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Abstract

An acyclic coloring of a graphG is a coloring of its vertices such that : (i) no two adjacent
vertices inG receive the same color and (ii) no bicolored cycles exist inG. A list assignment of
G is a functionL that assigns to each vertexv ∈ V (G) a listL(v) of available colors. LetG be
a graph andL be a list assignment ofG. The graphG is acyclicallyL-list colorable if there exists
an acyclic coloringφ of G such thatφ(v) ∈ L(v) for all v ∈ V (G). If G is acyclicallyL-list
colorable for any list assignmentL with |L(v)| ≥ k for all v ∈ V (G), thenG is acyclically
k-choosable. In this paper, we prove that every planar graph without cycles of lengths 4 to 12 is
acyclically 3-choosable.

1 Introduction

A proper coloring of a graph is an assignment of colors to the vertices of the graph such that two
adjacent vertices do not use the same color. Ak-coloring of G is a proper coloring ofG usingk

colors ; a graph admitting ak-coloring is said to bek-colorable. An acyclic coloring of a graph
G is a proper coloring ofG such thatG contains no bicolored cycles ; in other words, the graph
induced by every two color classes is a forest. A list assignment ofG is a functionL that assigns to
each vertexv ∈ V (G) a list L(v) of available colors. LetG be a graph andL be a list assignment
of G. The graphG is acyclically L-list colorable if there is an acyclic coloringφ of G such that
φ(v) ∈ L(v) for all v ∈ V (G). If G is acyclicallyL-list colorable for any list assignmentL with
|L(v)| ≥ k for all v ∈ V (G), thenG is acyclically k-choosable. Theacyclic choice number of
G, χl

a(G), is the smallest integerk such thatG is acyclicallyk-choosable. Borodinet al. [1] first
investigated the acyclic choosability of planar graphs proving that:

Theorem 1 [1] Every planar graph is acyclically 7-choosable.

and put forward to the following challenging conjecture:

Conjecture 1 [1] Every planar graph is acyclically 5-choosable.

This conjecture if true strengthens Borodin’s Theorem [3] on the acyclic 5-colorability of planar
graphs and Thomassen’s Theorem [11] on the 5-choosability of planar graphs.

In 1976, Steinberg conjectured that every planar graph without cycles of lengths 4 and 5 is 3-
colorable (see Problem 2.9 [7]). This problem remains open.In 1990, Erd̋os suggested the following
relaxation of Steinberg’s Conjecture: what is the smallestintegeri such that every planar graph
without cycles of lengths 4 toi is 3-colorable? The best known result isi = 7 [2]. This question
is also studied in the choosability case: what is the smallest integeri such that every planar graph
without cycles of lengths 4 toi is 3-choosable? In [12], Voigt proved that Steinberg’s Conjecture can
not be extended to list coloring ; hence,i ≥ 6. Nevertheless, in 1996, Borodin [4] proved that every
planar graph without cycles of lengths 4 to 9 is 3-colorable ;in fact, 3-choosable. So,i ≤ 9.

In this paper, we study the question of Erdős in the acyclic choosability case:
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Problem 1 What is the smallest integer i such that every planar graph without cycles of lengths 4
to i is acyclically 3-choosable?

Note that it is proved that every planar graph without cyclesof lengths 4 to 6 is acyclically 4-
choosable [10]. Also, the relationship between the maximumaverage degree ofG (or the girth ofG)
and its acyclic choice number was studied (see for example [9, 8, 5]).

Our main result is the following:

Theorem 2 Every planar graph without cycles of lengths 4 to 12 is acyclically 3-choosable.

Hence, in Problem 1,6 ≤ i ≤ 12.

Section 2 is dedicated to the proof of Theorem 2. Follow some notations we will use:

