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Abstract

An acyclic coloring of a grapldr is a coloring of its vertices such that : (i) no two adjacent
vertices inG receive the same color and (ii) no bicolored cycles exigFimA list assignment of
G is a functionL that assigns to each vertexe V(G) a list L(v) of available colors. Le€ be
a graph and. be a list assignment @¥. The graph7 is acyclically L-list colorable if there exists
an acyclic coloringp of G such thatp(v) € L(v) forallv € V(G). If G is acyclically L-list
colorable for any list assignmeidt with [L(v)| > k forallv € V(G), thenG is acyclically
k-choosable. In this paper, we prove that every planar grédtitout cycles of lengths 4 to 12 is
acyclically 3-choosable.

1 Introduction

A proper coloring of a graph is an assignment of colors to the vertices of thptgsach that two
adjacent vertices do not use the same colork-€oloring of G is a proper coloring o7 usingk
colors ; a graph admitting A-coloring is said to be&-colorable. An acyclic coloring of a graph
G is a proper coloring of7 such thatG' contains no bicolored cycles ; in other words, the graph
induced by every two color classes is a forest. A list assgmrofG is a functionLZ that assigns to
each vertex € V(G) alist L(v) of available colors. Le€ be a graph and be a list assignment
of G. The graphG is acyclically L-list colorable if there is an acyclic coloring of G such that
¢(v) € L(v)forallv € V(G). If G is acyclically L-list colorable for any list assignme#twith
|L(v)] > kforallv € V(G), thenG is acyclically k-choosable. Theacyclic choice number of
G, XL (@), is the smallest integér such thaiG is acyclicallyk-choosable. Borodiet al. [1] first
investigated the acyclic choosability of planar graphsprgthat:

Theorem 1 [1] Every planar graph is acyclically 7-choosable.
and put forward to the following challenging conjecture:
Conjecturel [1] Every planar graph isacyclically 5-choosable.

This conjecture if true strengthens Borodin’s Theorem [8}fte acyclic 5-colorability of planar
graphs and Thomassen’s Theorem [11] on the 5-choosakilglanar graphs.

In 1976, Steinberg conjectured that every planar graphowitieycles of lengths 4 and 5 is 3-
colorable (see Problem 2.9 [7]). This problem remains opeh990, Erds suggested the following
relaxation of Steinberg’s Conjecture: what is the smallettger: such that every planar graph
without cycles of lengths 4 tdis 3-colorable? The best known resultiis= 7 [2]. This question
is also studied in the choosability case: what is the sntdlsger: such that every planar graph
without cycles of lengths 4 tbis 3-choosable? In [12], Voigt proved that Steinberg’s @ohjre can
not be extended to list coloring ; heneex 6. Nevertheless, in 1996, Borodin [4] proved that every
planar graph without cycles of lengths 4 to 9 is 3-coloralefact, 3-choosable. Se,< 9.

In this paper, we study the question of Bsdn the acyclic choosability case:



Problem 1 What is the smallest integer ¢ such that every planar graph without cycles of lengths 4
to i isacyclically 3-choosable?

Note that it is proved that every planar graph without cydekengths 4 to 6 is acyclically 4-
choosable [10]. Also, the relationship between the maxirauenage degree ©f (or the girth ofG)
and its acyclic choice number was studied (see for exampk [5).

Our main result is the following:
Theorem 2 Every planar graph without cycles of lengths 4 to 12 is acyclically 3-choosable.

Hence, in Problem 15 <7 < 12.

