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CONTROL OF VOLTERRA SYSTEMS WITH SCALAR KERNELS

BERNHARD H. HAAK AND BIRGIT JACOB

Abstract. Volterra observations systems with scalar kernels are studied. New
sufficient conditions for admissibility of observation operators are developed.
The obtained results are applied to time-fractional diffusion equations of dis-
tributed order.

1. Introduction

Consider the following scalar abstract Volterra system

(1) x(t) = f(t) +

∫ t

0

a(t−s)Ax(s) ds.

Here, the operator A is supposed to be a closed operator with dense domain on a
Banach space X having its spectrum contained in some open sectorial region of the
complex plane, symmetric to the real axis and open to the left:

σ(A) ⊆ −Σω where Σω = {z ∈ C : | arg(z)| < ω}
for some ω ∈ (0, π). Moreover, the resolvent of A is supposed to satisfy a growth
condition of the type ‖λR(λ, A)‖ ≤ M uniformly on each sector Σπ−ω−ε. Typical
examples of such operators are generators of bounded strongly continuous semi-
groups, where ω ≤ π/2. We call −A a sectorial operator of type ω ∈ (0, π), but we
mention that ’sectoriality’ may have different meanings for different authors in the
literature.

The kernel function a ∈ L1
loc is supposed to be of sub-exponential growth so that

its Laplace transform â(λ) exists for all λ with positive real part. The kernel is
called sectorial of angle θ ∈ (0, π) if

â(λ) ∈ Σθ for all λ with positive real part.

We will consider only parabolic equations (1) in the sense of Pruess [26]. In the case
that −A is sectorial of some angle ω ∈ (0, π) this is equivalent to require â(λ) 6= 0
and 1

ba(λ) ∈ ̺(A) for all λ with positive real part.

In particular, when −A and a are both sectorial in the respective sense with angles
that sum up to a constant strictly inferior to π, the Volterra equation is parabolic.

The kernel function is said to be k-regular if there is a constant K > 0 such that

|λnâ(n)(λ)| ≤ K|â(λ)|
for all n = 0, 1 . . . k and all λ with positive real part. In Pruess [26, Theorem I.3.1]
it is shown that parabolic equations with a k-regular kernel for k ≥ 1 admit a
unique solution family, i.e. a family of bounded linear operators (S(t))t≥0 on X ,
such that

(a) S(0) = I and S(·) is strongly continuous on R+.
(b) S(t) commutes with A, which means S(t)(D(A)) ⊂ D(A) for all t ≥ 0, and

AS(t)x = S(t)Ax for all x ∈ D(A) and t ≥ 0.

Date: July 8, 2009.

1



2 BERNHARD H. HAAK AND BIRGIT JACOB

(c) For all x ∈ D(A) and all t ≥ 0 the resolvent equations hold:

(2) S(t)x = x +

∫ t

0

a(t − s)AS(s)xds.

Moreover, S ∈ Ck−1((0,∞),B(X)) and ‖tnS(n)(t)‖ ≤ K for all n = 0, . . . , k − 1.

The purpose of this article is to present conditions for the admissibility of observa-
tion operators to parabolic Volterra equations, that is, we consider the ’observed’
system

(V)





x(t) = f(t) +

∫ t

0

a(t−s)Ax(s) ds

y(t) = Cx(t)

Additionally to the sectoriality condition on A and the parabolicity condition on the
Volterra equation, the operator C in the second line is supposed to be an operator
from X into another Banach space Y that acts as a bounded operator from X1 → Y
where X1 = D(A) endowed by the graph norm of A. In order to guarantee that
the output function lies locally in L2 we impose the following condition.

Definition 1.1. A bounded linear operator C : X1 → Y is called finite-time
admissible for the Volterra equation (1) if there are constants η, K > 0 such that

(∫ t

0

‖CS(r)x‖2 dr

)1/2

≤ Keηt‖x‖

for all t ≥ 0 and all x ∈ D(A).

The notion of admissible observation operators is well studied in the literature for
Cauchy systems, that is, a ≡ 1, see for example [17], [27], and [28]. Admissible
observation operators for Volterra systems are studied in [12], [18], [19] and [22].
The Laplace transform of S, denoted by H , is given by

H(λ)x =
1

λ
(I − â(λ)A)−1x, Re λ > 0.

