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ALMOST SURE INVARIANCE PRINCIPLE FOR DYNAMICAL

SYSTEMS BY SPECTRAL METHODS

SÉBASTIEN GOUËZEL

Abstract. We prove the almost sure invariance principle for stationary Rd–
valued processes (with dimension-independent very precise error terms), solely
under a strong assumption on the characteristic functions of these processes.
This assumption is easy to check for large classes of dynamical systems or
Markov chains, using strong or weak spectral perturbation arguments.

The almost sure invariance principle is a very strong reinforcement of the central
limit theorem: it ensures that the trajectories of a process can be matched with
the trajectories of a brownian motion in such a way that, almost surely, the error
between the trajectories is negligible compared to the size of the trajectory (the
result can be more or less precise, depending on the specific error term one can ob-
tain). This kind of results has a lot of consequences, see e.g. [MN09] and references
therein.

Such results are well known for one-dimensional processes, either independent
or weakly dependent (see among many others [DP84, HK82]), and for independent
higher dimensional processes [Ein89, Zăı98]. However, for weakly dependent higher
dimensional processes, difficulties arise since the techniques relying on Skorokhod
representation theorem do not work efficiently. In this direction, an approximation
argument introduced by [BP79] was recently generalized to a large class of weakly
dependent sequences in [MN09]: their results give explicit error terms in the vector–
valued almost sure invariance principle, and are applicable when the variables under
study can be well approximated with respect to a suitably chosen filtration. In
particular, these results apply to a large range of dynamical systems when they
have some markovian behavior and sufficient hyperbolicity.

Unfortunately, it is quite common to encounter dynamical systems for which
there is no natural well-behaved filtration. It is nevertheless often easy to prove
classical limit theorems, by using another class of arguments relying on spectral
theory: these arguments automatically yield a very precise description of the char-
acteristic functions of the process under study, thereby implying limit theorems. It
is therefore desirable to develop an abstract argument, showing that enough control
on the characteristic functions of a process implies the almost sure invariance prin-
ciple, for vector–valued observables. This is our goal in this paper. [BP79, Theorem
5] gives such a result, but its assumptions are too strong for the applications we
have in mind. Moreover, even when the previous approaches are applicable, our
method gives much sharper error terms.

We will state our main probabilistic result, Theorem 1.2, in the next paragraph,
and describe applications to dynamical systems and Markov chains in Section 2.
The remaining sections are devoted to the proof of the main theorem.
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2 SÉBASTIEN GOUËZEL

1. Statement of the main result

For d > 0, let us consider an Rd–valued process (A0, A1, . . . ), bounded in Lp for
some p > 2. Under suitable assumptions to be introduced below, we wish to show
that it can be almost surely approximated by a brownian motion.

Definition 1.1. For λ ∈ (0, 1/2], an Rd–valued process (A0, A1, . . . ) satisfies an
almost sure invariance principle with error exponent λ and limiting covariance Σ2

if there exist a probability space Ω, and two processes (A∗
0, A

∗
1, . . . ) and (B0, B1, . . . )

on Ω such that

(1) The processes (A0, A1, . . . ) and (A∗
0, A

∗
1, . . . ) have the same distribution.

(2) The random variables B0, B1, . . . are independent, distributed as N (0,Σ2).
(3) Almost surely in Ω,

(1.1)
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= o(nλ).

A brownian motion at integer times coincides with a sum of i.i.d. gaussian vari-
ables, hence this definition can also be formulated as an almost sure approximation
by a brownian motion, with error o(nλ).

Under some assumptions on the characteristic function of (A0, A1, . . . ), we will
prove that this process satisfies an almost sure invariance principle. To simplify
notations, for t ∈ Rd and x ∈ Rd, we will write eitx instead of ei〈t,x〉.

Let us state our main assumption, ensuring that the process we consider is close
enough to an independent process:
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≤ C(1 + max |bj+1 − bj|)C(n+m)e−ck,

(H)

for some C, c > 0 and for any n,m > 0, any b1 < b2 < · · · < bn+m+1, any k > 0
and any t1, . . . , tn+m ∈ Rd with |tj | ≤ ǫ0 (where ǫ0 is some fixed positive number).

This assumption says that, if one groups the random variables into n+m blocks,
then a gap of size k between two blocks gives characteristic functions which are
exponentially close (in terms of k) to independent characteristic functions, with an
error which is, for each block, polynomial in terms of the size of the block. This
control is only required for Fourier parameters tj close to 0.

Of course, it is trivially satisfied for independent random variables. The inter-
esting point of this assumption is that it is also very easy to check for dynamical
systems when the Fourier transfer operators are well understood, see Theorem 2.1
below.

Our main theorem follows.

Theorem 1.2. Let (A0, A1, . . . ) be a centered Rd–valued stationary process, in Lp

for some p > 2, satisfying (H). Then

(1) The covariance matrix cov(
∑n−1

ℓ=0 Aℓ)/n converges to a matrix Σ2.

(2) The sequence
∑n−1

ℓ=0 Aℓ/
√
n converges in distribution to N (0,Σ2).

(3) The process (A0, A1, . . . ) satisfies an almost sure invariance principle with
limiting covariance Σ2, for any error exponent

(1.2) λ >
p

4p− 4
=

1

4
+

1

(4p− 4)
.
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When p = ∞, the condition on the error becomes λ > 1/4, which is quite good
and independent of the dimension: this condition λ > 1/4 had previously been
obtained only for very specific classes of dynamical systems (in particular closed
under time reversal), for real–valued observables (see e.g. [FMT03, MT04]).

If the process is not stationary, we need an additional assumption to ensure the
(fast enough) convergence to a normal distribution:

Theorem 1.3. Let (A0, A1, . . . ) be an Rd–valued process, bounded in Lp for some
p > 2, satisfying (H). Assume moreover that

∑ |E(Aℓ)| <∞, and that there exists
a matrix Σ2 such that, for any α > 0,

(1.3)

∣

∣

∣

∣

∣

cov

(

m+n−1
∑

ℓ=m

Aℓ

)

− nΣ2

∣

∣

∣

∣

∣

≤ Cnα,

uniformly in m,n. Then the sequence
∑n−1

ℓ=0 Aℓ/
√
n converges in distribution to

N (0,Σ2). Moreover, the process (A0, A1, . . . ) satisfies an almost sure invariance
principle with limiting covariance Σ2, for any error exponent λ > p/(4p− 4).

Theorem 1.2 is in fact a consequence of Theorem 1.3, since we will prove in
Lemma 2.7 that a stationary process satisfying (H) always satisfies (1.3) (even
more, this inequality holds with α = 0).

Contrary to the results of [BP79], our results are dimension-independent for
i.i.d. random variables (but they are not optimal in this case, see [Ein89, Zăı98,
Zăı06]: for i.i.d. sequences in Lp, 2 < p < ∞, the almost sure invariance principle
holds for any error exponent λ ≥ 1/p).

2. Applications

2.1. Coding characteristic functions. Let us consider first a very simple ex-
ample: let T (x) = 2x mod 1 on the circle S1 = R/Z, and consider a Lipschitz
function f : S1 → Rd of vanishing average for Lebesgue measure. We would like to
prove an almost sure invariance principle for the process (f(x), f(Tx), f(T 2x), . . . ),
where x is distributed on S1 according to Lebesgue measure. Define an operator Lt

on Lipschitz functions by Ltu(x) =
∑

T (y)=x e
itf(y)u(y)/2. It is then easy to check

that, for any t0, . . . , tn−1 in R
d,

(2.1) E
(

ei
Pn−1

ℓ=0 tℓf◦T ℓ
)

=

∫

Ltn−1 · · · Lt01(x) dx.

Using the good spectral properties of the operators Lt, it is not very hard to show
that this implies (H).

In more complicated situations, it is often possible to encode in the same way
the characteristic functions of the process under study into a family of operators.
However, these operators may act on complicated Banach spaces (of distributions,
or measures). It is therefore desirable to introduce a more abstract setting that
encompasses the essential properties of such a coding, as follows

Consider an Rd–valued process (A0, A1, . . . ). Let B be a Banach space and let
Lt (for t ∈ Rd, |t| ≤ ǫ0) be linear operators acting continuously on B. Assume that
there exist u0 ∈ B and φ0 ∈ B′ (the dual of B) such that, for any t0, . . . , tn−1 ∈ Rd

with |tj | ≤ ǫ0,

(2.2) E
(

ei
Pn−1

ℓ=0 tℓAℓ

)

= 〈φ0,Ltn−1Ltn−2 · · · Lt1Lt0u0〉.

In this case, we say that the characteristic function of (A0, A1, . . . ) is coded by
(B, (Lt)|t|≤ǫ0 , u0, φ0).

We claim that the assumption (H) follows from suitable assumptions on the
operators Lt, that we now describe.



4 SÉBASTIEN GOUËZEL

(I1) One can write L0 = Π +Q where Π is a one-dimensional projection and Q
is an operator on B, with QΠ = ΠQ = 0, and ‖Qn‖B→B ≤ Cκn for some
κ < 1.

(I2) For small enough t, we have ‖Ln
t ‖B→B ≤ C uniformly in n.

We will denote this set of conditions by (I).

Theorem 2.1. Let (Aℓ) be a process whose characteristic function is coded by a
family of operators (Lt), and bounded in Lp for some p > 2. Assume that (I) holds.

Then there exist a ∈ Rd and a matrix Σ2 such that (
∑n−1

ℓ=0 Aℓ −a)/
√
n converges to

N (0,Σ2). Moreover, this process satisfies an almost sure invariance principle with
limiting covariance Σ2 for any error exponent larger than p/(4p− 4).

The proof will exhibit a as the limit of E(Aℓ), give a formula for Σ2, and derive
the theorem from Theorem 1.3 since (H) and (1.3) follow from (I). Even better, we
have under the assumptions of Theorem 2.1

(2.3)
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∑

ℓ=m

Aℓ

)

− nΣ2

∣

∣

∣

∣

∣

≤ C.

This is proved in Lemma 2.7 below.

Remark 2.2. Let us stress that the assumptions of this theorem are significantly
weaker than those of similar results in the literature: we do not require that a
perturbed eigenvalue has a good asymptotic expansion, nor even that such an
eigenvalue exists. In particular, the central limit theorem was not known under
the assumptions of Theorem 2.1.

Before we prove Theorem 2.1, at the end of this section, let us describe some
applications. We explain how to check (I) in several practical situations. Let
T : X → X be a dynamical system, let µ be a probability measure (invariant or
not), and let f : X → Rd. We want to study the process (f, f ◦ T, f ◦ T 2, . . . ).

2.2. Strong continuity. Assume that the characteristic function of the process
(f, f ◦ T, f ◦ T 2, . . . ) can be coded by a family of operators Lt on a Banach space
B, and that the operator L0 satisfies (I1), i.e., it has a simple eigenvalue at 1, the
rest of its spectrum being contained in a disk of radius κ < 1 (such an operator is
said to be quasicompact).