Section 2 is dedicated to the proof of Theorem 2. Follow soatations we will use:

Notations Let G be a planar graph. We u3§G), E(G) andF(G) to denote the set of vertices,
edges and faces ¢f respectively. Letl(v) denote the degree of a vertexn G andr(f) the length
of a facef in G. A vertex of degreé: (resp. at least, at mostk) is called ak-vertex (resp. > k-
vertex, < k-vertex). We use the same notations for facesk-face (resp. > k-face, < k-face) is a
face of lengthk (resp. at least, at mostk). A k-face having the boundary vertices, zs, ..., zx
in the cyclic order is denoted Hyz-...x]. For avertex € V(G), letn;(v) denote the number
of i-vertices adjacent to for i > 1, andmg(v) the number of 3-faces incident to A 3-vertex is
called3*-vertex if it is incident to a 3-face and adjacent to a 2-vertex (foarmple in Figure 1, the
vertext is a3*-vertex). A 3-facdrst] with d(r) = d(s) = d(t) = 3 and with a3*-vertex on its
boundary is called &*-face. Two 3-faces [rst] and [uvw] are called linked if there exists an edge
which connects these two 3-faces such thaj = d(v) = 3 (see Figure 2)A vertex v islinked to

a 3-face [rst] if there exists an edge betweerand one vertex of the boundary [eft], sayt, such
thatd(t) = 3 (for example in Figure 1, the vertexis linked to the 3-facérst]). Letn*(v) be the
number of3*-face linked tov.
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Figure 1: The vertex is a3*-vertex and the Figure 2: The two 3-faces [rst] and [uvw] are
vertexw is linked to the 3-facérst] linked

2 Proof of Theorem 2

To prove Theorem 2 we proceed by contradiction. SupposeHhiata counterexample with the
minimum order to Theorem 2 which is embedded in the plane. ILbe a list assignment with
|L(v)| = 3 forallv € V(H) such that there does not exist an acyclic colorirgd H with for all
veV(H), c(v) € L(v).

Without loss of generality we can suppose tliats connected. We will first investigate the
structural properties off (Section 2.1), then using Euler’'s formula and the dischygéchnique
we will derive a contradiction (Section 2.2).



2.1 Structural propertiesof H

Lemma 1l The minimal counterexample H to Theorem 2 has the following properties:
(C1) H containsno 1-vertices.

(C2) A 3-face hasno 2-vertex on its boundary.

(C3) A 2-vertexisnot adjacent to a 2-vertex.

(C4) A 3-face has at most one 3*-vertex on its boundary.

(C5) A3-face[rst] with d(r) = d(s) = d(t) = 3 islinked to at most one 3*-face.
(C6) Two 3*-faces cannot be linked.

Figure 3:[rst] is linked to two3*-faces[i;j k| and[lmn)

Figure 4: The twa*-faces|rst] and[ijk] are linked
Proof

(C1) Suppose contains a 1-vertex: adjacent to a vertex. By minimality of H, the graph
H' = H\{u} is acyclically 3-choosable. Consequently, there existaaelic L-coloringc
of H'. To extend this coloring t&7 we just coloru with ¢(u) € L(u)\{c(v)}. The obtained
coloring is acyclic, a contradiction.



(C2) SupposéT contains a 2-vertex incident to a 3-facéuvw]. By minimality of H, the graph
H' = H\{u} is acyclically 3-choosable. Consequently, there exis&aelic L-coloringc of
H'. We show that we can extend this coloringfdy coloringu with ¢(u) € L(u)\{c(v), c(w)}.

(C3) Supposdi contains a 2-vertex adjacent to a 2-vertex. Lett andw be the other neigh-
bors ofu andwv respectively. By minimality offf, the graphH’ = H\{u} is acyclically
3-choosable. Consequently, there exists an acycliloring ¢ of H’. We show that we
can extend this coloring té{. Assume first that(t) # c(v). Then we just colot with
c(u) € L(u)\{c(t), c(v)}. Now, if ¢(t) = c¢(v), we coloru with ¢(u) € L(u)\{c(v), c(w)}.
In the two cases, the obtained coloring is acyclic, a cointtiaah.