The following necessary condition for admissibility was shown in [19].

Proposition 1.2. If C is a finite-time admissible observation operator for the
Volterra equation (1), then there is a constant M > 0 such that

(3) ‖
√

Re λCH(λ)‖ ≤ M, Re λ > 0.

In [19] it is shown that (3) is also sufficient for admissibility if X is a Hilbert space, Y
is finite-dimensional and A generates a contraction semigroup. However, in general
this condition is not sufficient (see e.g. [17]).
We show that the slightly stronger growth condition on the resolvent

sup
r>0

∥∥ (1 + log+r)αr
1/2CH(r)

∥∥ < ∞,

is sufficient for admissibility if α > 1/2 (see Theorem 3.6). This result generalizes the
sufficient condition of Zwart [29] for Cauchy systems to general Volterra systems
(1).
Our second main result, Theorem 3.1 provides a perturbation argument to obtain
admissibility for the controlled Volterra equation from the admissibility of the con-
trol operator for the underlying Cauchy equation. In the particular case of diagonal
semigroups and one-dimensional output spaces Y this improves a direct Carleson
measure criterion from Haak, Jacob, Partington and Pott [12].
We proceed as follows. In Section 2 we obtain an integral representation for the
solution family (S(t))t≥0 and several regularity results of the corresponding kernel.
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Section 3 is devoted to sufficient condition for admissibility of observation operators.
A perturbation result as well as a general sufficient condition is obtain. Several
examples are included as well.
To enhance readability of the calculations, for rest of this article, K denotes some
positive constant that may change from one line to the other unless explicitly quan-
tified.

2. Regularity transfer

The main result of this section is formulated in the following proposition. Let s(t, µ)
denote the solution of the scalar equation

s(t, µ) + µ

∫ t

0

a(t−r)s(r, µ) dr = 1 t > 0, µ ∈ C.

Proposition 2.1. Suppose that the kernel a ∈ L1
loc(R+) is 1-regular, and sectorial

of angle θ < π/2. Then there exists a family of functions vt such that

L(vt)(µ) = s(t, µ) and S(t) =

∫ ∞

0

vt(s)T (s) ds

satisfying

(a) supt>0 ‖vt‖L1(R+) < ∞
(b) ‖vt‖L2(R+) ≤ K(t−

θ/π + t+
θ/π) where K depends only on θ and Creg

a,1.

(c) ‖vt‖W 1,1 ≤ K(1 + t−
2θ
π + t+

2θ
π ).

Moreover, for γ ∈ [0, 1], |µγs(t, µ)| ≤ Kt−
2γθ

π

For the proof of this proposition the following two lemmas are needed.

Lemma 2.2. Suppose a ∈ L1
loc(R+) is 1-regular and sectorial of angle θ ≤ π. Let

ρ0 := 2θ/π. Then there exists a constant c > 0 such that

|â(λ)| ≥
{

c|λ|−ρ0 |λ| ≥ 1

c|λ|ρ0 |λ| ≤ 1

for all λ ∈ C+.

Proof. We borrow the argument from the proof of [25, Proposition 1]: we start
with the analytic completion of the Poisson formula for the harmonic function
H(λ) = arg â(λ), that is,

log â(λ) = κ0 +
i

π

∫ ∞

−∞

[
1 − iρλ

λ − iρ

]
h(iρ)

dρ

1 + ρ2
,

where κ0 ∈ R is a constant. An easy calculation shows

|Re log â(λ)| ≤ κ0 + ρ0| log λ|
for real λ > 0, and thus

|â(λ)| = elog(|ba(λ)|) = eRe log ba(λ) ≥
{

cλ−ρ0 λ ≥ 1

cλρ0 0 ≤ λ ≤ 1
,

where c := e−κ0 > 0. This estimate, together with [26, Lemma 8.1] stating the
existence of a constant c > 0 such that c−1 ≤