Notations Let G be a planar graph. We useV (G), E(G) andF (G) to denote the set of vertices,
edges and faces ofG respectively. Letd(v) denote the degree of a vertexv in G andr(f) the length
of a facef in G. A vertex of degreek (resp. at leastk, at mostk) is called ak-vertex (resp.≥ k-
vertex, ≤ k-vertex). We use the same notations for faces : ak-face (resp.≥ k-face, ≤ k-face) is a
face of lengthk (resp. at leastk, at mostk). A k-face having the boundary verticesx1, x2, ..., xk

in the cyclic order is denoted by[x1x2...xk]. For a vertexv ∈ V (G), let ni(v) denote the number
of i-vertices adjacent tov for i ≥ 1, andm3(v) the number of 3-faces incident tov. A 3-vertex is
called3∗-vertex if it is incident to a 3-face and adjacent to a 2-vertex (for example in Figure 1, the
vertext is a3∗-vertex). A 3-face[rst] with d(r) = d(s) = d(t) = 3 and with a3∗-vertex on its
boundary is called a3∗-face. Two 3-faces [rst] and [uvw] are called linked if there exists an edgetv
which connects these two 3-faces such thatd(t) = d(v) = 3 (see Figure 2).A vertex v is linked to
a 3-face [rst] if there exists an edge betweenv and one vertex of the boundary of[rst], sayt, such
thatd(t) = 3 (for example in Figure 1, the vertexv is linked to the 3-face[rst]). Let n∗(v) be the
number of3∗-face linked tov.
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Figure 1: The vertext is a3∗-vertex and the
vertexv is linked to the 3-face[rst]
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Figure 2: The two 3-faces [rst] and [uvw] are
linked

2 Proof of Theorem 2

To prove Theorem 2 we proceed by contradiction. Suppose thatH is a counterexample with the
minimum order to Theorem 2 which is embedded in the plane. LetL be a list assignment with
|L(v)| = 3 for all v ∈ V (H) such that there does not exist an acyclic coloringc of H with for all
v ∈ V (H), c(v) ∈ L(v).

Without loss of generality we can suppose thatH is connected. We will first investigate the
structural properties ofH (Section 2.1), then using Euler’s formula and the discharging technique
we will derive a contradiction (Section 2.2).
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2.1 Structural properties of H

Lemma 1 The minimal counterexample H to Theorem 2 has the following properties:

(C1) H contains no 1-vertices.

(C2) A 3-face has no 2-vertex on its boundary.

(C3) A 2-vertex is not adjacent to a 2-vertex.

(C4) A 3-face has at most one 3∗-vertex on its boundary.

(C5) A 3-face [rst] with d(r) = d(s) = d(t) = 3 is linked to at most one 3∗-face.

(C6) Two 3∗-faces cannot be linked.
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Figure 3:[rst] is linked to two3∗-faces[ijk] and[lmn]
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Figure 4: The two3∗-faces[rst] and[ijk] are linked

Proof

(C1) SupposeH contains a 1-vertexu adjacent to a vertexv. By minimality of H , the graph
H ′ = H\{u} is acyclically 3-choosable. Consequently, there exists anacyclicL-coloringc

of H ′. To extend this coloring toH we just coloru with c(u) ∈ L(u)\{c(v)}. The obtained
coloring is acyclic, a contradiction.
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(C2) SupposeH contains a 2-vertexu incident to a 3-face[uvw]. By minimality of H , the graph
H ′ = H\{u} is acyclically 3-choosable. Consequently, there exists anacyclicL-coloringc of
H ′. We show that we can extend this coloring toH by coloringu with c(u) ∈ L(u)\{c(v), c(w)}.

(C3) SupposeH contains a 2-vertexu adjacent to a 2-vertexv. Let t andw be the other neigh-
bors ofu andv respectively. By minimality ofH , the graphH ′ = H\{u} is acyclically
3-choosable. Consequently, there exists an acyclicL-coloring c of H ′. We show that we
can extend this coloring toH . Assume first thatc(t) 6= c(v). Then we just coloru with
c(u) ∈ L(u)\{c(t), c(v)}. Now, if c(t) = c(v), we coloru with c(u) ∈ L(u)\{c(v), c(w)}.
In the two cases, the obtained coloring is acyclic, a contradiction.

(C4) SupposeH contains a 3-face[rst] with two 3∗-verticess andt. Suppose thatt (resp. s) is
adjacent to a 2-vertexv (resp.x) with v 6= r, s by (C2) (resp.x 6= r, t). Let u (resp.y) be the
other neighbor ofv (resp.x) with u 6= r, s (resp.y 6= r, t). By the minimality ofH , H ′ =
H\{v} is acyclically 3-choosable. Consequently, there exists anacyclicL-coloringc of H ′.
We show now that we can extendc to H . If c(u) 6= c(t), we color thenv with a color different
from c(u) andc(t) and the coloring obtained is acyclic. Otherwise,c(u) = c(t). If we cannot
color v, this implies without loss of generalityL(v) = {1, 2, 3}, c(u) = c(t) = c(x) = 1,
c(r) = 2 andc(s) = c(y) = 3. Observe that necessarilyL(t) = {1, 2, 3} (otherwise we
can recolort with α ∈ L(t)\{1, 2, 3} and colorv properlyi.e v receives a color distinct of
those of these neighbors). For a same reasonL(s) = {1, 2, 3} andL(x) = {1, 2, 3}. Now, we
recolort with the color 3,s with the color 1 andx with the color 2, then we can colorv with
the color 2. It is easy to see that the coloring obtained is acyclic.

