in this equation. Indeed, u ∈ W
1,p∞(·)
0 (Ω)∩

L2(Ω) (see the above Steps 2,6), χ ∈ Lp′

∞(Ω) (see Step 4), and D(Ω) is dense

in W
1,p∞(·)
0 (Ω) ∩ L2(Ω).

By the dominated convergence theorem, f(x, un, vn) converges to f(x, u, v)
in L2(Ω) strongly; because un converges to u in L2(Ω) weakly, we infer that

∫

Ω

(

u2 + χ ·∇u
)

=

∫

Ω

f(x, u, v)u = lim
n→∞

∫

Ω

f(x, un, vn)un

= lim
n→∞

∫

Ω

(

u2
n + χn ·∇un

)

.

By the Fatou lemma, we deduce the inequality
∫

Ω

χ ·∇u ≥ lim inf
n→∞

∫

Ω

χn ·∇un. (42)

Now (42),(37) and (39) lead to the desired inequality (41). Indeed, with the
help of the truncations (38) we find that the right-hand side of (42) is lower

bounded by

∫

Ω×RN

|λ|p∞(x) dνx(λ) dx; then we perform easy algebraic manip-

ulations using the fact that (νx)x are probability measures. The details of the
argument are given in the Claim 10 of the proof of [4, Theorem 3.8]

• Step 8. By the strict monotonicity of the map a : (x, ξ) 7→ |ξ|p∞(·)−2ξ
in the sense (4), from (41) we deduce that for a.e. x ∈ Ω, the support of the
measure νx is reduced to the singleton {∇u(x)}. In other words, (νx) is a Dirac
Young measure which can be identified with the function ∇u on Ω. By (39),
we deduce that χ = |∇u|p∞(x)−2 ∇u = |∇u|p(x,v(x))−2 ∇u a.e. on Ω. Therefore
(40) is exactly the D′ formulation of system (8).
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• Step 9. Finally, the function u is also Hölder continuous, by a straight-
forward application of the regularity result [15]. Indeed, the right-hand side
f(x, u(x), v(x)) is bounded, the exponent p∞ is Hölder continuous, and a :
(x, ξ) 7→ |ξ|p∞(·)−2ξ verifies the assumptions of [15].

This ends the proof of the theorem. Notice that it can be deduced from

the above results that vn converges to v strongly in H1
0 (Ω),

∫

Ω

| ∇un|
p(x,vn(x))

tends to

∫

Ω

| ∇u|p(x,v(x)), and ∇un converges to ∇u a.e. on Ω, as n → ∞, up

to extraction of a subsequence. ⋄
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