∣∣â(|λ|)/â(λ)
∣∣ ≤ c for all λ ∈ C+

completes the proof. �

Lemma 2.3. Let θ ∈ (0, π). Then there exists cθ > 0 such that

(4) 1 + |λ| ≤ cθ |1 + λ|
for all λ ∈ Σπ−θ.
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|λ|

λ

λ̃

θ
−1

α

α̃

Figure 1. Illustration of (4)

Proof. Clearly, α > α̃, see Figure 1. Since α̃ = θ
2 , the assertion follows then from

the fact that |1+λ|
1+|λ| = sin(α)

sin(θ−α) ≥ sin(α) ≥ sin(θ/2). �

Proof of Proposition 2.1. (a) is [26, Proposition I.3.5]. This latter result is also
the principal inspiration of the next part:

(b) Let σ(λ, µ) =
(
Ls(·, µ)

)
(λ), i.e. σ(λ, µ) = 1

λ(1+µba(λ)) . Fix t > 0 and ε > 0.

Then

s(t, µ) = 1
2πi

∫ ε+i∞

ε−i∞

eλtσ(λ, µ) dλ.

Then, by partial integration

s(t, µ) = lim
R→∞

1
2πi

[
1
t e

λtσ(λ, µ)

]λ=ε+iR

λ=ε−iR

− 1
2πi

∫ ε+iR

ε−iR

1
t e

λt d

dλ
σ(λ, µ) dλ

= − 1
2πi

∫ ε+i∞

ε−i∞

1
t e

λt d

dλ
σ(λ, µ) dλ

An elementary calculation gives

d

dλ

1

λ(1 + µâ(λ))
= −

1 + µâ(λ)
(
1 +

(
λba′(λ)

ba(λ)

))

λ2(1 + µâ(λ))2

By 1-sectoriality of the kernel,
∣∣∣λba′(λ)

ba(λ)

∣∣∣ ≤ C = Creg
a,1 and so Lemma 2.3 yields

for any δ > 0,
(∫ ∞

−∞

∣∣∣s(t, δ + iy)
∣∣∣
2

dy

)1/2

≤ Cθ(1 + C)
eεt

2πt

(∫ ∞

−∞

(∫ ∞

−∞

1

(ε2+x2)(1 + |δ+iy||â(ε+ix)|) dx

)2

dy

)1/2

≤
√

2Cθ(1 + C)
eεt

2πt

(∫ ∞

0

(∫ ∞

−∞

1

(ε2+x2)(1 + |y||â(ε+ix)|) dx

)2

dy

)1/2
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≤
√

2Cθ(1 + C)
eεt

2πt

∫ ∞

−∞

(∫ ∞

0

1

(ε2+x2)2(1 + |y||â(ε+ix)|)2 dy

)1/2

dx

=
√

2Cθ(1 + C)
eεt

2πt

∫ ∞

−∞

1

(ε2+x2)|â(ε + ix)|1/2

(∫ ∞

0

1

(1 + u)2
du

)1/2

dx

=
√

2Cθ(1 + C)
eεt

2πt

∫ ∞

−∞

1

(ε2+x2)|â(ε + ix)|1/2 dx

Now we split the integral into two parts, by considering the cases ε2+x2 ≥ 1
and ε2+x2 < 1 to apply Lemma 2.2 which is controlling |1/â|. Substituting
x = εt in both parts easily gives

‖s(t, ·)‖H2 ≤ C̃θ
eεt

t

(
ε−1−θ/π + ε−1+θ/π

)
,

which yields the assertion by letting ε = 1/t.
(c) We argue in the same spirit as above: by partial integration

d
dµ

(
µs(t, µ)

)
= 1

2πi

∫ ε+i∞

ε−i∞

1
t e

λt d2

dµ dλ

(
µσ(λ, µ)

)
dλ

An elementary calculation gives

d2

dλ dµ

µâ(λ)

(λ(1 + µâ(λ)))2
=

1 + µâ(λ)
(
1 + 2

(
λba′(λ)

ba(λ)

))

λ2(1 + µâ(λ))3

By 1-sectoriality of the kernel,
∣∣∣λba′(λ)

ba(λ)

