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Every planar graph without cycles of lengths 4 to 12 is acyclically 3-choosable

An acyclic coloring of a graph G is a coloring of its vertices such that : (i) no two adjacent vertices in G receive the same color and (ii) no bicolored cycles exist in G. A list assignment of G is a function L that assigns to each vertex v ∈ V (G) a list L(v) of available colors. Let G be a graph and L be a list assignment of G. The graph G is acyclically L-list colorable if there exists an acyclic coloring

In this paper, we prove that every planar graph without cycles of lengths 4 to 12 is acyclically 3-choosable.

Introduction

A proper coloring of a graph is an assignment of colors to the vertices of the graph such that two adjacent vertices do not use the same color. A k-coloring of G is a proper coloring of G using k colors ; a graph admitting a k-coloring is said to be k-colorable. An acyclic coloring of a graph G is a proper coloring of G such that G contains no bicolored cycles ; in other words, the graph induced by every two color classes is a forest. A list assignment of G is a function L that assigns to each vertex v ∈ V (G) a list L(v) of available colors. Let G be a graph and L be a list assignment of G. The graph G is acyclically L-list colorable if there is an acyclic coloring φ of G such that φ(v) ∈ L(v) for all v ∈ V (G). If G is acyclically L-list colorable for any list assignment L with |L(v)| ≥ k for all v ∈ V (G), then G is acyclically k-choosable. The acyclic choice number of G, χ l a (G), is the smallest integer k such that G is acyclically k-choosable. Borodin et al. [START_REF] Borodin | Acyclic list 7-coloring of planar graphs[END_REF] first investigated the acyclic choosability of planar graphs proving that:

Theorem 1 [START_REF] Borodin | Acyclic list 7-coloring of planar graphs[END_REF] Every planar graph is acyclically 7-choosable. and put forward to the following challenging conjecture:

Conjecture 1 [1] Every planar graph is acyclically 5-choosable.

This conjecture if true strengthens Borodin's Theorem [START_REF] Borodin | On acyclic colorings of planar graphs[END_REF] on the acyclic 5-colorability of planar graphs and Thomassen's Theorem [START_REF] Thomassen | Every planar graph is 5-choosable[END_REF] on the 5-choosability of planar graphs.

In 1976, Steinberg conjectured that every planar graph without cycles of lengths 4 and 5 is 3colorable (see Problem 2.9 [START_REF] Jensen | Graph coloring problems[END_REF]). This problem remains open. In 1990, Erdős suggested the following relaxation of Steinberg's Conjecture: what is the smallest integer i such that every planar graph without cycles of lengths 4 to i is 3-colorable? The best known result is i = 7 [START_REF] Borodin | Planar graphs without cycles of length 4 to 7 are 3-colorable[END_REF]. This question is also studied in the choosability case: what is the smallest integer i such that every planar graph without cycles of lengths 4 to i is 3-choosable? In [START_REF] Voigt | List colourings of planar graphs[END_REF], Voigt proved that Steinberg's Conjecture can not be extended to list coloring ; hence, i ≥ 6. Nevertheless, in 1996, Borodin [START_REF] Borodin | Structural properties of plane graphs without adjacent triangles and an application to 3-colorings[END_REF] proved that every planar graph without cycles of lengths 4 to 9 is 3-colorable ; in fact, 3-choosable. So, i ≤ 9.

In this paper, we study the question of Erdős in the acyclic choosability case:

Problem 1 What is the smallest integer i such that every planar graph without cycles of lengths 4 to i is acyclically 3-choosable?

Note that it is proved that every planar graph without cycles of lengths 4 to 6 is acyclically 4choosable [START_REF] Montassier | Acyclic 4-choosability of planar graphs without cycles of specific length[END_REF]. Also, the relationship between the maximum average degree of G (or the girth of G) and its acyclic choice number was studied (see for example [START_REF] Montassier | On the acyclic choosability of graphs[END_REF][START_REF] Montassier | Acyclic 4-choosability of planar graphs with girth at least 5[END_REF][START_REF] Chen | Acyclic 5-choosability of planar graphs without 4-cycles[END_REF]).