Proposition 2.3. If the family Lt : B → B depends continuously on the parameter
t, then (I2) is satisfied.

Proof. By classical perturbation theory, the spectral picture for L0 persists for small
t: we can write Lt = λ(t)Πt+Qt where λ(t) ∈ C, Πt is a one-dimensional projection
and ‖Qn

t ‖ ≤ Cκn for some κ < 1, uniformly for small t. If |λ(t)| ≤ 1 for small t, we
obtain (I2).

For small t, we have

E(eit
Pn−1

ℓ=0
f◦T ℓ

) = 〈φ0,Ln
t u0〉 = λ(t)n〈φ0,Πtu0〉 + 〈φ0, Q

n
t u0〉

= λ(t)n〈φ0,Πtu0〉 +O(κn).
(2.4)

When t → 0, by continuity, the quantity 〈φ0,Πtu0〉 converges to 〈φ0,Πu0〉 = 1 by
(2.8). In particular, for small enough t, 〈φ0,Πtu0〉 6= 0. Since (2.4) is bounded by
1, this gives |λ(t)| ≤ 1, concluding the proof. �

Let us be more specific. Let T be an irreducible aperiodic subshift of finite
type, let m be a Gibbs measure, and let f : X → Rd be Hölder continuous with
∫

f dm = 0. Let L be the transfer operator associated to T , defined by duality by
∫

u ·v◦T dm =
∫

Lu ·v dm, and define perturbed operators Lt by Lt(u) = L(eitfu).
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These operators code the characteristic function of the process (f, f ◦ T, . . . ) and
depend analytically on t (this follows from the series expansion eix =

∑

(ix)n/n!
and the fact the Hölder functions form a Banach algebra). The condition (I) is
checked e.g. in [GH88], [PP90]. Hence, Theorem 2.1 gives an almost sure invariance
principle for any error exponent > 1/4. This result is not new, it is already given
in [MN09], though with a weaker error term.

If T is an Anosov or Axiom A map and f : X → Rd is Hölder continuous, then
the same result follows by coding. One can also avoid coding and directly apply
Theorem 2.1 to the transfer operator acting on a Banach space B of distributions
or distribution-like objects, as in [BT07, GL08].

Let now T : X → X be a piecewise expanding map, and assume that the
expansion dominates the complexity (in the sense of [Sau00, Lemma 2.2]) – this
setting includes in particular all piecewise expanding maps of the interval, since
the complexity control is automatic in one dimension. Let f : X → Rd be β-
Hölder continuous for some β ∈ (0, 1]. Then the perturbed transfer operator Lt

acts continuously on the Banach space B = Vβ introduced in [Sau00], and depends
analytically on t (since B is a Banach algebra). With Theorem 2.1, we get an almost
sure invariance principle for any error exponent > 1/4. This result was only known
for dim(X) = 1 and d = 1, thanks to [HK82].

This result also applies to coupled map lattices, since [BGK07] shows (I) for
such maps. Let us mention that the Banach space B here is not a Banach space of
functions or distributions, but this is of no importance for our abstract setting.

Assume now that T is the time-one map of a contact Anosov flow. [Tsu08]
constructs a Banach space of distributions on which the transfer operator L acts
with a spectral gap. If f is smooth enough, then Lt := L(eitf ·) depends analytically
on t. We therefore obtain an almost sure invariance principle for any error exponent
> 1/4. This result was known for real-valued observables [MT02], but is new for
Rd-valued observables. However, our method does not apply directly to the whole
class of rapid-mixing hyperbolic flows, contrary to the martingale arguments of
[MT02].

Finally, assume that T : X → X is a mixing Gibbs-Markov map with invariant
measure m, i.e., it is Markov for a partition α with infinitely many symbols, and
has the big image property and Hölder distortion (this is a generalization of the
notion of subshift of finite type to infinite alphabets, see e.g. [MN09, Section 3.1] for
precise definitions). For f : X → Rd and a ∈ α, let Df(a) denote the best Lipschitz
constant of f on a. Consider f of zero average, such that

∑

a∈αm(a)Df(a)ρ <∞,
for some ρ ∈ (0, 1] (this class of observables is very large, it contains in particular
all the weighted Lipschitz observables of [MN09, Section 3.2]).

Theorem 2.4. If f ∈ Lp for some p > 2, then the process (f, f ◦ T, . . . ) satisfies
an almost sure invariance principle for any error exponent > p/(4p− 4).

This follows from [Gou08, Section 3.1], where a Banach space B satisfying the
assumptions of Proposition 2.3 is constructed.

Let us mention that the almost sure invariance principle is invariant under the
process of inducing, i.e., going from a small dynamical system to a larger one. A lot
of hyperbolic dynamical systems can be obtained by inducing from Gibbs-Markov
maps, and the previous theorem implies an almost sure invariance principle for all
of them (see [MN09] for several examples).

Remark 2.5. In such dynamical contexts (when the measure is invariant and
ergodic), the matrix Σ2 is degenerate if and only if f is an L2 coboundary in
some direction. Indeed, if Σ2 is degenerate, it follows from (2.3) that there is a
nonzero direction t such that 〈t, Snf〉 is bounded in L2. By Leonov’s Theorem (see
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e.g. [AW00]), this implies that 〈t, f〉 is an L2 coboundary: there exists u ∈ L2 such
that 〈t, f〉 = u − u ◦ T almost everywhere. Conversely, this condition implies that
Σ2 is degenerate.

2.3. Weak continuity. In several situations, the strong continuity assumptions of
the previous paragraph are not satisfied, while a weaker form of continuity holds.
We describe such a setting in this paragraph.

Assume again that the characteristic function of a process (f, f ◦ T, f ◦ T 2, . . . )
is coded by a family of operators Lt on a Banach space B, and that the operator
L0 satisfies (I1), i.e., it is quasicompact with a simple dominating eigenvalue at 1.

We do not assume that the map t 7→ Lt is continuous from a neighborhood
of 0 to the set of linear operators on B, hence classical perturbation theory does
not apply. Let C be a Banach space containing B on which the operators Lt act
continuously, and assume that there exist M ≥ 1, κ < 1 and C > 0 such that

(1) For all n ∈ N and |t| ≤ ǫ0, we have ‖Ln
t ‖C→C ≤ CMn

(2) For all n ∈ N, all |t| ≤ ǫ0 and all u ∈ B, we have ‖Ln
t u‖B ≤ Cκn ‖u‖B +

CMn ‖u‖C .
(3) The quantity ‖Lt − L0‖B→C tends to 0 when t→ 0.

Then [KL99, Liv03] show that, for small enough t, the operator Lt acting on B has
a simple eigenvalue λ(t) close to 1, and Lt can be written as λ(t)Πt +Qt where Πt

is a one-dimensional projection and, for some C > 0 and κ̃ < 1,

‖Πt‖B→B ≤ C, ‖Qn
t ‖B→B ≤ Cκ̃n, ‖Πt − Π‖B→C → 0 when t→ 0.

Therefore, (I2) follows by the arguments in the proof of Proposition 2.3 if we can
prove that 〈φ0,Πtu0〉 → 〈φ0,Πu0〉 when t→ 0. By the last estimate in the previous
equation, this is true if φ0 belongs not only to B′ but also to C′, which is usually
the case.

2.4. Markov chains. Consider a Markov chain X0, X1, . . . (with an initial mea-
sure µ, and a stationary measure m possibly different from µ), on a state space X .
Let also f : X → R with Em(f) = 0, we want to study the process Aℓ = f(Xℓ).

Denote by P the Markov operator associated to the Markov chain, and define a
perturbed operator Pt(u) = P (eitfu). Then

Eµ(ei
Pn−1

ℓ=0 tℓAℓ) = Eµ(ei
Pn−2

ℓ=0 tℓf(Xℓ) ·E(eitn−1f(Xn−1)|Xn−2))

= Eµ(ei
Pn−2

ℓ=0 tℓf(Xℓ)Ptn−11(Xn−2)).

By induction, we obtain

(2.5) Eµ(ei
Pn−1

ℓ=0 tℓAℓ) =

∫

Pt0Pt1 · · ·Ptn−11 dµ.

This is very similar to the coding property introduced in (2.2), the small difference
being that the composition is made in the reverse direction. In particular, the proof
of Theorem 2.1 still works in this context. We obtain the following result:

Proposition 2.6. Let B be a Banach space of functions on X such that 1 ∈ B, and
the integration against µ is continuous on B. If the operators Pt satisfy on B the
condition (I), then the process f(Xℓ) satisfies (H). If f(Xℓ) is bounded in Lp for
some p > 2, it follows that the process (f(Xℓ)) satisfies an almost sure invariant
principle, for any error exponent λ > p/(4p− 4).

To check the condition (I), the arguments of Paragraph 2.2 or 2.3 can be ap-
plied (if the Banach space B is carefully chosen, depending on the properties of the
random walk under study). We refer in particular the reader to the article [HP08],
where several examples are studied, including uniformly ergodic chains, geomet-
rically ergodic chains, and iterated random Lipschitz models. It is in particular
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shown in this article that the weak continuity arguments of Paragraph 2.3 are very
powerful in some situations where the strong continuity of Paragraph 2.2 does not
hold.

2.5. Proof of Theorem 2.1.
First step: there exists u1 ∈ B such that, for t0, . . . , tn−1 ∈ B(0, ǫ0),

(2.6) Π(Ltn−1 · · · Lt0u0) = 〈φ0,Ltn−1 · · · Lt0u0〉u1.

Since Π is a rank one projection, we can write Π(u) = 〈φ2, u〉u2 for u2 ∈ B and
φ2 ∈ B′ with 〈φ2, u2〉 = 1. The trivial equality

E
(

ei
Pn−1

ℓ=0 tℓAℓ

)

= E
(

ei
Pn−1

ℓ=0 tℓAℓ+
Pn+N−1

ℓ=n 0·Aℓ

)

gives, using the coding by the operators Lt,

〈φ0,Ltn−1 · · · Lt0u0〉 = 〈φ0,LN
0 Ltn−1 · · · Lt0u0〉.

Let u = Ltn−1 · · · Lt0u0. When N tends to infinity, LN
0 tends to Π. Hence, letting

N tend to ∞ in the previous equality, we get

(2.7) 〈φ0, u〉 = 〈φ0,Πu〉 = 〈φ0, u2〉 · 〈φ2, u〉.
Moreover,

(2.8) 〈φ0, u0〉 = 〈φ0,Πu0〉 = lim〈φ0,LN
0 u0〉 = limE(ei

PN−1
ℓ=0 0·Aℓ) = 1.