(C5) SupposeH contains a 3-face[rst] incident to three 3-vertices such that two of them are linked
to two 3∗-faces[ijk] and [lmn]. Suppose[ijk] and [lmn] are linked to[rst] respectively
by the edgessj andtl. Call y the third neighbor ofi, x the third neighbor ofr, andp the
third neighbor ofm. Suppose that the 2-vertexu (resp. v) is adjacent tok andz (resp. n

andw). For example,H contains the graph depicted by Figure 3. By the minimality ofH ,
H ′ = H\{v} is acyclically 3-choosable. Consequently, there exists anacyclicL-coloringc

of H ′. We show now that we can extendc to H . If c(w) 6= c(n), we color thenv with a color
different fromc(w) andc(n) and the coloring obtained is acyclic. Otherwise,c(w) = c(n). If
we cannot colorv, this implies without loss of generalityL(v) = {1, 2, 3} = L(l) = L(m),
c(w) = c(n) = c(t) = c(p) = 1, and by permuting the colors ofl andm, we are sure
thatL(r) = {1, 2, 3} = L(s) andc(x) = c(j) = 1, then by permuting the colors ofr and
s, we are sure thatL(i) = {1, 2, 3} = L(k), c(y) = c(u) = 1, andc(z) ∈ {2, 3}. Let
α = {2, 3} \ {c(z)}. We recolork, s, l, v with α andm, r, i with c(z). The coloring obtained
is acyclic.

(C6) SupposeH contains a 3-face[rst] incident to three 3-vertices such that one vertex is linked
to a3∗-face, says is linked by the edgesj to the3∗-face[ijk] and one vertex is a3∗-vertex,
sayt. Call y the third neighbor ofi, x the third neighbor ofr. Suppose that the 2-vertexu
(resp.v) is adjacent tok andz (resp.t andw). For example,H contains the graph depicted
by Figure 4. By the minimality ofH , H ′ = H\{v} is acyclically 3-choosable. Consequently,
there exists an acyclicL-coloring c of H ′. We show now that we can extendc to H . If
c(w) 6= c(t), we color thenv with a color different fromc(w) and c(t) and the coloring
obtained is acyclic. Otherwise,c(w) = c(t). If we cannot colorv, this implies without loss
of generalityL(v) = {1, 2, 3} = L(r) = L(s), c(w) = c(t) = c(x) = c(j) = 1, and by
permuting the colors ofr ands, we are sure thatL(i) = {1, 2, 3} = L(k), c(y) = c(u) = 1,
andc(z) ∈ {2, 3}. Let α = {2, 3} \ {c(z)}. We recolork, s, v with α andr, i with c(z). The
coloring obtained is acyclic.
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Lemma 2 Let H be a connected plane graph with n vertices, m edges and r faces. Then, we have
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the following:
∑

v∈V (H)

(11d(v) − 26) +
∑

f∈F (H)

(2r(f) − 26) = −52 (1)

Proof
Euler’s formulan − m + f = 2 can be rewritten as(22m − 26n) + (4m − 26f)) = −52. The

relation
∑

v∈V (H)

d(v) =
∑

f∈F (H)

r(f) = 2m completes the proof. 2

2.2 Discharging procedure

Let H be a counterexample to Theorem 2 with the minimum order. Then, H satisfies Lemma 1.

We define the weight functionω : V (H) ∪ F (H) −→ R byω(x) = 11d(x)−26 if x ∈ V (H)
andω(x) = 2r(x) − 26 if x ∈ F (H). It follows from Equation (1) that the total sum of weights is
equal to -52. In what follows, we will define discharging rules (R1) and (R2) and redistribute weights
accordingly. Once the discharging is finished, a new weight functionω∗ is produced. However, the
total sum of weights is kept fixed when the discharging is achieved. Nevertheless, we will show that
ω∗(x) ≥ 0 for all x ∈ V (H) ∪ F (H). This leads to the following obvious contradiction:

0 ≤
∑

x∈V (H)∪F (H)

ω∗(x) =
∑

x∈V (H)∪F (H)

ω(x) = −52 < 0

and hence demonstrates that no such counterexample can exist.