∣∣∣ ≤ C and so the Lemma yields any

δ > 0,
∫ ∞

−∞

∣∣∣
d

dµ

(
µs(t, δ + iy)

)∣∣∣ dy

≤ Cθ(1 + 2C)
eεt

2πt

∫ ∞

−∞

∫ ∞

−∞

1

(ε2+x2)(1 + |δ+iy||â(ε+ix)|)2 dx dy

≤ Cθ(1 + 2C)
eεt

2πt

∫ ∞

−∞

∫ ∞

−∞

1

(ε2+x2)(1 + |y||â(ε+ix)|)2 dx dy

= 2Cθ(1 + 2C)
eεt

2πt

∫ ∞

−∞

1

(ε2+x2)

1

|â(ε+ix)|

∫ ∞

0

1

(1 + u)2
du dx

= Cθ(1 + 2C)
eεt

2πt

∫ ∞

−∞

1

(ε2+x2)

1

|â(ε+ix)| dx

≤ K(t−
2θ
π + t+

2θ
π )

by choosing ε = 1/t. This shows that ft(µ) = d
dµ

(
µs(t, µ)

)
∈ H1(C+). We

may apply Hardy’s inequality (see e.g. [8, p.198], [14, Theorem 4.2]),
∫ ∞

0

|f̌t(r)|
r

dr ≤ 1
2

∫ ∞

−∞

|ft(iω)| dω

so that f̌t(r)
r ∈ L1(R+) is Laplace transformable for every t > 0. Since

L
( f̌t(r)

r

)
(σ) =

∫ ∞

σ

ft(µ) dµ = σs(t, σ),

we find that µ 7→ µs(t, µ) ∈ H∞(C+) with a norm controlled by a multiple

of (t
+2θ

π + t−
2θ
π ). This implies that v′t ∈ L1(R+). Together with (a) the

claim follows.
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Finally, the same technique gives an estimate for the growth of s(t, µ):

µγs(t, µ) ≤ K
|µ|γeεt

t

∫ ∞

−∞

1

(ε2 + r2)(1 + |µ||â(ε + ir)|) dr

≤ K
eεt

t

∫ ∞

−∞

1

(ε2 + r2)|â(ε + ir)|γ
|µ|γ |â(ε + ir)|γ

(1 + |µ||â(ε + ir)|) dr

≤ K
eεt

t

∫ ∞

−∞

1

(ε2 + r2)|â(ε + ir)|γ dr

ε= 1
t≤ K(t−

2γθ
π + t+

2γθ
π ).

�

3. Sufficient conditions for finite-time admissibility

In this section we present the two main results of this paper.

Theorem 3.1. Let A generate an exponentially stable strongly continuous semi-
group (T (t))t≥0 and let C : X1 → Y be bounded. Further we assume that the kernel
a ∈ L1

loc(R+) is 1-regular and sectorial of angle θ < π/2. Then finite-time admis-
sibility of C for the semigroup (T (t))t≥0 implies that of C for the solution family
(S(t))t≥0.

Proof. By Proposition 2.1 there exists a family of functions vt such that ‖vt‖L2(R+) ≤
Kt−θ/π for some constant K > 0 independent of t ≥ 0 and

S(t) =

∫ ∞

0

vt(r)T (r) dr, t ≥ 0.

For x ∈ D(A) we have thus

CS(t)x =

∫ ∞

0

vt(r)CT (r)xdr.

Note that finite-time admissibility of C for (T (t))t≥0 implies the existence of a
constant M > 0 such that

‖CT (·)x‖L2(R+) ≤ M‖x‖, x ∈ D(A),

thanks to the exponential stability of (T (t))t≥0. Thus the result follows from
Cauchy-Schwarz inequality. �

By replacing the Cauchy-Schwarz inequality by Hölder’s inequality, similar argu-
ments can be used to obtain sufficient conditions for Lp-admissibility.

Corollary 3.2. Assume in addition to the hypotheses of the theorem that one of
the following conditions is satisfied:

(a) Y is finite-dimensional, X is a Hilbert space and A generates a contraction
semigroup;

(b) X is a Hilbert space and A generates a normal, analytic semigroup;
(c) A generates an analytic semigroup and (−A)1/2 is an finite-time admissible

observation operator for (T (t))t≥0.