Taking u = u0 in (2.7), this implies in particular 〈φ0, u2〉 6= 0. Finally,

Π(u) = 〈φ2, u〉u2 = 〈φ0, u〉u2/〈φ0, u2〉.
We obtain (2.6) for u1 = u2/〈φ0, u2〉.

Second step: (H) holds.
Consider b1 < · · · < bn+m+1, as well as t1, . . . , tn+m ∈ B(0, ǫ0) and k > 0. Then

E

(

e
i

Pn
j=1 tj

“

Pbj+1−1

ℓ=bj
Aℓ

”

+i
Pn+m

j=n+1 tj

“

Pbj+1+k−1

ℓ=bj+k Aℓ

”

)

=
〈

φ0,Lbn+m+1−bn+m

tn+m
· · · Lbn+2−bn+1

tn+1
Lk

0Lbn+1−bn

tn
· · · Lb2−b1

t1 Lb1
0 u0

〉

=
〈

φ0,Lbn+m+1−bn+m

tn+m
· · · Lbn+2−bn+1

tn+1
(Lk

0 − Π)Lbn+1−bn

tn
· · · Lb2−b1

t1 Lb1
0 u0

〉

+
〈

φ0,Lbn+m+1−bn+m

tn+m
· · · Lbn+2−bn+1

tn+1
ΠLbn+1−bn

tn
· · · Lb2−b1

t1 Lb1
0 u0

〉

.

(2.9)

All the operators Lti satisfy
∥

∥

∥Lj
ti

∥

∥

∥

B→B
≤ C. Since

∥

∥Lk
0 − Π

∥

∥

B→B
≤ Cκk for some

κ < 1, it follows that the term on the line before the last one in (2.9) is bounded
by Cn+mκk. Moreover, by (2.6), the term on the last line is

〈

φ0,Lbn+m+1−bn+m

tn+m
· · · Lbn+2−bn+1

tn+1
u1

〉

·
〈

φ0,Lbn+1−bn

tn
· · · Lb2−b1

t1 Lb1
0 u0

〉

.

The second factor in this equation is simply E

(

e
i

Pn
j=1 tj

“

Pbj+1−1

ℓ=bj
Aℓ

”

)

. Moreover,

E

(

e
i

Pn+m
j=n+1 tj

“

Pbj+1+k−1

ℓ=bj+k Aℓ

”

)

= 〈φ0,Lbn+m+1−bn+m

tn+m
· · · Lbn+2−bn+1

tn+1
Lbn+1+k

0 u0〉

= 〈φ0,Lbn+m+1−bn+m

tn+m
· · · Lbn+2−bn+1

tn+1
Πu0〉 +O(Cmκbn+1+k)

= 〈φ0,Lbn+m+1−bn+m

tn+m
· · · Lbn+2−bn+1

tn+1
u1〉 +O(Cmκbn+1+k).

Therefore, the last line of (2.9) is equal to

E

(

e
i

Pn
j=1 tj

“

Pbj+1−1

ℓ=bj
Aℓ

”

)

· E
(

e
i

Pn+m
j=n+1 tj

“

Pbj+1+k−1

ℓ=bj+k Aℓ

”

)

+O(Cmκbn+k).
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This proves (H).

Third step: there exist a ∈ Rd and C, δ > 0 such that |E(Aℓ) − a| ≤ Ce−δℓ.
Working component by component, we can without loss of generality work with

one-dimensional random variables.
Let V be a centered random variable, independent of all the Aℓ, belonging to

Lp, whose characteristic function is supported in B(0, ǫ0) (see Proposition 3.8 for
the existence of V ). Let also T > 0. Then

E(Aℓ) = E(Aℓ + V ) = E((Aℓ + V )1|Aℓ+V |≥T ) +

∫

|x|<T

x dPAℓ+V .

The first term is bounded by ‖Aℓ + V ‖L2

∥

∥1|Aℓ+V |≥T

∥

∥

L2 ≤ CP (|Aℓ +V | > T )1/2 ≤
C/T 1/2. Let φℓ(t) = E(eitAℓ)E(eitV ) be the characteristic function of Aℓ + V . Let
gT be the Fourier transform of x1|x|<T . Since the Fourier transform on R is an

isometry up to a constant factor c1, we have
∫

|x|<T
x dPAℓ+V = c1

∫

gTφℓ, hence

E(Aℓ) = c1
∫

gTφℓ +O(T−1/2).
We have

φℓ(t) = 〈φ0,LtLℓ
0u0〉E(eitV ) = 〈φ0,LtΠu0〉E(eitV ) + 〈φ0,Lt(Lℓ

0 − Π)u0〉E(eitV )

=: ψ(t) + rℓ(t).

The function ψ is independent of ℓ, while the function rℓ(t) depends on ℓ, is bounded
by Cκℓ and is supported in {|t| ≤ ǫ0}. We obtain

E(Aℓ) = c1

∫

gTψ + c1

∫

gT rℓ +O(T−1/2)

= c1

∫

gTψ +O(‖gT ‖L2 ‖rℓ‖L2) +O(T−1/2).

The L2-norm of gT is equal to C
∥

∥x1|x|<T

∥

∥

L2 = CT 3/2, we therefore obtain

E(Aℓ) = c1

∫

gTψ +O(κℓT 3/2) +O(T−1/2).

Consider now k, ℓ ∈ N. Taking T = κ−min(k,ℓ)/3, we obtain for some δ > 0

(2.10) |E(Aℓ) − E(Ak)| ≤ Ce−δ min(k,ℓ).

This shows that the sequence E(Aℓ) is a Cauchy sequence, therefore converging to
a limit a. Moreover, letting k → ∞, it also yields |E(Aℓ) − a| ≤ Ce−δℓ as desired.

Fourth step: conclusion of the proof.
We claim that, for any m ∈ N, there exists a matrix sm such that, uniformly in

ℓ,m,

(2.11) | cov(Aℓ, Aℓ+m) − sm| ≤ Ce−δℓ.

Since the proof is almost identical to the third step, it will be omitted.

Lemma 2.7. Let (Aℓ) be a process bounded in Lp for some p > 2, satisfying (H),
and (2.11) for some sequence of matrices sm. Then the series Σ2 = s0+

∑∞
m=1(sm+

s∗m) converges in norm and, uniformly in m,n,

(2.12)

∣

∣

∣

∣

∣

cov

(

m+n−1
∑

ℓ=m

Aℓ

)

− nΣ2

∣

∣

∣

∣

∣

≤ C.

Let us admit this lemma for the moment. Then the process (Aℓ − a) satisfies all
the assumptions of Theorem 1.3. Theorem 2.1 follows from this theorem. �
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Proof of Lemma 2.7. Let us first prove that

(2.13) | cov(Aℓ, Aℓ+m)| ≤ Ce−δm.

We will assume that d = 1 to simplify the notations. The estimate (2.13) follows
easily from the techniques we will develop later in this paper, but we will rather
give a direct elementary proof. Let V, V ′ be two independent random variables as
in the third step of the previous proof. Then

E(AℓAℓ+m) = E((Aℓ + V )(Aℓ+m + V ′)) =

∫

xy dP (x, y),

where P is the distribution of (Aℓ + V,Aℓ+m + V ′). For T > 0, we have
∫

|xy|1|x|>T dP (x, y) = E(|Aℓ + V ||Aℓ+m + V ′|1|Aℓ+V |>T )

≤ ‖Aℓ + V ‖Lp ‖Aℓ+m + V ′‖L2

∥

∥1|Aℓ+V |>T

∥

∥

Lq ,

where q > 1 is chosen so that 1/p + 1/2 + 1/q = 1. Moreover,
∥

∥1|Aℓ+V |>T

∥

∥

Lq =

P (|Aℓ + V | > T )1/q ≤ CT−1/q. We have proved that, for some ρ > 0, we have
∫

|xy|1|x|>T dP (x, y) ≤ CT−ρ. In the same way,
∫

|xy|1|y|>T dP (x, y) ≤ CT−ρ.
Therefore,

(2.14) E(AℓAℓ+m) =

∫

xy1|x|,|y|≤T dP (x, y) +O(T−ρ).

The characteristic function φ of (Aℓ + V,Aℓ+m + V ′) is given by

φ(t, u) = E(eitAℓ+iuAℓ+m)E(eitV )E(eiuV ′

),

it is therefore supported in {|t|, |u| ≤ ǫ0}. Denoting by hT the Fourier transform
of the function xy1|x|,|y|≤T , and using the fact that the Fourier transform is an

isometry up to a constant factor c2 = c21, we get

E(AℓAℓ+m) = c2

∫

hTφ+O(T−ρ).

Letting ψ(t, u) = E(eitAℓ)E(eiuAℓ+m)E(eitV )E(eiuV ′

), a similar computation shows
that

E(Aℓ)E(Aℓ+m) = c2

∫

hTψ +O(T−ρ).

Therefore,

|E(AℓAℓ+m) − E(Aℓ)E(Aℓ+m)| = c2

∣

∣

∣

∣

∫

hT (φ− ψ)

∣

∣

∣

∣

+O(T−ρ)

≤ C ‖hT ‖L2 ‖φ− ψ‖L2 +O(T−ρ).

By (H), φ − ψ is bounded by Ce−cm for some c > 0. Moreover, ‖hT ‖L2 =

C
∥

∥xy1|x|,|y|≤T

∥

∥

L2 ≤ CT 3. Finally, we obtain

|E(AℓAℓ+m) − E(Aℓ)E(Aℓ+m)| ≤ Ce−cmT 3 + CT−ρ.

Choosing T = ecm/4, this gives (2.13).
When ℓ → ∞, cov(Aℓ, Aℓ+m) tends to sm by assumption. Therefore, letting ℓ

tend to infinity in (2.13), we get |sm| ≤ Ce−δm. From (2.11), we obtain

(2.15) | cov(Aℓ, Aℓ+m) − sm| ≤ C min(e−δℓ, e−δm).
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We have

cov

(

m+n−1
∑

ℓ=m

Aℓ

)

=

n−1
∑

i=0

cov(Ai+m)

+
∑

0≤i<j≤n−1

(cov(Ai+m, Aj+m) + cov(Ai+m, Aj+m)∗).

With (2.15), we get
∣

∣

∣

∣

∣

∣

cov

(

m+n−1
∑

ℓ=m

Aℓ

)

−
n−1
∑

i=0

s0 −
∑

0≤i<j≤n−1

(sj−i + s∗j−i)

∣

∣

∣

∣

∣

∣

≤ C
n−1
∑

i=0

e−δ(i+m) + C
∑

0≤i<j≤n−1

min(e−δ(i+m), e−δ(j−i)).

Up to a multiplicative constant C, this is bounded by

∞
∑

i=0

e−δi +

∞
∑

i=0

2i
∑

j=i+1

e−δi +

∞
∑

i=0

∞
∑

j=2i+1

e−δ(j−i) <∞.