(C4) Supposdd contains a 3-facé-st] with two 3*-verticess and¢. Suppose that (resp. s) is
adjacent to a 2-vertex (resp.x) with v # r, s by (C2) (respx # r,t). Letu (resp.y) be the
other neighbor ob (resp.x) with u # r, s (resp.y # r,t). By the minimality of H, H' =
H\{v} is acyclically 3-choosable. Consequently, there existaaelic L-coloringc of H'.
We show now that we can extendo H. If ¢(u) # ¢(t), we color therv with a color different
from c(u) andc(t) and the coloring obtained is acyclic. Otherwiggy) = ¢(t). If we cannot
color v, this implies without loss of generality(v) = {1,2,3}, c(u) = ¢(t) = c(z) = 1,
e(r) = 2 ande(s) = ¢(y) = 3. Observe that necessarily(t) = {1,2,3} (otherwise we
can recolort with o € L(¢)\{1,2, 3} and colorv properlyi.e v receives a color distinct of
those of these neighbors). For a same redsen = {1, 2,3} andL(z) = {1,2,3}. Now, we
recolort with the color 3,s with the color 1 andc with the color 2, then we can colerwith
the color 2. It is easy to see that the coloring obtained islacy

(C5) Supposéd contains a 3-fackst] incident to three 3-vertices such that two of them are linked
to two 3*-faces[ijk] and [lmn]. Supposdijk| and[lmn] are linked to[rst] respectively
by the edges; andti. Call y the third neighbor of, = the third neighbor of;, andp the
third neighbor ofm. Suppose that the 2-vertex(resp. v) is adjacent tok and z (resp. n
andw). For exampleH contains the graph depicted by Figure 3. By the minimality{of
H' = H\{v} is acyclically 3-choosable. Consequently, there existaaelic L-coloring ¢
of H'. We show now that we can extendo H. If ¢(w) # ¢(n), we color therv with a color
different frome¢(w) ande(n) and the coloring obtained is acyclic. Otherwis@y) = c¢(n). If
we cannot colow, this implies without loss of generality(v) = {1,2,3} = L(I) = L(m),
c(w) = ¢(n) = ¢(t) = ¢(p) = 1, and by permuting the colors éfandm, we are sure
that L(r) = {1,2,3} = L(s) andc(z) = ¢(j) = 1, then by permuting the colors efand
s, we are sure thab(i) = {1,2,3} = L(k), c(y) = c¢(u) = 1, ande(z) € {2,3}. Let
a={2,3}\ {c(z)}. We recolork, s, [, v with a« andm, r, ¢ with ¢(z). The coloring obtained
is acyclic.

(C6) Supposdd contains a 3-facé-st] incident to three 3-vertices such that one vertex is linked
to a3*-face, says is linked by the edgej to the3*-faceijk] and one vertex is &*-vertex,
sayt. Cally the third neighbor of, = the third neighbor of. Suppose that the 2-vertex
(resp.v) is adjacent td: andz (resp.t andw). For exampleH contains the graph depicted
by Figure 4. By the minimality off, H' = H\{v} is acyclically 3-choosable. Consequently,
there exists an acyclié-coloring c of H'. We show now that we can exterdio H. If
c(w) # c(t), we color thenv with a color different frome(w) and¢(t) and the coloring
obtained is acyclic. Otherwise(w) = ¢(t). If we cannot colow, this implies without loss
of generalityL(v) = {1,2,3} = L(r) = L(s), c(w) = ¢(t) = ¢(z) = ¢(j) = 1, and by
permuting the colors of ands, we are sure that (i) = {1,2,3} = L(k), c(y) = c(u) =1,
ande(z) € {2,3}. Leta = {2,3} \ {c(2)}. We recolork, s, v with o andr, ¢ with ¢(z). The
coloring obtained is acyclic.

O

Lemma 2 Let H bea connected plane graph with » vertices, m edges and r faces. Then, we have



the following:

> (1d(w) —26) + > (2r(f) —26) = —52 (1)
veV (H) fEF(H)
Proof
Euler's formulan — m + f = 2 can be rewritten ag22m — 26n) + (4m — 26f)) = —52. The
relation Y d(v)= > r(f)=2m completes the proof. O
veV (H) fEF(H)