If there exists a constant M > 0 such that

(5) ‖C(λ − A)−1‖ ≤ M√
Re λ

, Re λ > 0,

then C is a finite-time admissible observation operator for (S(t))t≥0.



CONTROL OF VOLTERRA SYSTEMS WITH SCALAR KERNELS 7

Proof. Under the assumption of the corollary, the inequality (5) implies that C is
a finite-time admissible observation operator for (S(t))t≥0, see [16], [13], [23]. Thus
the result follows from Theorem 3.1. �

The following corollary is an immediate consequence of the Carleson measure cri-
terion of Ho and Russell [15].

Corollary 3.3. Assume in addition to the hypotheses of the theorem that A ad-
mits a Riesz basis of eigenfunctions (en) on a Hilbert space X with corresponding
eigenvalues λn. If Y = C and if

µ =
∑

n

|Cen|2δ−λn

is a Carleson measure on C+, then C is finite-time admissible for the solution
family (S(t))t≥0.

A nice sufficient condition for admissibility for Cauchy problems is given by Zwart
[29]. For the convenience of the reader we reproduce it here:

Theorem 3.4 (Zwart). Let A be the infinitesimal generator of an exponentially
stable C0-semigroup T (t)t≥0 on the Hilbert space H and let C : X1 → Y be bounded,
where Y is another Hilbert space. If for some α > 1/2,

(6) sup
Re λ>0

∥∥ (1 + log+Reλ)α(Re (λ))
1/2CR(λ, A)

∥∥ < ∞,

then C is a finite-time admissible observation operator.

Notice that the condition (6) can be reformulated by saying that in the sense of
Evans, Opic and Pick (see [10, 9, 11])

∀x ∈ X : ‖CR(·, A)x‖1/2,∞.A < ∞
where A = (0, α), see also Cobos, Frenandez-Cabrera and Triebel [7] for logarithmic
type interpolation functors.

Corollary 3.5. Let in addition to the assumptions of Theorem 3.4, a be a 1-regular
and sectorial kernel of type < π/2. Then C is finite-time admissible for the solution
family

(
S(t)

)
t≥0

.

In some situations, the condition of sectoriality of angle < π/2 in the above corollary
may be inconvenient. Under merely 1-regularity one can also obtain admissibility
by the following direct argument.

Theorem 3.6. Let S(·) be a bounded solution family to (V) with a 1–regular kernel
function a. Let C : X1 → Y be bounded and assume that for some α > 1/2,

(7) sup
r>0

∥∥ (1 + log+r)αr
1/2CH(r)

∥∥ < ∞.

Then C is finite-time admissible for (S(t))t≥0.

Note that the exponent α > 1/2 is optimal in the sense that for α < 1/2 it is even
wrong in the case a ≡ 1, see [20]. About the case α = 1/2 nothing is known at the
moment.

Proof. Let λ ∈ C+ and let ϕ such that λ = |λ|e2iϕ. Then, by resolvent identity,

(1 + (log+(Re λ))αλ
1/2CH(λ)

= (1 + (log+(Re λ))αλ−1/2C
1

â(λ)
R(

1

â(λ)
, A)

= (1 + log+|λ|)α|λ|1/2CH(|λ|) e−iϕ â(|λ|)
â(λ)

[
I +

( 1

â(|λ|) − 1

â(λ)

)
R(

1

â(λ)
, A)

]
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= (1 + log+|λ|)α|λ|1/2CH(|λ|) e−iϕ
[
I + (1 − â(|λ|)

â(λ)
)AR(

1

â(λ)
, A)

]
.

By [26, Lemma 8.1], c−1 ≤
∣∣â(|λ|)/â(λ)

∣∣ ≤ c for some c > 0. This yields uniform
boundedness of expression in brackets and so the assumed estimate (7) gives

(8) ‖λ 7→ CH(r+λ)‖H∞(C+) ≤ K(1 + log+r)−αr−
1/2 .