We have proved that
∣

∣

∣

∣

∣

cov

(

m+n−1
∑

ℓ=m

Aℓ

)

− ns0 −
n
∑

k=1

(n− k)(sk + s∗k)

∣

∣

∣

∣

∣

≤ C.

Since
∑

k|sk + s∗k| <∞, this proves (2.12). �

3. Probabilistic tools

3.1. Coupling. As in [BP79], the notion of coupling is central to our argument.
In this paragraph, we introduce this notion.

If Z1 : Ω1 → E1 and Z2 : Ω2 → E2 are two random variables on two (possibly
different) probability spaces, a coupling between Z1 and Z2 is a way to associate
those random variables, usually so that this association shows that Z1 and Z2 are
close in some suitable sense. Formally, a coupling between Z1 and Z2 is a probability
space Ω′ together with two random variables Z ′

1 : Ω → E1 and Z ′
2 : Ω → E2 such

that Z ′
i is distributed as Zi. Considering the distribution of (Z ′

1, Z
′
2) in E1 ×E2, it

follows that one may take without loss of generality Ω = E1 × E2, with Z ′
1 and Z ′

2

the first and second projection.
The following lemma, also known as the Berkes-Philipp lemma, is Lemma A.1 of

[BP79]. It makes precise and justifies the intuition that, given a coupling between
two random variables Z1 and Z2, and a coupling between Z2 and another random
variable Z3, then it is possible to ensure that those couplings live on the same
probability space, giving a coupling between Z1, Z2 and Z3.

Lemma 3.1. Let Ei, i = 1, 2, 3, be separable Banach spaces. Let F be a distribution
on E1 × E2, and let G be a distribution on E2 × E3 such that the second marginal
of F equals the first marginal of G. Then there exist a probability space and three
random variables Z1, Z2, Z3 defined on this space, such that the joint distribution
of Z1 and Z2 is F , and the joint distribution of Z2 and Z3 is G.

As a typical application of this lemma, assume that two processes (X1, . . . , Xn)
and (Y1, . . . , Yn) are given, and that a good coupling exists between variables X
and Y distributed respectively like

∑

Xi and
∑

Yi. Then there exists a coupling
between (X1, . . . , Xn) and (Y1, . . . , Yn) realizing this coupling between

∑

Xi and
∑

Yi : it is sufficient to build simultaneously
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• the trivial coupling between (X1, . . . , Xn) and X such that X =
∑

Xi

almost surely.
• the given coupling between X and Y .
• the trivial coupling between Y and (Y1, . . . , Yn) such that Y =

∑

Yi almost
surely.

This kind of arguments will be used several times later on, without further details.
We will need the following lemma. It ensures that, to obtain a coupling with

good properties between two infinite processes (Z1, Z2, . . . ) and (Z ′
1, Z

′
2, . . . ), it is

sufficient to do so for finite subsequences of these processes.

Lemma 3.2. Let un, vn be two real sequences. Let Zn : Ω → En and Z ′
n : Ω′ → En

(n ≥ 1) be two sequences of random variables, taking values in separable Banach
spaces. Assume that, for any N , there exists a coupling between (Z1, . . . , ZN ) and
(Z ′

1, . . . , Z
′
N) with

(3.1) P (|Zn − Z ′
n| ≥ un) ≤ vn

for any 1 ≤ n ≤ N . Then there exists a coupling between (Z1, Z2, . . . ) and
(Z ′

1, Z
′
2, . . . ) such that (3.1) holds for any n ∈ N.

Proof. For all N ∈ N, there exists a probability measure PN on (E1 × · · · × EN )2,
with respective marginals the distributions of (Z1, . . . , ZN) and (Z ′

1, . . . , Z
′
N), such

that PN (|zn − z′n| ≥ un) ≤ vn for 1 ≤ n ≤ N , where zn and z′n denote the
coordinates in the first and the second En factor. Let us extend arbitrarily this
measure to a probability measure P̃N on E2, where E = E1 × E2 × . . . . The
sequence P̃N is tight, and any of its weak limits satisfies the required property. �

3.2. Prokhorov distance.

Definition 3.3. If P,Q are two probability distributions on a metric space, define
their Prokhorov distance π(P,Q) as the smallest ǫ > 0 such that P (B) ≤ ǫ+Q(Bǫ)
for any borelian set B, where Bǫ denotes the open ǫ-neighborhood of B.

This distance makes it possible to construct good couplings, thanks to the fol-
lowing Strassen–Dudley Theorem [Bil99, Theorem 6.9]:

Theorem 3.4. Let X,Y be two random variables taking values in a metric space,
with respective distributions PX and PY . If π(PX , PY ) < c, then there exists a
coupling between X and Y such that P (d(X,Y ) > c) < c.

We now turn to the estimation of the Prokhorov distance for processes taking
values in Rd. Let d > 0 and N > 0. We consider RdN with the norm

|(x1, . . . , xN )|N = sup
1≤i≤N

|xi − yi|,

where |x| denotes the euclidean norm of a point x ∈ Rd.

Lemma 3.5. There exists a constant C(d) with the following property. Let F and
G be two probability distributions on R

dN with characteristic functions φ and γ.
For any T ′ > 0,

(3.2) π(F,G) ≤
N
∑

j=1

F (|xj | ≥ T ′) +
(

C(d)T ′d/2
)N
[∫

RdN

|φ− γ|2
]1/2

.
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Proof. After an approximation argument, we can assume without loss of generality
that F and G have densities f and g. Then, for any measurable set A,

F (A) −G(A) ≤ F (A ∩ max |xj | ≤ T ′) + F (max |xj | > T ′) −G(A ∩ max |xj | ≤ T ′)

≤
∫

|x1|,...,|xN |≤T ′

|f − g| +
N
∑

j=1

F (|xj | > T ′).

Therefore, π(F,G) is bounded by the right hand side of this equation. To conclude,
we have to estimate

∫

|x1|,...,|xN |≤T ′
|f − g|. We have

∫

|x1|,...,|xN |≤T ′

|f − g| ≤ ‖f − g‖L2

∥

∥1|x1|,...,|xN |≤T ′

∥

∥

L2 = ‖φ− γ‖L2 (CT ′)dN/2,

since the Fourier transform is an isometry on L2 up to a factor (2π)dN/2. This
concludes the proof. �

3.3. Classical tools. Let us recall two classical results of probability theory that
we will need later on. The first one is Rosenthal’s inequality [Ros70], and the second
one is a weak version of Gal-Koksma strong law of large numbers [PS75, Theorem
A1] that will be sufficient for our purposes.

Proposition 3.6. Let X1, . . . , Xn be independent centered real random variables,
and let p > 2. There exists a constant C(p) such that

(3.3)

∥

∥

∥

∥

∥

∥

n
∑

j=1

Xj

∥

∥

∥

∥

∥

∥

Lp

≤ C(p)





n
∑

j=1

E(X2
j )





1/2

+ C(p)





n
∑

j=1

E(|Xj |p)





1/p

.

Proposition 3.7. Let X1, X2, . . . be centered real random variables, and assume
that, for some q ≥ 1 and some C > 0, for all m,n,

(3.4) E

∣

∣

∣

∣

∣

∣

m+n−1
∑

j=m

Xj

∣

∣

∣

∣

∣

∣

2

≤ Cnq.

Then, for any α > 0, the sequence
∑N

j=1Xj/N
q/2+α tends almost surely to 0.

The following proposition will be used in several forthcoming constructions.

Proposition 3.8. There exists a symmetric random variable V on Rd, belonging
to Lq for any q > 1, whose characteristic function is supported in the set {|t| ≤ ǫ0}.
Proof. We start from a C∞ function φ supported in {|t| ≤ ǫ0/2}, and consider its
inverse Fourier transform f = F−1(φ) (which is C∞ and rapidly decreasing). Let

g = |f |2 = F−1(φ⋆ φ̃) where φ̃(t) = φ(−t). Let finally h = g/
∫

g, it is nonnegative,

has integral 1, and its Fourier transform is proportional to φ ⋆ φ̃, hence supported
in {|t| ≤ ǫ0}. Let W and W ′ be independent random variables with density h, then
V = W −W ′ satisfies the conclusion of the proposition. �

4. Lp bounds

Our goal in this section is to show the following bound:

Proposition 4.1. Let (A0, A1, . . . ) be a centered process, bounded in Lp (p > 2)
and satisfying (H). For any η > 0, there exists C > 0 such that, for all m,n ≥ 0,

(4.1)

∥

∥

∥

∥

∥

m+n−1
∑

ℓ=m

Aℓ

∥

∥

∥

∥

∥

Lp−η

≤ Cn1/2.
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For the proof, we will approximate the process (A0, A1, . . . ) by an independent
process, using (H). Estimating the Lp−η norm of this process thanks to Rosenthal’s
inequality (Proposition 3.6), this will yield the desired estimate.

Lemma 4.2. Let (A0, A1, . . . ) be a centered process bounded in Lp for some p > 2,

and satisfying (H). Let un = maxm∈N

∥

∥

∥

∑m+n−1
ℓ=m Aℓ

∥

∥

∥

2

L2
. For any α > 0, there

exists C > 0 such that ua+b ≤ ua + ub + C(1 + aα + bα)(1 + u
1/2
a + u

1/2
b ) for any

a, b ≥ 1.

Proof. Let m ∈ N, and a ≤ b. Write X1 =
∑m+a−1

ℓ=m Aℓ and X2 =
∑m+a+b−1

ℓ=m+a+⌊bα⌋Aℓ.

Let also X̃1 = X1+V1 and X̃2 = X2+V2, where V1 and V2 are independent random
variables distributed like V (constructed in Proposition 3.8). Let finally Ỹ1 and Ỹ2

be independent random variables, distributed respectively like X̃1 and X̃2.
Let us prove that, for some δ = δ(α) > 0,

(4.2) π((X̃1, X̃2), (Ỹ1, Ỹ2)) < Ce−bδ

.

Let φ and γ denote, respectively, the characteristic functions of (X1, X2) and
(Y1, Y2). Since there is a gap of size bα between X1 and X2, (H) ensures that,

for Fourier parameters at most ǫ0, |φ − γ| ≤ C(1 + b)Ce−cbα ≤ Ce−c′bα

. Since
the characteristic function of V is supported in {|t| ≤ ǫ0}, this shows that the

characteristic functions φ̃ and γ̃ of (X̃1, X̃2) and (Ỹ1, Ỹ2) satisfy |φ̃− γ̃| ≤ Ce−c′bα

.

Applying Lemma 3.5 with T ′ = ebα/2

, we obtain (4.2) (since the first terms in

(3.2) are bounded by E(|X̃i|)/T ′ ≤ Cb/ebα/2

, while the second term is at most

CT ′de−c′bα

).