Our main result is the following: Theorem 2 Every planar graph without cycles of lengths 4 to 12 is acyclically 3-choosable.

Hence, in Problem 1, 6 ≤ i ≤ 12.
Section 2 is dedicated to the proof of Theorem 2. Follow some notations we will use: Notations Let G be a planar graph. We use V (G), E(G) and F (G) to denote the set of vertices, edges and faces of G respectively. Let d(v) denote the degree of a vertex v in G and r(f ) the length of a face f in G. A vertex of degree k (resp. at least k, at most k) is called a k-vertex (resp. ≥ kvertex, ≤ k-vertex). We use the same notations for faces : a k-face (resp. ≥ k-face, ≤ k-face) is a face of length k (resp. at least k, at most k). A k-face having the boundary vertices x 1 , x 2 , ..., x k in the cyclic order is denoted by 

[x 1 x 2 ...x k ]. For a vertex v ∈ V (G), let n i (v) denote the number of i-vertices adjacent to v for i ≥ 1, and m 3 (v) the number of 3-faces incident to v. A 3-vertex is called 3 * -vertex if it is incident to a 3-

Proof of Theorem 2

To prove Theorem 2 we proceed by contradiction. Suppose that H is a counterexample with the minimum order to Theorem 2 which is embedded in the plane. Let L be a list assignment with |L(v)| = 3 for all v ∈ V (H) such that there does not exist an acyclic coloring c of H with for all

v ∈ V (H), c(v) ∈ L(v).
Without loss of generality we can suppose that H is connected. We will first investigate the structural properties of H (Section 2.1), then using Euler's formula and the discharging technique we will derive a contradiction (Section 2.2). (C3) Suppose H contains a 2-vertex u adjacent to a 2-vertex v. Let t and w be the other neighbors of u and v respectively. By minimality of H, the graph H ′ = H\{u} is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of H ′ . We show that we can extend this coloring to H. Assume first that c(t) = c(v). Then we just color u with c(u) ∈ L(u)\{c(t), c(v)}. Now, if c(t) = c(v), we color u with c(u) ∈ L(u)\{c(v), c(w)}.

Structural properties of H

In the two cases, the obtained coloring is acyclic, a contradiction.

(C4) Suppose H contains a 3-face [rst] with two 3 * -vertices s and t. Suppose that t (resp. s) is adjacent to a 2-vertex v (resp. x) with v = r, s by (C2) (resp. x = r, t). Let u (resp. y) be the other neighbor of v (resp. x) with u = r, s (resp. y = r, t). By the minimality of H, H ′ = H\{v} is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of H ′ .

We show now that we can extend c to H. If c(u) = c(t), we color then v with a color different from c(u) and c(t) and the coloring obtained is acyclic. Otherwise, c(u) = c(t). If we cannot color v, this implies without loss of generality

L(v) = {1, 2, 3}, c(u) = c(t) = c(x) = 1, c(r) = 2 and c(s) = c(y) = 3.
Observe that necessarily L(t) = {1, 2, 3} (otherwise we can recolor t with α ∈ L(t)\{1, 2, 3} and color v properly i.e v receives a color distinct of those of these neighbors). For a same reason L(s) = {1, 2, 3} and L(x) = {1, 2, 3}. Now, we recolor t with the color 3, s with the color 1 and x with the color 2, then we can color v with the color 2. It is easy to see that the coloring obtained is acyclic. (C6) Suppose H contains a 3-face [rst] incident to three 3-vertices such that one vertex is linked to a 3 * -face, say s is linked by the edge sj to the 3 * -face [ijk] and one vertex is a 3 * -vertex, say t. Call y the third neighbor of i, x the third neighbor of r. Suppose that the 2-vertex u (resp. v) is adjacent to k and z (resp. t and w). For example, H contains the graph depicted by Figure 4. By the minimality of H, H ′ = H\{v} is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of H ′ . We show now that we can extend c to H. If c(w) = c(t), we color then v with a color different from c(w) and c(t) and the coloring obtained is acyclic. Otherwise, c(w) = c(t). If we cannot color v, this implies without loss of generality