Since (S(t))t≥0 is bounded,

‖λ 7→ H(r+λ)x‖H2(C+) = ‖e−rtS(t)x‖H2(C+) ≤ Kr−
1/2 ‖x‖ ∀r > 0

and together with (8), we infer

(9) ‖λ 7→ CH(r+λ)2x‖H2(C+) ≤
K

(1 + log+r)αr
‖x‖ ∀r > 0.

Moreover, the estimate

∥∥λ 7→ 1

r+λ
CH(r+λ)x

∥∥
H2(C+)

≤
∥∥λ 7→ CH(r+λ)x

∥∥
H∞(C+)

∥∥λ 7→ 1

r+λ

∥∥
H2(C+)

implies

(10)
∥∥λ 7→ 1

r+λ
CH(r+λ)x

∥∥
H2(C+)

≤ K

(1 + log+r)αr
‖x‖ ∀r > 0.

Since d
dλH(λ) =

(
λba′(λ)

ba(λ)

)
H(λ)2 − 1

λ

(
1 + λba′(λ)

ba(λ)

)
H(λ) we infer from (9) and (10)

that ∥∥∥µ 7→ d

dµ
CH(r + µ)x

∥∥∥
H2(C+)

≤ K

(1 + log+r)αr
‖x‖ ∀r > 0.

Finally, (inverse) Laplace transform yields
∥∥∥t 7→ rte−rtCS(t)x

∥∥∥
L2(R+)

≤ K

(1 + log+r)α
‖x‖ ∀r > 0

and that is the estimate we need in the following dyadic decomposition argument:
notice that xe−x ≥ 2e−2 for x ∈ [1, 2]. Fix some t0 > 0. Then,

∫ t0

0

∥∥CS(t)x
∥∥2

dt =

∞∑

n=1

∫ t02−n+1

t02−n

∥∥CS(t)x
∥∥2

dt

≤ e4

4

∞∑

n=1

∫ t02−n+1

t02−n

∥∥t2nt−1
0 et2nt−1

0 CS(t)x
∥∥2

dt

≤ K
∞∑

n=1

1

(1 + log+(2nt−1
0 ))2α

‖x‖2 ≤ K‖x‖2.

�

4. Example

In this section we apply the obtained results to time-fractional diffusion equation
of distributed order.
Let A generate an exponentially stable strongly continuous semigroup (T (t))t≥0.
For ω > 0, 0 < 2α < β ≤ 1 we study a time-fractional diffusion equation of
distributed order of the form

ωDα
t x(t) + Dβ

t x(t) = Ax(t), t ≥ 0,(11)

x(0) = x0,
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where Dα
t x =

(
− ∂

∂t

)α
x denotes the Caputo derivative of x, given by the Phillips

functional calculus of the right shift semigroup, that is,

Dγ
t x(t) =

1

Γ(1 − γ)

∫ t

0

(t − s)−γx′(s) ds.

for γ ∈ (0, 1). Time-fractional diffusion equations of distributed order have at-
tracted attention as a possible tool for the description of anomalous diffusion and
relaxation phenomena in many areas such as turbulence, disordered medium, in-
termittent chaotic systems, mathematical finance and stochastic mechanics. For
further information on time-fractional diffusion equations of distributed order we
refer the reader to [1, 2, 3, 4, 5, 6, 21, 24].
Using the Laplace transform equation (11) is equivalent to

x(t) = x0 +

∫ t

0

a(t−s)Ax(s) ds,

where

a(t) = tβ−2α−1Eβ−α,β−2α(−ωtβ−α).

Here Eγ,δ, where γ, δ > 0, denotes the Mittag-Leffler function

Eγ,δ(z) =
∞∑

k=0

zk

Γ(γk + δ)

The Laplace transformation of the kernel a is given by

â(λ) =
λ−α

ω + λβ−α
.

Thus the kernel a satisfies the assumption of Theorem 3.1.

We note that this example does e.g. not satisfy the assumption of [12, Theorem
3.10] due to the ’mixed’ growth conditions near infinity and the origin, such that,
even when A is the Dirichlet Laplacian on a bounded domain, the latter result
cannot be used to guarantee admissibility whereas a ’standard’ Carlseon measure
reduction using Corollary 3.3 still applies.
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