By (4.2) and Theorem 3.4, we can construct a coupling between (X̃1, X̃2) and

(Ỹ1, Ỹ2) such that, outside of a set O of measure at most Ce−bδ

, we have |X̃i− Ỹi| ≤
Ce−bδ

. Hence,
∥

∥

∥X̃1 + X̃2

∥

∥

∥

L2
≤
∥

∥

∥1O(X̃1 + X̃2)
∥

∥

∥

L2
+
∥

∥

∥1Oc(X̃1 − Ỹ1 + X̃2 − Ỹ2)
∥

∥

∥

L2
+
∥

∥

∥Ỹ1 + Ỹ2

∥

∥

∥

L2
.

The first term is bounded by ‖1O‖Lq

∥

∥

∥X̃1 + X̃2

∥

∥

∥

Lp
, where q is chosen so that 1/p+

1/q = 1/2. Hence, it is at most Ce−bδ/qb ≤ C. The second term is bounded by

Ce−bδ ≤ C. Finally, since Ỹ1 and Ỹ2 are independent and centered, the last term
is equal to (E(Ỹ 2

1 ) + E(Ỹ 2
2 ))1/2.

Since ‖V ‖L2 is finite, we finally obtain

‖X1 +X2‖2
L2 ≤ C + E(Y 2

1 ) + E(Y 2
2 ) = C + E(X2

1 ) + E(X2
2 ).

Taking into account the missing block
∑m+a+⌊bα⌋−1

ℓ=m+a Aℓ (whose L2 norm is at most

Cbα) and using the trivial inequality ‖U + V ‖2
L2 ≤ ‖U‖2

L2+‖V ‖2
L2+2 ‖U‖L2 ‖V ‖L2 ,

we finally obtain

∥

∥

∥

∥

∥

m+a+b−1
∑

ℓ=m

Aℓ

∥

∥

∥

∥

∥

2

L2

≤
∥

∥

∥

∥

∥

m+a−1
∑

ℓ=m

Aℓ

∥

∥

∥

∥

∥

2

L2

+

∥

∥

∥

∥

∥

m+a+b−1
∑

ℓ=m+a

Aℓ

∥

∥

∥

∥

∥

2

L2

+ Cb2α + Cbα





∥

∥

∥

∥

∥

m+a−1
∑

ℓ=m

Aℓ

∥

∥

∥

∥

∥

L2

+

∥

∥

∥

∥

∥

m+a+b−1
∑

ℓ=m+a

Aℓ

∥

∥

∥

∥

∥

L2



 .

This proves the lemma. �

Lemma 4.3. Let un ≥ 0 satisfy

(4.3) ua+b ≤ ua + ub + C(1 + aα + bα)(1 + u1/2
a + u

1/2
b ),
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for all a, b ≥ 1 and some C > 0, α ∈ (0, 1/2). Then un = O(n).

Proof. For any ǫ > 0 and any x, y ≥ 0, we have xy ≤ ǫx2 + ǫ−1y2. We therefore
obtain from the assumption

ua+b ≤ (1 + ǫ)(ua + ub) + C(ǫ)max(a2α, b2α).

Let vk = max2k≤n<2k+1 un. It follows from the previous equation that

vk+1 ≤ (2 + 2ǫ)vk + C′(ǫ)22αk.

In particular,

vk+1

(2 + 2ǫ)k+1
≤ vk

(2 + 2ǫ)k
+ C′(ǫ)

22αk

(2 + 2ǫ)k+1
.

It follows inductively that vk/(2 + 2ǫ)k ≤ C′(ǫ)
∑

j
22αj

(2+2ǫ)j+1 < ∞. Hence, for any

ǫ > 0, vk = O((2 + 2ǫ)k), i.e., for any ρ > 1, un = O(nρ). Choosing ρ close
enough to 1, we get from (4.3) ua+b ≤ ua + ub + Caβ + Cbβ , for some β < 1.
Therefore, vk+1 ≤ 2vk + C2βk. As above, we deduce that vk/2

k is bounded, i.e.,
un = O(n). �

Proof of Proposition 4.1. Lemmas 4.2 and 4.3 show that a centered process in Lp

satisfying (H) satisfies the following bound in L2:

(4.4)

∥

∥

∥

∥

∥

m+n−1
∑

ℓ=m

Aℓ

∥

∥

∥

∥

∥

L2

≤ Cn1/2.

Let us now show that the same bound holds in Lp−η for any η > 0. We will write

vn = maxm∈N

∥

∥

∥

∑m+n−1
ℓ=m Aℓ

∥

∥

∥

Lp−η
.

Let α = 1/10. For n ∈ N, let a = ⌊n1−α⌋ and b = ⌊nα⌋. Fix m ∈ N, we
decompose the interval [m,m+ n) as the union of the intervals Ij = [m+ ja,m+
(j + 1)a − b2) for 0 ≤ j < b, the intervals I ′j = [m + (j + 1)a − b2,m + (j + 1)a),

and the last interval J = [m+ ba,m+ n).

Write Xj =
∑

ℓ∈Ij
Aℓ, and X̃j = Xj + Vj where the Vj are independent and

distributed like V constructed in Proposition 3.8. Finally, let Ỹ0, . . . , Ỹb−1 be inde-

pendent random variables, such that Ỹj is distributed like X̃j . We claim that, for
some δ > 0, for any j ≤ b

(4.5) π((X̃0, . . . , X̃j−1), (X̃0, . . . , X̃j−2, Ỹj−1)) < Ce−nδ

.

Indeed, the X̃j are blocks each of length at most n, and there are at most nα blocks.
Since there is a gap of length b2 = n2α between Xj−2 and Xj−1, (H) shows that the
difference between the characteristic functions of the members of (4.5) is at most

CnCnα · e−cn2α ≤ Ce−c′n2α

(the terms Vj ensure that it is sufficient to consider
Fourier parameters bounded by ǫ0). The estimate (4.5) then follows from Lemma

3.5 by taking T ′ = enα/2

.
Summing over j the estimate in (4.5), we obtain

(4.6) π((X̃0, . . . , X̃b−1), (Ỹ0, . . . , Ỹb−1)) < Ce−nδ/2.

By Strassen-Dudley Theorem 3.4, we can therefore construct a coupling between

those processes such that, outside of a set O of measure at most Ce−nδ/2, we have

|X̃i − Ỹi| ≤ Ce−nδ/2. As in the proof of Lemma 4.2, this gives
∥

∥

∥

∥

∥

∥

b−1
∑

j=0

X̃j

∥

∥

∥

∥

∥

∥

Lp−η

≤ C +

∥

∥

∥

∥

∥

∥

b−1
∑

j=0

Ỹj

∥

∥

∥

∥

∥

∥

Lp−η

.
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Since the Ỹj are independent and centered, Rosenthal’s inequality (Proposition 3.6)

applies. The Ỹj are bounded in L2 by a1/2 (by (4.4)), and in Lp−η by C+va ≤ Cva.
Hence,
∥

∥

∥

∥

∥

∥

b−1
∑

j=0

Ỹj

∥

∥

∥

∥

∥

∥

Lp−η

≤ C





b−1
∑

j=0

a





1/2

+ C





b−1
∑

j=0

vp−η
a





1/(p−η)

≤ Cn1/2 + Cvab
1/(p−η).

Since X̃j = Xj +Vj and Vj is bounded by C in Lp−η, we get from the two previous
equations

∥

∥

∥

∥

∥

∥

b−1
∑

j=0

Xj

∥

∥

∥

∥

∥

∥

Lp−η

≤ Cn1/2 + Cvab
1/(p−η).

Finally,
∥

∥

∥

∥

∥

m+n−1
∑

ℓ=m

Aℓ

∥

∥

∥

∥

∥

Lp−η

≤

∥

∥

∥

∥

∥

∥

b−1
∑

j=0

Xj

∥

∥

∥

∥

∥

∥

Lp−η

+

b−1
∑

j=0

∑

ℓ∈I′

j

‖Aℓ‖Lp−η +

∥

∥

∥

∥

∥

m+n−1
∑

ℓ=m+ab

Aℓ

∥

∥

∥

∥

∥

Lp−η

≤ Cn1/2 + Cvab
1/(p−η) + Cn3α + vn−ab.

Therefore, since 3α < 1/2,

(4.7) vn ≤ Cn1/2 + Cvab
1/(p−η) + vn−ab.

Moreover, a ≤ n1−α, b ≤ nα and n− ab ≤ a+ b+ 1 ≤ Cn1−α. If vn = O(nr), this
gives vn = O(ns) for s = s(r) = max(1/2, (1− α)r + α/(p− η)). Starting from the
trivial estimate vn = O(n), we get vn = O(ns(1)), then vn = O(ns(s(1))) and so on.
Since p− η > 2, this gives in finitely many steps vn = O(n1/2). �

5. Proof of the main theorem for nondegenerate covariance

matrices

In this section, we consider a process (A0, A1, . . . ) satisfying the assumptions of
Theorem 1.3, and such that the matrix Σ2 is nondegenerate. We will prove that
this process satisfies the conclusions of Theorem 1.3. Replacing without loss of
generality Aℓ by Aℓ − E(Aℓ), we can assume that Aℓ is centered. If K is a finite
subset of N, we denote its cardinality by |K|.

The strategy of the proof is very classical: we subdivide the integers into blocks
with gaps between them, make the blocks independent using the gaps and (H),
use approximation results for sums of independent random variables to handle the
independent blocks, and finally show that the terms in the gaps do not contribute
much to the asymptotics.

The interesting feature of our approach is the choice of the blocks. First, we
subdivide N into the intervals [2n, 2n+1), and then we cut each of these intervals
following a triadic Cantor-like approach: we put a relatively large gap in the middle,
then we put slightly smaller gaps in the middle of each half, and we go on in this
way. This procedure gives better results than the classical arguments taking blocks
along a polynomial progression: this would give an error p/(3p−2) in the theorem,
while we obtain the better error term p/(4p−4) with the Cantor-like decomposition.
The reason is that, to create n manageable blocks, the classical arguments requires
gaps whose union is of order n2, while the triadic decomposition only uses gaps
whose union is of order n.

We will now describe the triadic procedure more precisely. Fix ρ ∈ (0, 1) and
ǫ > 0. Let a = a(n) = ⌊ρn⌋. We decompose [2n, 2n+1) as a union of intervals
Jn,0 ∪ In,0 ∪ Jn,1 ∪ In,1 · · · ∪ Jn,2a−1 ∪ In,2a−1, where the intervals In,j are blocks of
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the same length, while the intervals Jn,j are gaps, used to give enough independence
between the In,js.

The lengths of the gaps Jn,j are chosen as follows. The middle interval Jn,2a−1

has length 2⌊ǫn⌋2a−1. It cuts the interval [2n, 2n+1) into two parts. The middle
interval of each of these parts, i.e., Jn,2a−2 and Jn,3·2a−2 , have length 2⌊ǫn⌋2a−2.