L(v) = {1, 2, 3} = L(r) = L(s), c(w) = c(t) = c(x) = c(j) = 1,
and by permuting the colors of r and s, we are sure that

L(i) = {1, 2, 3} = L(k), c(y) = c(u) = 1,
and c(z) ∈ {2, 3}. Let α = {2, 3} \ {c(z)}. We recolor k, s, v with α and r, i with c(z). The coloring obtained is acyclic.

the following:

v∈V (H) (11d(v) -26) + f ∈F (H) (2r(f ) -26) = -52 (1) 

Proof

Euler's formula nm + f = 2 can be rewritten as (22m -26n) + (4m -26f )) = -52. The relation

v∈V (H) d(v) = f ∈F (H) r(f ) = 2m completes the proof. 2 

Discharging procedure

Let H be a counterexample to Theorem 2 with the minimum order. Then, H satisfies Lemma 1.

We define the weight function ω :

V (H) ∪ F (H) -→ R by ω(x) = 11d(x)-26 if x ∈ V (H) and ω(x) = 2r(x) -26 if x ∈ F (H).
It follows from Equation (1) that the total sum of weights is equal to -52. In what follows, we will define discharging rules (R1) and (R2) and redistribute weights accordingly. Once the discharging is finished, a new weight function ω * is produced. However, the total sum of weights is kept fixed when the discharging is achieved. Nevertheless, we will show that ω * (x) ≥ 0 for all x ∈ V (H) ∪ F (H). This leads to the following obvious contradiction:

0 ≤ x ∈ V (H) ∪ F (H) ω * (x) = x ∈ V (H) ∪ F (H) ω(x) = -52 < 0
and hence demonstrates that no such counterexample can exist.

The discharging rules are defined as follows: In order to complete the proof, it suffices to prove that the new weight ω * (x) is non-negative for all x ∈ V (H) ∪ F (H).

Let v ∈ V (H) be a k-vertex. Then, k ≥ 2 by (C1). • If k ≥ 4, then ω(v) = 11k -26. Observe by (C1), (C2) and definitions of n * (v) and of linked vertices that: We proved that, for all x ∈ V (H) ∪ F (H), ω * (x) ≥ 0. This completes the proof of Theorem 2.

• If k = 2, then ω(v) = -
m 3 (v) ≤ k 2 and k -2m 3 (v) ≥ n 2 (v) + n * (v) k ≥ 2m 3 (v) + n 2 (v) + n * (v) (2) 

  face and adjacent to a 2-vertex (for example in Figure1, the vertex t is a 3 * -vertex). A 3-face [rst] with d(r) = d(s) = d(t) = 3 and with a 3 * -vertex on its boundary is called a 3 * -face. Two 3-faces [rst] and [uvw] are called linked if there exists an edge tv which connects these two 3-faces such that d(t) = d(v) = 3 (see Figure2). A vertex v is linked to a 3-face [rst] if there exists an edge between v and one vertex of the boundary of [rst], say t, such that d(t) = 3 (for example in Figure1, the vertex v is linked to the 3-face [rst]). Let n * (v) be the number of 3 * -face linked to v.
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 12 Figure 1: The vertex t is a 3 * -vertex and the vertex v is linked to the 3-face [rst]

Lemma 1 Figure 3 :Figure 4 :

