Every planar graph without cycles of lengths 4 to 12 is acyclically 3-choosable

Hervé Hocquard and Mickaël Montassier
LaBRI, Université Bordeaux I, 33405 Talence Cedex, France

June 4, 2009

Abstract

An acyclic coloring of a graph G is a coloring of its vertices such that : (i) no two adjacent vertices in G receive the same color and (ii) no bicolored cycles exist in G. A list assignment of G is a function L that assigns to each vertex $v \in V(G)$ a list $L(v)$ of available colors. Let G be a graph and L be a list assignment of G. The graph G is acyclically L-list colorable if there exists an acyclic coloring ϕ of G such that $\phi(v) \in L(v)$ for all $v \in V(G)$. If G is acyclically L-list colorable for any list assignment L with $|L(v)| \geq k$ for all $v \in V(G)$, then G is acyclically k-choosable. In this paper, we prove that every planar graph without cycles of lengths 4 to 12 is acyclically 3 -choosable.

1 Introduction

A proper coloring of a graph is an assignment of colors to the vertices of the graph such that two adjacent vertices do not use the same color. A k-coloring of G is a proper coloring of G using k colors ; a graph admitting a k-coloring is said to be k-colorable. An acyclic coloring of a graph G is a proper coloring of G such that G contains no bicolored cycles; in other words, the graph induced by every two color classes is a forest. A list assignment of G is a function L that assigns to each vertex $v \in V(G)$ a list $L(v)$ of available colors. Let G be a graph and L be a list assignment of G. The graph G is acyclically L-list colorable if there is an acyclic coloring ϕ of G such that $\phi(v) \in L(v)$ for all $v \in V(G)$. If G is acyclically L-list colorable for any list assignment L with $|L(v)| \geq k$ for all $v \in V(G)$, then G is acyclically k-choosable. The acyclic choice number of $G, \chi_{a}^{l}(G)$, is the smallest integer k such that G is acyclically k-choosable. Borodin et al. [1] first investigated the acyclic choosability of planar graphs proving that:

Theorem 1 [1] Every planar graph is acyclically 7-choosable.
and put forward to the following challenging conjecture:
Conjecture 1 [1] Every planar graph is acyclically 5-choosable.
This conjecture if true strengthens Borodin's Theorem [3] on the acyclic 5-colorability of planar graphs and Thomassen's Theorem [11] on the 5-choosability of planar graphs.

In 1976, Steinberg conjectured that every planar graph without cycles of lengths 4 and 5 is 3colorable (see Problem 2.9 [7]). This problem remains open. In 1990, Erdős suggested the following relaxation of Steinberg's Conjecture: what is the smallest integer i such that every planar graph without cycles of lengths 4 to i is 3 -colorable? The best known result is $i=7$ [2]. This question is also studied in the choosability case: what is the smallest integer i such that every planar graph without cycles of lengths 4 to i is 3-choosable? In [12], Voigt proved that Steinberg's Conjecture can not be extended to list coloring ; hence, $i \geq 6$. Nevertheless, in 1996, Borodin [4] proved that every planar graph without cycles of lengths 4 to 9 is 3 -colorable ; in fact, 3 -choosable. So, $i \leq 9$.

In this paper, we study the question of Erdős in the acyclic choosability case:

Problem 1 What is the smallest integer i such that every planar graph without cycles of lengths 4 to i is acyclically 3-choosable?

Note that it is proved that every planar graph without cycles of lengths 4 to 6 is acyclically 4choosable [10]. Also, the relationship between the maximum average degree of G (or the girth of G) and its acyclic choice number was studied (see for example [9, 8, 5]).