The middle intervals of the remaining four parts have length 2⌊ǫn⌋2a−3, and so on.
More formally, for 1 ≤ j < 2a, write j =

∑a−1
k=0 αk(j)2k where αk(j) ∈ {0, 1}, and

consider the smallest number K with αK(j) 6= 0, then the length of Jn,j is 2⌊ǫn⌋2K .
We say that this interval is of rank K. This defines the length of all the intervals
Jn,j , except for j = 0. We let |Jn,0| = 2⌊ǫn⌋2a, and say that this interval has rank
a.

The lengths of those intervals add up to

(5.1) |Jn,0| +
a−1
∑

K=0

2⌊ǫn⌋2K · 2a−1−K = 2⌊ǫn⌋2a−1(a+ 2).

Let |In,j | = 2n−a − (a + 2)2⌊ǫn⌋−1, this is an integer if n is large enough, and
∑ |In,j | +

∑ |Jn,j | = 2n, i.e., those intervals exactly fill [2n, 2n+1). We will denote
by in,j the smallest element of In,j .

We will use the lexicographical order ≺ on the set {(n, j) | n ∈ N, 0 ≤ j < 2a(n)}.
It can also be described as follows: (n, j) ≺ (n′, j′) if the interval In,j is to the left
of In′,j′ . A sequence (nk, jk) tends to infinity for this order if and only if nk → ∞.

Let Xn,j =
∑

ℓ∈In,j
Aℓ, for n ∈ N and 0 ≤ j < 2a(n). Write finally I =

⋃

n,j In,j

and J =
⋃

n,j Jn,j . The main steps of the proof are the following:

(1) There exists a coupling between (Xn,j) and a sequence of independent ran-
dom variables (Yn,j), with Yn,j distributed like Xn,j , such that, almost
surely, when (n, j) → ∞,

∣

∣

∣

∣

∣

∣

∑

(n′,j′)≺(n,j)

Xn′,j′ − Yn′,j′

∣

∣

∣

∣

∣

∣

= o(2(ρ+ǫ)n/2).

(2) There exists a coupling between (Yn,j) and a sequence of independent gauss-
ian random variables Zn,j, with cov(Zn,j) = |In,j |Σ2, such that, almost
surely, when (n, j) → ∞,
∣

∣

∣

∣

∣

∣

∑

(n′,j′)≺(n,j)

Yn′,j′ − Zn′,j′

∣

∣

∣

∣

∣

∣

= o(2(ρ+ǫ)n/2 + 2((1−ρ)/2+ρ/p+ǫ)n).

(3) Coupling the Xn,j with the Zn,j thanks to the first two steps and writing
Zn,j as the sum of |In,j | gaussian random variables N (0,Σ2), we obtain
a coupling between (Aℓ)ℓ∈I and (Bℓ)ℓ∈I where the Bℓ are i.i.d. and dis-
tributed like N (0,Σ2), such that, when (n, j) tends to infinity,

∣

∣

∣

∣

∣

∣

∑

ℓ<in,j , ℓ∈I

Aℓ −Bℓ

∣

∣

∣

∣

∣

∣

= o(2(ρ+ǫ)n/2 + 2((1−ρ)/2+ρ/p+ǫ)n).

(4) We check that, almost surely, when (n, j) → ∞,

max
m<|In,j|

∣

∣

∣

∣

∣

∣

in,j+m
∑

ℓ=in,j

Aℓ

∣

∣

∣

∣

∣

∣

= o(2((1−ρ)/2+ρ/p+ǫ)n).

Moreover, a similar estimate holds for the Bℓs.
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(5) Combining the last two steps, we get when k tends to infinity
∣

∣

∣

∣

∣

∣

∑

ℓ<k, ℓ∈I

Aℓ −Bℓ

∣

∣

∣

∣

∣

∣

= o(k(ρ+ǫ)/2 + k(1−ρ)/2+ρ/p+ǫ).

(6) Finally, we prove that the gaps can be neglected: almost surely,

(5.2)
∑

ℓ<k, ℓ∈J

Aℓ = o(kρ/2+ǫ),

and a similar estimate holds for the Bℓs.

Altogether, this gives a coupling for which, almost surely
∣

∣

∣

∣

∣

∑

ℓ<k

Aℓ −Bℓ

∣

∣

∣

∣

∣

= o(kρ/2+ǫ + k(1−ρ)/2+ρ/p+ǫ).

Let us choose ρ so that the two error terms are equal, i.e., ρ = p/(2p − 2). We
obtain an almost sure invariance principle with error term p/(4p− 4) + ǫ, for any
ǫ > 0. Since the almost sure invariance principle implies the central limit theorem,
this proves Theorem 1.3, under the assumption that Σ2 is nondegenerate.

It remains to justify the steps (1), (2), (4) and (6), since the steps (3) and (5)
are trivial. This is done in the next paragraphs.

5.1. Step (1): Coupling with independent random variables. In this para-
graph, we justify the first step of the proof of Theorem 1.3, with the following
proposition.

Proposition 5.1. There exists a coupling between (Xn,j) and (Yn,j) such that,
almost surely, when (n, j) tends to infinity,

∣

∣

∣

∣

∣

∣

∑

(n′,j′)≺(n,j)

Xn′,j′ − Yn′,j′

∣

∣

∣

∣

∣

∣

= o(2(ρ+ǫ)n/2).

The rest of this paragraph is devoted to the proof of this proposition.
Let Vn,j , for n, j ∈ N, be independent copies of V (constructed in Proposition

3.8), independent from everything else. Let X̃n,j = Xn,j + Vn,j .

We will write X̃n = (X̃n,j)0≤j<2a(n) . The proof of Proposition 5.1 has two parts:

first, we make the different X̃n independent from each other, using the gaps Jn,0.

Then, inside each block X̃n, we make the variables X̃n,j independent by using the
smaller gaps Jn,j .

Lemma 5.2. Let Q̃n be distributed like X̃n but independent of (X̃1, . . . , X̃n−1). We
have

(5.3) π((X̃1, . . . , X̃n−1, X̃n), (X̃1, . . . , X̃n−1, Q̃n)) < C4−n.

Proof. The number D of variables in (X1, . . . , Xn) is
∑n

m=0 2a(m) ≤∑n
m=0 2ρm ≤

C2ρn, and each of these variables is a block of size ≤ 2n. On the other hand, the
interval Jn,0 is a gap between the variablesXj for j < n and the variableXn, and its
size k is C±12ǫn+ρn. Let φ and γ : RdD → C denote respectively the characteristic
functions of (X1, . . . , Xn−1, Xn) and (X1, . . . , Xn−1, Qn), where Qn is a copy of Xn

which is independent of (X1, . . . , Xn−1). The assumptions (H) ensures that, for
Fourier parameters tn,j all bounded by ǫ0, we have

|φ− γ| ≤ C(1 + 2n)CDe−ck ≤ C2nC2ρn

e−c2ρn+ǫn ≤ Ce−c′2ρn+ǫn

,

if n is large enough.
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Let φ̃ and γ̃ be the characteristic functions of (X̃1, . . . , X̃n) and (X̃1, . . . , Q̃n):
they are obtained by multiplying φ and γ by the characteristic function of V in
each variable. Since this function is supported in {|t| ≤ ǫ0}, we obtain in particular

(5.4) |φ̃− γ̃| ≤ Ce−c2ρn+ǫn

.

We then use Lemma 3.5 with T ′ = e2
ǫn/2

to get

π((X̃1, . . . , X̃n), (X̃1, . . . , X̃n−1, Q̃n))

≤
∑

m≤n

∑

j≤2a(m)

P (|X̃m,j | ≥ e2
ǫn/2

) + eCD2ǫn/2

e−c2ρn+ǫn

.

The second term is again bounded by e−c′2ρn+ǫn

, while each term in the first sum

is bounded by e−2ǫn/2

E(|X̃m,j|) ≤ e−2ǫn/2 ·C2n. Summing over m and j, we obtain

a bound of the form Ce−2δn

, which is stronger than (5.3). �

Corollary 5.3. Let R̃n = (R̃n,j)j<2a(n) be distributed like X̃n, and such that the

R̃n are independent from each other. There exist C > 0 and a coupling between
(X̃1, X̃2, . . . ) and (R̃1, R̃2, . . . ) such that, for all (n, j),

(5.5) P (|X̃n,j − R̃n,j | ≥ C4−n) ≤ C4−n.

Proof. By Lemma 3.2, it is enough to build such a coupling between (X̃1, . . . , X̃N)

and (R̃1, . . . , R̃N ) for fixed N (we just have to ensure that the constant C we obtain
is independent of N , of course).

We use Lemma 5.2 to get a good coupling that makes X̃N independent of the
other variables, then use again this lemma to make X̃N−1 independent of the other

ones, and so on. In the end, this yields the desired coupling between X̃ and R̃.
Let us be more formal. For n ≤ N , we denote by (R̃n

1 , . . . , R̃
n
n) a process dis-

tributed like (X̃1, . . . , X̃n). Let also R̃n be distributed like X̃n, independent of
everything else. For 1 ≤ n ≤ N , Lemma 5.2 and Strassen-Dudley Theorem 3.4 give
a good coupling between (R̃n

1 , . . . , R̃
n
n) and (R̃n−1

1 , . . . , R̃n−1
n−1, R̃n). Putting all those

couplings together on a single space (by Lemma 3.1), we obtain a space on which

cohabit in particular (R̃N
1 , . . . , R̃

N
N ) and (R̃1, . . . , R̃N ), which are the processes we

are trying to couple (the latter process is independent). Moreover,

|R̃N
n − R̃n| ≤

N−1
∑

j=n

|R̃j+1
n − R̃j

n| + |R̃n
n − R̃n|.

If |R̃j+1
n − R̃j

n| ≤ C4−j for j ∈ [n,N − 1] and |R̃n
n − R̃n| ≤ C4−n, we get

|R̃N
n − R̃n| ≤ C′4−n,

for some constant C′ (independent of n orN). In particular, P (|R̃N
n −R̃n| > C′4−n)

is bounded by

N−1
∑

j=n

P (|R̃j+1
n − R̃j

n| > C4−j) + P (|R̃n
n − R̃n| > C4−n) ≤

N
∑

j=n

C4−j ≤ C′4−n. �

Lemma 5.4. For any n ∈ N, we have

(5.6) π((R̃n,j)0≤j<2a(n) , (Ỹn,j)0≤j<2a(n)) < C4−n,

where Ỹn,j = Yn,j + Vn,j .
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Proof. Let a = a(n) = ⌊ρn⌋. We will first make the variables (R̃n,j)j<2a−1 indepen-

dent of the variables (R̃n,j)2a−1≤j<2a by using the large gap Jn,2a−1 , then proceed
in each remaining half using the gap in the middle of this half, and so on.