 134 Figure 3: [rst] is linked to two 3 * -faces [ijk] and [lmn]

(

  C5) Suppose H contains a 3-face [rst] incident to three 3-vertices such that two of them are linked to two 3 * -faces [ijk] and [lmn]. Suppose [ijk] and [lmn] are linked to [rst] respectively by the edges sj and tl. Call y the third neighbor of i, x the third neighbor of r, and p the third neighbor of m. Suppose that the 2-vertex u (resp. v) is adjacent to k and z (resp. n and w). For example, H contains the graph depicted by Figure 3. By the minimality of H, H ′ = H\{v} is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of H ′ . We show now that we can extend c to H. If c(w) = c(n), we color then v with a color different from c(w) and c(n) and the coloring obtained is acyclic. Otherwise, c(w) = c(n). If we cannot color v, this implies without loss of generality L(v) = {1, 2, 3} = L(l) = L(m), c(w) = c(n) = c(t) = c(p) = 1, and by permuting the colors of l and m, we are sure that L(r) = {1, 2, 3} = L(s) and c(x) = c(j) = 1, then by permuting the colors of r and s, we are sure that L(i) = {1, 2, 3} = L(k), c(y) = c(u) = 1, and c(z) ∈ {2, 3}. Let α = {2, 3} \ {c(z)}. We recolor k, s, l, v with α and m, r, i with c(z). The coloring obtained is acyclic.

(R1. 1 )

 1 Every ≥ 3-vertex v gives 2 to each adjacent 2-vertex. (R1.2) Every ≥ 4-vertex v gives 9 to each incident 3-face and 1 to each linked 3 * -face. (R2.1) Every 3 * -vertex v gives 5 to its incident 3-face. (R2.2) Every 3-vertex v, different from a 3 * -vertex, which is not linked to a 3 * -face, gives 7 to its incident 3-face (if any). (R2.3) Every 3-vertex v, different from a 3 * -vertex, linked to a 3 * -face gives 1 to each linked 3 * -face and gives 6 to its incident 3-face (if any).

4 • 7 - 3 • 2 ≥ 1 .

 47321 and v is adjacent to two ≥ 3-vertices by (C3). By (R1.1), ω* (v) = -4 + 2 • 2 = 0. If k = 3, then ω(v) = 7. Since H contains no 4-cycles, v is incident to at most one 3-face.Assume first that v is not incident to a 3-face. Then by (R1.1) and (R2.3), v gives at most 3 times 2. Hence, ω * (v) ≥ Assume now that v is incident to a 3-face. If v is a 3 * -vertex, then ω * (v) = 7 -5 -2 = 0 by (R1.1) and (R2.1). If v is linked to a 3 * -face then ω * (v) ≥ 7 -6 -1 = 0 by (R2.3). If v is not adjacent to a 2-vertex and not linked to a 3 * -face then ω * (v) = 7 -7 = 0 by (R2.2).

  It follows by (R1.1), (R1.2) and Equation (2) that:ω * (v) = 11k -26 -9m 3 (v)n * (v) -2n 2 (v) ≥ 11k -26 -9m 3 (v) -Suppose that f is a k-face. Then, k = 3 or k ≥ 13 by hypothesis. • If k ≥ 13, then ω * (f ) = ω(f ) = 2k -26 ≥ 0. • If k = 3, then ω(f ) = -20. Suppose f = [rst]. By (C2), f is not incident to a 2-vertex ; hence, d(r) ≥ 3, d(s) ≥ 3, d(t) ≥ 3. By (C4) f is incident to at most one 3 * -vertex. Now,observe that if one of the vertices r, s, t is a ≥ 4-vertex, then by (R1.2) (R2.1) (R2.2) (R2.3) ω * (f ) ≥ -20 + 9 + 5 + 6 = 0. So assume d(r) = d(s) = d(t) = 3 and let r 0 , s 0 , t 0 be the other neighbors of r, s, t, respectively. Suppose that f is a 3 * -face and let r be its unique 3 * -vertex. By (C6) none of s and t are linked to a 3 * -face. Moreover s 0 and t 0 give 1 to f by (R1.2) and (R2.3). Hence ω* (f ) = -20+5+2•7+2•1 = 1.Finally assume that f is not a 3 *face. By (C5) at most one of r, s, t is linked to a 3 * -face. Hence ω * (f ) ≥ -20 + 6 + 2 • 7 = 0, by (R1.2), (R2.2) and (R2.3).