Our main result is the following:
Theorem 2 Every planar graph without cycles of lengths 4 to 12 is acyclically 3-choosable.
Hence, in Problem 1, $6 \leq i \leq 12$.
Section 2 is dedicated to the proof of Theorem 2. Follow some notations we will use:

Notations Let G be a planar graph. We use $V(G), E(G)$ and $F(G)$ to denote the set of vertices, edges and faces of G respectively. Let $d(v)$ denote the degree of a vertex v in G and $r(f)$ the length of a face f in G. A vertex of degree k (resp. at least k, at most k) is called a k-vertex (resp. $\geq k$ vertex, $\leq k$-vertex). We use the same notations for faces : a k-face (resp. $\geq k$-face, $\leq k$-face) is a face of length k (resp. at least k, at most k). A k-face having the boundary vertices $x_{1}, x_{2}, \ldots, x_{k}$ in the cyclic order is denoted by $\left[x_{1} x_{2} \ldots x_{k}\right]$. For a vertex $v \in V(G)$, let $n_{i}(v)$ denote the number of i-vertices adjacent to v for $i \geq 1$, and $m_{3}(v)$ the number of 3-faces incident to v. A 3-vertex is called 3^{*}-vertex if it is incident to a 3 -face and adjacent to a 2 -vertex (for example in Figure 1, the vertex t is a 3^{*}-vertex). A 3-face $[r s t]$ with $d(r)=d(s)=d(t)=3$ and with a 3^{*}-vertex on its boundary is called a 3^{*}-face. Two 3-faces $[r s t]$ and [uvw] are called linked if there exists an edge $t v$ which connects these two 3-faces such that $d(t)=d(v)=3$ (see Figure 2). A vertex v is linked to a 3-face $[r s t]$ if there exists an edge between v and one vertex of the boundary of $[r s t]$, say t, such that $d(t)=3$ (for example in Figure 1, the vertex v is linked to the 3-face $[r s t]$). Let $n^{*}(v)$ be the number of 3^{*}-face linked to v.
S

Figure 1: The vertex t is a 3^{*}-vertex and the vertex v is linked to the 3 -face $[r s t]$

Figure 2: The two 3-faces [rst] and [uvw] are linked

2 Proof of Theorem 2

To prove Theorem 2 we proceed by contradiction. Suppose that H is a counterexample with the minimum order to Theorem 2 which is embedded in the plane. Let L be a list assignment with $|L(v)|=3$ for all $v \in V(H)$ such that there does not exist an acyclic coloring c of H with for all $v \in V(H), c(v) \in L(v)$.

Without loss of generality we can suppose that H is connected. We will first investigate the structural properties of H (Section 2.1), then using Euler's formula and the discharging technique we will derive a contradiction (Section 2.2).

2.1 Structural properties of H

Lemma 1 The minimal counterexample H to Theorem 2 has the following properties:
(C1) H contains no 1 -vertices.
(C2) A 3-face has no 2-vertex on its boundary.
(C3) A 2-vertex is not adjacent to a 2-vertex.
(C4) A 3-face has at most one 3^{*}-vertex on its boundary.
(C5) A 3-face $[r s t]$ with $d(r)=d(s)=d(t)=3$ is linked to at most one 3^{*}-face.
(C6) Two 3*-faces cannot be linked.