Formally, we define Ỹ i
n,j , for 0 ≤ i ≤ a, as follows: for 0 ≤ k < 2a−i, the random

variable Ỹi
n,k := (Ỹ i

n,j)k2i≤j<(k+1)2i is distributed like (X̃n,j)k2i≤j<(k+1)2i , and Ỹi
n,k

is independent from Ỹi
n,k′ if k 6= k′. Hence, the process (Ỹ a

n,j)0≤j<2a coincides with

(R̃n,j)0≤j<2a , while (Ỹ 0
n,j)0≤j<2a coincides with (Ỹn,j)0≤j<2a .

Writing Ỹ i = (Ỹ i
n,j)j<2a , let us estimate π(Ỹ i, Ỹ i−1) for some 1 ≤ i ≤ a. Since

the variables Ỹi
n,k are already independent from one another, we have

(5.7) π(Ỹ i, Ỹ i−1) ≤
2a−i−1
∑

k=0

π(Ỹi
n,k, (Ỹi−1

n,2k, Ỹi−1
n,2k+1)).

Moreover, Yi
n,k is composed of 2i blocks of variables, each block of length at most

2n−a, and there is a gap Jn,k2i+2i−1 of size C±12ǫn+i in its middle. Therefore,

(H) ensures that the difference between the characteristic functions of Ỹi
n,k and

(Ỹi−1
n,2k, Ỹi−1

n,2k+1) is at most

C(1 + 2n−a)C2i

e−c2ǫn+i ≤ CeCn2i−c2ǫn+i ≤ Ce−c′2ǫn+i

,

if n is large enough. Taking T ′ = e2
ǫn/2

in Lemma 3.5, we obtain (with computations
very similar to the proof of Lemma 5.2)

π(Ỹi
n,k, (Ỹi−1

n,2k, Ỹi−1
n,2k+1)) ≤ Ce−2δn

,

for some δ > 0. Summing over k in (5.7) and then over i, we obtain

π(Ỹ a, Ỹ 0) ≤
a
∑

i=1

π(Ỹ i, Ỹ i−1) ≤ a2aCe−2δn ≤ Ce−2δn/2.

This gives in particular (5.6). �

Proof of Proposition 5.1. Let us put together the coupling constructed in Corollary
5.3 with the couplings constructed in Lemma 5.4 for each n, thanks to Strassen-
Dudley Theorem 3.4. We get a coupling between (X̃n,j) and (Ỹn,j) such that

P (|X̃n,j − Ỹn,j | ≥ C4−n) ≤ C4−n. Since
∑

n,j 4−n < ∞, Borel-Cantelli ensures
that, almost surely,

(5.8)

∣

∣

∣

∣

∣

∣

∑

(n′,j′)≺(n,j)

X̃n′,j′ − Ỹn′,j′

∣

∣

∣

∣

∣

∣

<∞.

Moreover, X̃n,j = Xn,j + Vn,j where the random variables Vn,j are centered, inde-
pendent and in L2. By the law of the iterated logarithm, almost surely, for any
α > 0,

∣

∣

∣

∣

∣

∣

∑

(n′,j′)≺(n,j)

Vn′,j′

∣

∣

∣

∣

∣

∣

= o(Card{(n′, j′) | (n′, j′) ≺ (n, j)}1/2+α).

Moreover, Card{(n′, j′) | (n′, j′) ≺ (n, j)} ≤ ∑n
n′=1

∑

j′<2a(n′) 1 ≤ C2ρn. We
obtain almost surely

∣

∣

∣

∣

∣

∣

∑

(n′,j′)≺(n,j)

Xn′,j′ − X̃n′,j′

∣

∣

∣

∣

∣

∣

= o(2ρn(1/2+α)).

A similar estimate holds for Yn,j − Ỹn,j. With (5.8), this proves the proposition. �
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5.2. Step (2): Coupling with Gaussian random vectors. We will use Corol-
lary 3 of [Zăı06], let us recall it here for the convenience of the reader.

Proposition 5.5. Let Y0, . . . , Yb−1 be independent centered random vectors. Let

q ≥ 2, and let M =
(

∑b−1
j=0 E|Yj |q

)1/q

. Assume that there exists a strictly in-

creasing sequence m0 = 0,m1, . . . ,ms = b satisfying the following condition. Let
ζk = Ymk

+ · · · + Ymk+1−1 and let Bk = cov ζk, we assume that

(5.9) 100M2|v|2 ≤ 〈Bkv, v〉 ≤ 100CM2|v|2,
for all v ∈ Rd and all 0 ≤ k < s, and for some constant C ≥ 1. Then there exists
a coupling between (Y0, . . . , Yb−1) and a sequence of independent gaussian random
vectors (S0, . . . , Sb−1) such that covSj = covYj, and moreover

(5.10) P



max
1≤i≤b

∣

∣

∣

∣

∣

∣

i−1
∑

j=0

Yj − Sj

∣

∣

∣

∣

∣

∣

≥Mz



 ≤ C′z−q + exp (−C′z) ,

for all z ≥ C′ logn. Here, C′ is a positive quantity depending only on C and the
dimension.

The following lemma easily follows from the previous proposition.

Lemma 5.6. For n ∈ N, there exists a coupling between (Yn,0, . . . , Yn,2a(n)−1) and
(Sn,0, . . . , Sn,2a(n)−1) where the Sn,j are independent centered gaussian vectors with
covSn,j = covYn,j, such that

(5.11)
∑

n

P



 max
1≤i≤2a(n)

∣

∣

∣

∣

∣

∣

i−1
∑

j=0

Yn,j − Sn,j

∣

∣

∣

∣

∣

∣

≥ 2((1−ρ)/2+ρ/p+ǫ/2)n



 <∞.

Proof. Let q ∈ (2, p) and let n ∈ N. We want to apply Proposition 5.5 to the
independent vectors (Yn,j)0≤j<2a , where a = a(n) = ⌊ρn⌋.

By Proposition 4.1, we have ‖Yn,j‖Lq ≤ C2(1−ρ)n/2. This implies that M :=
(

∑2a−1
j=0 E|Yn,j |q

)1/q

satisfies

(5.12) M ≤ C2ρn/q · 2(1−ρ)n/2.

By the assumptions of Theorem 1.3, covYn,j = |In,j |Σ2+o(|In,j |α) for any α > 0.
In particular,

(5.13) covYn,j = 2(1−ρ)nΣ2(1 + o(1)).

Moreover, we assume that matrix Σ2 is nondegenerate. Therefore, there exists a
constant C0 such that, for any 0 ≤ m < m′ ≤ 2a,

C−1
0 (m′ −m)2(1−ρ)n|v|2 ≤

〈

m′−1
∑

j=m

covYn,jv, v

〉

≤ C0(m
′ −m)2(1−ρ)n|v|2.

For m = 0 and m′ = 2a, the quantity (m′ −m)2(1−ρ)n = 2⌊ρn⌋ · 2(1−ρ)n is much
larger thanM2, by (5.12). On the other hand, each individual term (form′ = m+1)
is bounded by

| covYn,j ||v|2 ≤ ‖Yn,j‖2
L2 |v|2 ≤ ‖Yn,j‖2

Lq |v|2 ≤M2|v|2.
Therefore, we can group the Yn,j into consecutive blocks so that (5.9) is satisfied,
for some constant C.
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Applying Proposition 5.5, we get a coupling between (Yn,0, . . . , Yn,2a−1) and
(Sn,0, . . . , Sn,2a−1) such that

(5.14) P



 max
1≤i≤2a(n)

∣

∣

∣

∣

∣

∣

i−1
∑

j=0

Yn,j − Sn,j

∣

∣

∣

∣

∣

∣

≥ 2ǫn/3M



 ≤ C2−qǫn/3,

by (5.10) for z = 2ǫn/3. This quantity is in particular summable in n. Since
2ǫn/3M ≤ 2((1−ρ)/2+ρ/p+ǫ/2)n if q is close enough to p and n is large enough, this
concludes the proof of the lemma. �

Lemma 5.7. Let Zn,j be independent gaussian random vectors with covZn,j =
|In,j |Σ2. There exists a coupling between (Sn,j) and (Zn,j) such that, almost surely,

(5.15)
∑

(n′,j′)≺(n,j)

Sn′,j′ − Zn′,j′ = o(2(ρ+ǫ)n/2).

Proof. Let α > 0. Let En,j = N (0, |In,j |Σ2 + 2αnId), where Id is the identity
matrix of dimension d. By assumption, covSn,j = |In,j |Σ2 + o(2αn). In particular,
if n is large enough, we can write |In,j |Σ2 + 2αnId = covZn,j + Mn,j where the
matrix Mn,j is positive definite and |Mn,j| ≤ C2αn. Therefore, En,j is the sum of
Sn,j and an independent random variable distributed like N (0,Mn,j). In the same
way, En,j is the sum of Zn,j and of an independent gaussian N (0, 2αnId). Putting
those decompositions on a single space thanks to Lemma 3.1, we obtain a coupling
between (Sn,j) and (Zn,j) such that the difference Dn,j = Sn,j − Zn,j is centered,

and with ‖Dn,j‖L2 ≤ C2αn/2.
We claim that this coupling satisfies the conclusion of the lemma if α < ǫ/2.

Indeed, by Etemadi’s inequality [Bil99, Paragraph M19], we have for any n

P



 max
1≤i≤2a(n)

∣

∣

∣

∣

∣

∣

i−1
∑

j=0

Dn,j

∣

∣

∣

∣

∣

∣

> 2(ρ+ǫ/2)n/2





≤ C max
1≤i≤2a(n)

P





∣

∣

∣

∣

∣

∣

i−1
∑

j=0

Dn,j

∣

∣

∣

∣

∣

∣

> 2(ρ+ǫ/2)n/2/3





≤ C max
1≤i≤2a(n)

E







∣

∣

∣

∣

∣

∣

i−1
∑

j=0

Dn,j

∣

∣

∣

∣

∣

∣

2





/2(ρ+ǫ/2)n

≤ C
2a(n)−1
∑

j=0

E(|Dn,j|2)/2(ρ+ǫ/2)n ≤ C2ρn2αn/2(ρ+ǫ/2)n.