The discharging rules are defined as follows:

(R1.1) Every≥ 3-vertexv gives 2 to each adjacent 2-vertex.

(R1.2) Every≥ 4-vertexv gives 9 to each incident 3-face and 1 to each linked3∗-face.

(R2.1) Every3∗-vertexv gives 5 to its incident 3-face.

(R2.2) Every 3-vertexv, different from a3∗-vertex, which is not linked to a3∗-face, gives 7 to its
incident 3-face (if any).

(R2.3) Every 3-vertexv, different from a3∗-vertex, linked to a3∗-face gives 1 to each linked3∗-face
and gives 6 to its incident 3-face (if any).

In order to complete the proof, it suffices to prove that the new weightω∗(x) is non-negative for
all x ∈ V (H) ∪ F (H).

Let v ∈ V (H) be ak-vertex. Then,k ≥ 2 by (C1).

• If k = 2, thenω(v) = −4 andv is adjacent to two≥ 3-vertices by (C3). By (R1.1),ω∗(v) =
−4 + 2 · 2 = 0.

• If k = 3, thenω(v) = 7. SinceH contains no 4-cycles,v is incident to at most one 3-face.
Assume first thatv is not incident to a 3-face. Then by (R1.1) and (R2.3),v gives at most 3
times 2. Hence,ω∗(v) ≥ 7 − 3 · 2 ≥ 1. Assume now thatv is incident to a 3-face. Ifv is a
3∗-vertex, thenω∗(v) = 7 − 5 − 2 = 0 by (R1.1) and (R2.1). Ifv is linked to a3∗-face then
ω∗(v) ≥ 7− 6− 1 = 0 by (R2.3). Ifv is not adjacent to a 2-vertex and not linked to a3∗-face
thenω∗(v) = 7 − 7 = 0 by (R2.2).

• If k ≥ 4, thenω(v) = 11k− 26. Observe by (C1), (C2) and definitions ofn∗(v) and of linked
vertices that:

m3(v) ≤

⌊

k

2

⌋

and k − 2m3(v) ≥ n2(v) + n∗(v)
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k ≥ 2m3(v) + n2(v) + n∗(v) (2)

It follows by (R1.1), (R1.2) and Equation (2) that:

ω∗(v) = 11k − 26 − 9m3(v) − n∗(v) − 2n2(v)

≥ 11k − 26 − 9m3(v) −
9

2
n∗(v) −

9

2
n2(v)

≥ 11k − 26 −
9

2
k

≥
13

2
k − 26

≥ 0

Suppose thatf is ak-face. Then,k = 3 or k ≥ 13 by hypothesis.

• If k ≥ 13, thenω∗(f) = ω(f) = 2k − 26 ≥ 0.

• If k = 3, thenω(f) = −20. Supposef = [rst]. By (C2), f is not incident to a 2-vertex ;
hence,d(r) ≥ 3, d(s) ≥ 3, d(t) ≥ 3. By (C4) f is incident to at most one3∗-vertex. Now,
observe that if one of the verticesr, s, t is a≥ 4-vertex, then by (R1.2) (R2.1) (R2.2) (R2.3)
ω∗(f) ≥ −20 + 9 + 5 + 6 = 0. So assumed(r) = d(s) = d(t) = 3 and letr0, s0, t0 be
the other neighbors ofr, s, t, respectively. Suppose thatf is a3∗-face and letr be its unique
3∗-vertex. By (C6) none ofs andt are linked to a3∗-face. Moreovers0 andt0 give 1 tof by
(R1.2) and (R2.3). Henceω∗(f) = −20+5+2·7+2·1 = 1. Finally assume thatf is not a3∗-
face. By (C5) at most one ofr, s, t is linked to a3∗-face. Henceω∗(f) ≥ −20+6+2 ·7 = 0,
by (R1.2), (R2.2) and (R2.3).

We proved that, for allx ∈ V (H) ∪ F (H), ω∗(x) ≥ 0. This completes the proof of Theorem 2.
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