Figure 3: $[r s t]$ is linked to two 3^{*}-faces $[i j k]$ and $[l m n]$

Figure 4: The two 3^{*}-faces $[r s t]$ and $[i j k]$ are linked

Proof

(C1) Suppose H contains a 1-vertex u adjacent to a vertex v. By minimality of H, the graph $H^{\prime}=H \backslash\{u\}$ is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of H^{\prime}. To extend this coloring to H we just color u with $c(u) \in L(u) \backslash\{c(v)\}$. The obtained coloring is acyclic, a contradiction.
(C2) Suppose H contains a 2-vertex u incident to a 3-face [uvw]. By minimality of H, the graph $H^{\prime}=H \backslash\{u\}$ is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of H^{\prime}. We show that we can extend this coloring to H by coloring u with $c(u) \in L(u) \backslash\{c(v), c(w)\}$.
(C3) Suppose H contains a 2-vertex u adjacent to a 2-vertex v. Let t and w be the other neighbors of u and v respectively. By minimality of H, the graph $H^{\prime}=H \backslash\{u\}$ is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of H^{\prime}. We show that we can extend this coloring to H. Assume first that $c(t) \neq c(v)$. Then we just color u with $c(u) \in L(u) \backslash\{c(t), c(v)\}$. Now, if $c(t)=c(v)$, we color u with $c(u) \in L(u) \backslash\{c(v), c(w)\}$. In the two cases, the obtained coloring is acyclic, a contradiction.
(C4) Suppose H contains a 3-face $[r s t]$ with two 3^{*}-vertices s and t. Suppose that t (resp. s) is adjacent to a 2-vertex v (resp. x) with $v \neq r, s$ by (C2) (resp. $x \neq r, t$). Let u (resp. y) be the other neighbor of $v($ resp. x) with $u \neq r, s$ (resp. $y \neq r, t)$. By the minimality of $H, H^{\prime}=$ $H \backslash\{v\}$ is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of H^{\prime}. We show now that we can extend c to H. If $c(u) \neq c(t)$, we color then v with a color different from $c(u)$ and $c(t)$ and the coloring obtained is acyclic. Otherwise, $c(u)=c(t)$. If we cannot color v, this implies without loss of generality $L(v)=\{1,2,3\}, c(u)=c(t)=c(x)=1$, $c(r)=2$ and $c(s)=c(y)=3$. Observe that necessarily $L(t)=\{1,2,3\}$ (otherwise we can recolor t with $\alpha \in L(t) \backslash\{1,2,3\}$ and color v properly i.e v receives a color distinct of those of these neighbors). For a same reason $L(s)=\{1,2,3\}$ and $L(x)=\{1,2,3\}$. Now, we recolor t with the color $3, s$ with the color 1 and x with the color 2 , then we can color v with the color 2 . It is easy to see that the coloring obtained is acyclic.
(C5) Suppose H contains a 3-face $[r s t]$ incident to three 3-vertices such that two of them are linked to two 3^{*}-faces $[i j k]$ and $[l m n]$. Suppose $[i j k]$ and $[l m n]$ are linked to $[r s t]$ respectively by the edges $s j$ and $t l$. Call y the third neighbor of i, x the third neighbor of r, and p the third neighbor of m. Suppose that the 2-vertex u (resp. v) is adjacent to k and z (resp. n and w). For example, H contains the graph depicted by Figure 3. By the minimality of H, $H^{\prime}=H \backslash\{v\}$ is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of H^{\prime}. We show now that we can extend c to H. If $c(w) \neq c(n)$, we color then v with a color different from $c(w)$ and $c(n)$ and the coloring obtained is acyclic. Otherwise, $c(w)=c(n)$. If we cannot color v, this implies without loss of generality $L(v)=\{1,2,3\}=L(l)=L(m)$, $c(w)=c(n)=c(t)=c(p)=1$, and by permuting the colors of l and m, we are sure that $L(r)=\{1,2,3\}=L(s)$ and $c(x)=c(j)=1$, then by permuting the colors of r and s, we are sure that $L(i)=\{1,2,3\}=L(k), c(y)=c(u)=1$, and $c(z) \in\{2,3\}$. Let $\alpha=\{2,3\} \backslash\{c(z)\}$. We recolor k, s, l, v with α and m, r, i with $c(z)$. The coloring obtained is acyclic.
(C6) Suppose H contains a 3-face $[r s t]$ incident to three 3-vertices such that one vertex is linked to a 3^{*}-face, say s is linked by the edge $s j$ to the 3^{*}-face $[i j k]$ and one vertex is a 3^{*}-vertex, say t. Call y the third neighbor of i, x the third neighbor of r. Suppose that the 2 -vertex u (resp. v) is adjacent to k and z (resp. t and w). For example, H contains the graph depicted by Figure 4 . By the minimality of $H, H^{\prime}=H \backslash\{v\}$ is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of H^{\prime}. We show now that we can extend c to H. If $c(w) \neq c(t)$, we color then v with a color different from $c(w)$ and $c(t)$ and the coloring obtained is acyclic. Otherwise, $c(w)=c(t)$. If we cannot color v, this implies without loss of generality $L(v)=\{1,2,3\}=L(r)=L(s), c(w)=c(t)=c(x)=c(j)=1$, and by permuting the colors of r and s, we are sure that $L(i)=\{1,2,3\}=L(k), c(y)=c(u)=1$, and $c(z) \in\{2,3\}$. Let $\alpha=\{2,3\} \backslash\{c(z)\}$. We recolor k, s, v with α and r, i with $c(z)$. The coloring obtained is acyclic.