2.2 Discharging procedure
Let H be a counterexample to Theorem 2 with the minimum order. THesatisfies Lemma 1.

We define the weight functian : V(H)U F(H) — Rbyw(z) = 11d(x)—26if z € V(H)
andw(z) = 2r(x) — 26if x € F(H). It follows from Equation (1) that the total sum of weights is
equal to -52. In what follows, we will define discharging mi{&1) and (R2) and redistribute weights
accordingly. Once the discharging is finished, a new weightfionw* is produced. However, the
total sum of weights is kept fixed when the discharging isexad. Nevertheless, we will show that
w*(z) > 0forallz € V(H) U F(H). This leads to the following obvious contradiction:

0 < Z w'(z) = Z w(r) = =52 < 0
z € V(H)UF(H) z €V (H)UF(H)
and hence demonstrates that no such counterexample can exis

The discharging rules are defined as follows:

(R1.1) Every> 3-vertexv gives 2 to each adjacent 2-vertex.
(R1.2) Every> 4-vertexv gives 9 to each incident 3-face and 1 to each linkediace.
(R2.1) Every3*-vertexv gives 5 to its incident 3-face.

(R2.2) Every 3-vertew, different from a3*-vertex, which is not linked to 8*-face, gives 7 to its
incident 3-face (if any).

(R2.3) Every 3-vertex, different from a3*-vertex, linked to &8*-face gives 1 to each linkest-face
and gives 6 to its incident 3-face (if any).

In order to complete the proof, it suffices to prove that the neightw* () is non-negative for
allz € V(H) U F(H).

Letv € V(H) be ak-vertex. Thenk > 2 by (C1).

e If kL =2, thenw(v) = —4 andv is adjacent to twe> 3-vertices by (C3). By (R1.1)y*(v) =
—4+2-2=0.

e If kK = 3, thenw(v) = 7. SinceH contains no 4-cycles; is incident to at most one 3-face.
Assume first that is not incident to a 3-face. Then by (R1.1) and (R2:3jjves at most 3
times 2. Henceyp*(v) > 7 —3-2 > 1. Assume now that is incident to a 3-face. If is a
3*-vertex, thenw*(v) =7 —5— 2 =0 by (R1.1) and (R2.1). It is linked to a3*-face then
w*(v) > 7—6—1=0Dby (R2.3). Ifv is not adjacent to a 2-vertex and not linked td*aface
thenw*(v) =7 — 7 = 0 by (R2.2).

o If kb > 4, thenw(v) = 11k — 26. Observe by (C1), (C2) and definitions:f(v) and of linked
vertices that:

ms(v) < {—J and k — 2ms(v) > na(v) +n*(v)

5



k > 2ms(v) + na(v) + n*(v) 2

It follows by (R1.1), (R1.2) and Equation (2) that:

w'(v) = 11k —26 —9ms(v) —n*(v) — 2n2(v)
> 11k —26 — 9ms(v) — gn*(v) - gng(v)
> 11k —26 — gk

13
> —k-2
Z 5 6
> 0

Suppose thaf is ak-face. Thenk = 3 or k > 13 by hypothesis.
o If k> 13, thenw*(f) = w(f) =2k —26 > 0.

e If k£ = 3, thenw(f) = —20. Supposef = [rst]. By (C2), f is not incident to a 2-vertex ;
henced(r) > 3,d(s) > 3,d(t) > 3. By (C4) f is incident to at most on&*-vertex. Now,
observe that if one of the verticess, ¢ is a> 4-vertex, then by (R1.2) (R2.1) (R2.2) (R2.3)
w(f) > —204+9+5+6 = 0. Soassume(r) = d(s) = d(t) = 3 and letry, so, to be
the other neighbors of, s, t, respectively. Suppose thatis a3*-face and let be its unique
3*-vertex. By (C6) none of andt are linked to &8*-face. Moreovek, andt, give 1 tof by
(R1.2) and (R2.3). Henee*(f) = —20+5+2-742-1 = 1. Finally assume that is not a3*-
face. By (C5) at most one of s, t is linked to a3*-face. Hences*(f) > —20+6+2-7 =0,
by (R1.2), (R2.2) and (R2.3).

We provedthat, foralt € V(H)U F(H), w*(x) > 0. This completes the proof of Theorem 2.
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