This is summable. Therefore, almost surely, for large enough n and for 1 ≤ i ≤
2a(n), we have

∣

∣

∣

∑i−1
j=0Dn,j

∣

∣

∣ ≤ 2(ρ+ǫ/2)n/2. The estimate (5.15) follows. �

5.3. Step (4): Handling the maxima. We recall that in,j is the smallest element
of the interval In,j .

Lemma 5.8. Almost surely, when (n, j) → ∞,

max
m<|In,j|

∣

∣

∣

∣

∣

∣

in,j+m
∑

ℓ=in,j

Aℓ

∣

∣

∣

∣

∣

∣

= o(2((1−ρ)/2+ρ/p+ǫ)n).
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Proof. Let q ∈ [2, p). In Lq, the partial sums
∑b−1

j=a Aℓ are bounded by C(b− a)1/2,

by Proposition 4.1. Denote M b
a = maxa≤n≤b

∣

∣

∣

∑n−1
ℓ=a Aℓ

∣

∣

∣. Corollary A.3.1 in [Ser70]

then also shows that

(5.16)
∥

∥M b
a

∥

∥

Lq ≤ C(b − a)1/2,

for a different constant C. In particular, if ν = (1 − ρ)/2 + ρ/p+ ǫ/2,

P (M
in,j+|In,j|
in,j

≥ 2νn) ≤ E
(

(M
in,j+|In,j |
in,j

)q
)

/2νnq

≤ |In,j |q/2/2νnq.

Moreover,
∑

n,j

|In,j |q/2/2νnq ≤
∑

n

2ρn · 2(1−ρ)nq/2−νnq .

This sum is finite if q is close enough to p. Borel-Cantelli gives the desired result. �

5.4. Step (6): The gaps. Recall that J is the union of the gaps Jn,j. In this
paragraph, we prove the following lemma.

Lemma 5.9. For any α > 0, there exists C > 0 such that, for any interval J ⊂ N,

E

∣

∣

∣

∣

∣

∑

ℓ∈J∩J

Aℓ

∣

∣

∣

∣

∣

2

≤ C|J ∩ J |1+α.

Together with Gal-Koksma strong law of large numbers (Proposition 3.7) applied
with q = 1 + α, this shows that, for every α > 0, almost surely,

(5.17)
∑

ℓ<k,ℓ∈J

Aℓ = o(|J ∩ [0, k]|1/2+α).

Moreover, for k ∈ [2n, 2n+1), we have (by (5.1))

|J ∩ [0, k]| ≤
n
∑

m=0

2a(m)
∑

j=0

|Jn,j | ≤ C

n
∑

m=0

m2ǫm+ρm ≤ Cn2ǫn+ρn ≤ Ckρ+3ǫ/2.

With the previous equation, we obtain (for α = ǫ/4)
∑

ℓ<k,ℓ∈J Aℓ = o(kρ/2+ǫ).

This is (5.2), as desired.

Proof of Lemma 5.9. We will freely use the convexity inequality

(5.18) (a1 + · · · + ar)
2 ≤ r(a2

1 + · · · + a2
r).

Let J ⊂ N be an interval. We decompose J ∩ J as J0 ∪ J1 ∪ J2, where J0 and J2

are, respectively, the first and the last interval of J ∩ J , and J1 is the remaining
part (it is therefore a union of full intervals of J ). Then

∣

∣

∣

∣

∣

∑

ℓ∈J∩J

Aℓ

∣

∣

∣

∣

∣

2

≤ 3

∣

∣

∣

∣

∣

∑

ℓ∈J0

Aℓ

∣

∣

∣

∣

∣

2

+ 3

∣

∣

∣

∣

∣

∑

ℓ∈J1

Aℓ

∣

∣

∣

∣

∣

2

+ 3

∣

∣

∣

∣

∣

∑

ℓ∈J2

Aℓ

∣

∣

∣

∣

∣

2

.

The set J0 is an interval, hence Proposition 4.1 gives E
∣

∣

∑

ℓ∈J0
Aℓ

∣

∣

2 ≤ C|J0|. A
similar inequality holds for J2. To conclude the proof, it is therefore sufficient to
prove that

(5.19) E

∣

∣

∣

∣

∣

∑

ℓ∈J1

Aℓ

∣

∣

∣

∣

∣

2

≤ C|J1|1+α.

This is trivial if J1 is empty. Otherwise, let N be such that max J1 ∈ [2N , 2N+1).
Since the last interval in J1 is contained in [2N , 2N+1), its length is 2⌊ǫN⌋+k where
k ∈ [0, a(N)] is its rank. In particular, N ≤ C log |J1|.



INVARIANCE PRINCIPLE VIA SPECTRAL METHODS 23

For n ∈ N and 0 ≤ k ≤ a(n), let J (n,k) denote the union of the intervals
Jn,j which are of rank k. The number of sets J (n,k) intersecting J1 is at most
∑N

n=0(a(n) + 1) ≤ CN2. Hence, by the convexity inequality (5.18),

(5.20)

∣

∣

∣

∣

∣

∑

ℓ∈J1

Aℓ

∣

∣

∣

∣

∣

2

≤ CN2
∑

n,k

∣

∣

∣

∣

∣

∣

∑

ℓ∈J1∩J (n,k)

Aℓ

∣

∣

∣

∣

∣

∣

2

.

Let us fix some (n, k), and let us enumerate the intervals of J (n,k) as K1, . . . ,Kr

for r = 2a(n)−1−k if k < a(n) (or r = 1 if k = a(n)). Let Ts =
∑

ℓ∈Ks
Aℓ, we claim

that, for any subset S of {1, . . . , r},

(5.21) E

∣

∣

∣

∣

∣

∑

s∈S

Ts

∣

∣

∣

∣

∣

2

≤
∑

s∈S

E|Ts|2 + C|S|.

Let us show how this concludes the proof. By Proposition 4.1, we have E|Ts|2 ≤
C|Ks|. Therefore, for any set K which is a union of intervals in J (n,k), we obtain
E|∑ℓ∈K Aℓ|2 ≤ C|K|. This applies in particular to K = J1 ∩ J (n,k). Therefore,
(5.20) gives

(5.22) E

∣

∣

∣

∣

∣

∑

ℓ∈J1

Aℓ

∣

∣

∣

∣

∣

2

≤ CN2
∑

n,k

|J1 ∩ J (n,k)| = CN2|J1|.

Together with the inequality N ≤ C log |J1|, this proves (5.19) as desired.
It remains to prove (5.21). We first make the Ts independent, as follows. Let

(U1, . . . , Ur) be independent random variables, such that Us is distributed like Ts.
Let also V1, . . . , Vr be independent random variables distributed like V (constructed

in Proposition 3.8) and write T̃s = Ts + Vs, Ũs = Us + Vs. We claim that, for some
δ > 0 and C > 0,

(5.23) π((T̃1, . . . , T̃r), (Ũ1, . . . , Ũr)) < Ce−2δn

.

The proof of this estimate is identical to the proof of Lemma 5.4, using the intervals
of rank > k as gaps. Thanks to this estimate, we can construct a good coupling
between (T̃1, . . . , T̃r) and (Ũ1, . . . , Ũr), giving

E

∣

∣

∣

∣

∣

∑

s∈S

T̃s

∣

∣

∣

∣

∣

2

≤ Ce−2δn/2 + E

∣

∣

∣

∣

∣

∑

s∈S

Ũs

∣

∣

∣

∣

∣

2

= Ce−2δn/2 +
∑

s∈S

E|Ũs|2.

Since V belongs to L2 and E|Us|2 = E|Ts|2, we obtain (5.21). �

6. Completing the proof of the main theorems

In this section, we first finish the proof of Theorem 1.3 when the matrix Σ2 is
degenerate, and then we derive Theorem 1.2 from Theorem 1.3.

Lemma 6.1. Let (A0, A1, . . . ) be a process satisfying the assumptions of Theo-

rem 1.3 for Σ2 = 0. Then, almost surely,
∑n−1

ℓ=0 Aℓ = o(nλ) for any λ > p/(4p−4).

Proof. Let ρ > 0 and ǫ > 0. Define a sequence of intervals In = [nρ+1, (n+ 1)ρ+1),
and denote by in the smallest element of In. We claim that, almost surely,

(6.1)

∣

∣

∣

∣

∣

in−1
∑

ℓ=0

Aℓ

∣

∣

∣

∣

∣

= O(n1/2+ǫ)

and

(6.2) max
i∈In

∣

∣

∣

∣

∣

i
∑

ℓ=in

Aℓ

∣

∣

∣

∣

∣

= O(nρ/2+1/p+ǫ).
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Taking ρ = (p − 2)/p to equate the error terms, we get
∣

∣

∣

∑

ℓ≤k Aℓ

∣

∣

∣ = O(n1/2+ǫ),

where n = n(k) is the index of the interval In containing k. Since n ≤ Ck1/(1+ρ),
we finally obtain an error term O(kλ+ǫ) for

λ =
1

2
· 1

1 + (p− 2)/p
=

p

4p− 4
.

This concludes the proof. It remains to establish (6.1) and (6.2).

By (1.3),
∥

∥

∥

∑in−1
ℓ=0 Aℓ

∥

∥

∥

L2
= O(nα) for any α > 0. Therefore,

P

(

in−1
∑

ℓ=0

Aℓ ≥ n1/2+ǫ

)

≤
∥

∥

∥

∥

∥

in−1
∑

ℓ=0

Aℓ

∥

∥

∥

∥

∥

2

L2

/n1+2ǫ ≤ Cnα/n1+2ǫ.

Taking α = ǫ, this quantity is summable. (6.1) follows.

Denote M b
a = maxa≤n≤b

∣

∣

∣

∑n−1
ℓ=a Aℓ

∣

∣

∣. For q < p, we have

P

(

max
i∈In

∣

∣

∣

∣

∣

i
∑

ℓ=in

Aℓ

∣

∣

∣

∣

∣

≥ nρ/2+1/p+ǫ

)

= P (M
in+1

in
≥ nρ/2+1/p+ǫ)

≤
∥

∥

∥
M

in+1

in

∥

∥

∥

q

Lq
/nq(ρ/2+1/p+ǫ).

By (5.16),
∥

∥

∥M
in+1

in

∥

∥

∥

Lq
≤ C(in+1 − in)1/2 ≤ Cnρ/2. Therefore, the last equation

is bounded by C/nq(1/p+ǫ). This is summable if q is close enough to p. (6.2)
follows. �

Let (A0, A1, . . . ) be a process satisfying the assumptions of Theorem 1.3 for
some matrix Σ2. Replacing Aℓ by Aℓ − E(Aℓ), we can assume that this process is
centered. We decompose R

d as an orthogonal sum E⊕F , where Σ2 is nondegenerate
on E, and vanishes on F . The almost sure invariance principle along E is proved
in Section 5, while Lemma 6.1 handles F . This proves Theorem 1.3.

Finally, Theorem 1.2 directly follows from Lemma 2.7 and Theorem 1.3.
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[Zăı06] , Estimates for the accuracy of the strong approximation in the multidimen-

sional invariance principle, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov.
(POMI) 339 (2006), no. Veroyatn. i Stat. 10, 37–53, 176. MR2355400. Cited pages 3
and 20.
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