Lemma 2 Let H be a connected plane graph with n vertices, m edges and r faces. Then, we have
the following:

$$
\begin{equation*}
\sum_{v \in V(H)}(11 d(v)-26)+\sum_{f \in F(H)}(2 r(f)-26)=-52 \tag{1}
\end{equation*}
$$

Proof

Euler's formula $n-m+f=2$ can be rewritten as $(22 m-26 n)+(4 m-26 f))=-52$. The relation $\sum_{v \in V(H)} d(v)=\sum_{f \in F(H)} r(f)=2 m$ completes the proof.

2.2 Discharging procedure

Let H be a counterexample to Theorem 2 with the minimum order. Then, H satisfies Lemma 1.
We define the weight function $\omega: V(H) \cup F(H) \longrightarrow \mathbb{R}$ by $\omega(x)=11 d(x)-26$ if $x \in V(H)$ and $\omega(x)=2 r(x)-26$ if $x \in F(H)$. It follows from Equation (1) that the total sum of weights is equal to -52. In what follows, we will define discharging rules (R1) and (R2) and redistribute weights accordingly. Once the discharging is finished, a new weight function ω^{*} is produced. However, the total sum of weights is kept fixed when the discharging is achieved. Nevertheless, we will show that $\omega^{*}(x) \geq 0$ for all $x \in V(H) \cup F(H)$. This leads to the following obvious contradiction:

$$
0 \leq \sum_{x \in V(H) \cup F(H)} \omega^{*}(x)=\sum_{x \in V(H) \cup F(H)} \omega(x)=-52<0
$$

and hence demonstrates that no such counterexample can exist.
The discharging rules are defined as follows:
(R1.1) Every ≥ 3-vertex v gives 2 to each adjacent 2 -vertex.
(R1.2) Every ≥ 4-vertex v gives 9 to each incident 3 -face and 1 to each linked 3^{*}-face.
(R2.1) Every 3^{*}-vertex v gives 5 to its incident 3-face.
(R2.2) Every 3-vertex v, different from a 3^{*}-vertex, which is not linked to a 3^{*}-face, gives 7 to its incident 3-face (if any).
(R2.3) Every 3-vertex v, different from a 3^{*}-vertex, linked to a 3^{*}-face gives 1 to each linked 3^{*}-face and gives 6 to its incident 3-face (if any).

In order to complete the proof, it suffices to prove that the new weight $\omega^{*}(x)$ is non-negative for all $x \in V(H) \cup F(H)$.

Let $v \in V(H)$ be a k-vertex. Then, $k \geq 2$ by (C1).

- If $k=2$, then $\omega(v)=-4$ and v is adjacent to two ≥ 3-vertices by (C3). By (R1.1), $\omega^{*}(v)=$ $-4+2 \cdot 2=0$.
- If $k=3$, then $\omega(v)=7$. Since H contains no 4-cycles, v is incident to at most one 3-face. Assume first that v is not incident to a 3-face. Then by (R1.1) and (R2.3), v gives at most 3 times 2. Hence, $\omega^{*}(v) \geq 7-3 \cdot 2 \geq 1$. Assume now that v is incident to a 3-face. If v is a 3^{*}-vertex, then $\omega^{*}(v)=7-5-2=0$ by (R1.1) and (R2.1). If v is linked to a 3^{*}-face then $\omega^{*}(v) \geq 7-6-1=0$ by (R2.3). If v is not adjacent to a 2 -vertex and not linked to a 3^{*}-face then $\omega^{*}(v)=7-7=0$ by (R2.2).
- If $k \geq 4$, then $\omega(v)=11 k-26$. Observe by (C1), (C2) and definitions of $n^{*}(v)$ and of linked vertices that:

$$
m_{3}(v) \leq\left\lfloor\frac{k}{2}\right\rfloor \quad \text { and } \quad k-2 m_{3}(v) \geq n_{2}(v)+n^{*}(v)
$$

$$
\begin{equation*}
k \geq 2 m_{3}(v)+n_{2}(v)+n^{*}(v) \tag{2}
\end{equation*}
$$

It follows by (R1.1), (R1.2) and Equation (2) that:

$$
\begin{aligned}
\omega^{*}(v) & =11 k-26-9 m_{3}(v)-n^{*}(v)-2 n_{2}(v) \\
& \geq 11 k-26-9 m_{3}(v)-\frac{9}{2} n^{*}(v)-\frac{9}{2} n_{2}(v) \\
& \geq 11 k-26-\frac{9}{2} k \\
& \geq \frac{13}{2} k-26 \\
& \geq 0
\end{aligned}
$$

Suppose that f is a k-face. Then, $k=3$ or $k \geq 13$ by hypothesis.

- If $k \geq 13$, then $\omega^{*}(f)=\omega(f)=2 k-26 \geq 0$.
- If $k=3$, then $\omega(f)=-20$. Suppose $f=[r s t]$. By (C2), f is not incident to a 2-vertex ; hence, $d(r) \geq 3, d(s) \geq 3, d(t) \geq 3$. By (C4) f is incident to at most one 3^{*}-vertex. Now, observe that if one of the vertices r, s, t is a ≥ 4-vertex, then by (R1.2) (R2.1) (R2.2) (R2.3) $\omega^{*}(f) \geq-20+9+5+6=0$. So assume $d(r)=d(s)=d(t)=3$ and let r_{0}, s_{0}, t_{0} be the other neighbors of r, s, t, respectively. Suppose that f is a 3^{*}-face and let r be its unique 3^{*}-vertex. By (C6) none of s and t are linked to a 3^{*}-face. Moreover s_{0} and t_{0} give 1 to f by (R1.2) and (R2.3). Hence $\omega^{*}(f)=-20+5+2 \cdot 7+2 \cdot 1=1$. Finally assume that f is not a 3^{*} face. By (C5) at most one of r, s, t is linked to a 3^{*}-face. Hence $\omega^{*}(f) \geq-20+6+2 \cdot 7=0$, by (R1.2), (R2.2) and (R2.3).

We proved that, for all $x \in V(H) \cup F(H), \omega^{*}(x) \geq 0$. This completes the proof of Theorem 2.

References

[1] O.V. Borodin, D.G. Fon-Der Flaass, A.V. Kostochka, A. Raspaud and E. Sopena, Acyclic list 7-coloring of planar graphs, J. Graph Theory, 40(2):83-90, 2002.
[2] O.V. Borodin, A.N. Glebov, A. Raspaud and M.R. Salavatipour, Planar graphs without cycles of length 4 to 7 are 3-colorable, J. Combin. Theory, Ser. B 93 303-311, 2005.
[3] O.V. Borodin, On acyclic colorings of planar graphs, Discrete Math., (25):211-236, 1979.
[4] O.V. Borodin, Structural properties of plane graphs without adjacent triangles and an application to 3-colorings, J. Graph Theory, 2(21):183-186, 1996.
[5] M. Chen, W. Wang, Acyclic 5-choosability of planar graphs without 4-cycles, Discrete Math. 308(24):6216-6225, 2008.
[6] P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, Congr. Numer., (26):125-157, 1979.
[7] T.R. Jensen and B. Toft, Graph coloring problems, Wiley Interscience, 1995.
[8] M. Montassier, Acyclic 4-choosability of planar graphs with girth at least 5, Trends in Mathematics: Graph Theory in Paris, 299-310, 2007.
[9] M. Montassier, P. Ochem and A. Raspaud, On the acyclic choosability of graphs, J. Graph Theory, 51(4):281-300, 2006.
[10] M. Montassier, A. Raspaud and W. Wang, Acyclic 4-choosability of planar graphs without cycles of specific length, Algorithms and Combinatorics, 26:473-491, 2006.
[11] C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B, 62:180-181, 1994.
[12] M. Voigt, List colourings of planar graphs, Discrete Math., (120):215-219, 1993.

