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Abstract. Aircraft engines are designed to be used during several tens of years.  
Their maintenance is a challenging and costly task, for obvious security 
reasons.  The goal is to ensure a proper operation of the engines, in all 
conditions, with a zero probability of failure, while taking into account aging.  
The fact that the same engine is sometimes used on several aircrafts has to be 
taken into account too. 
 The maintenance can be improved if an efficient procedure for the prediction 
of failures is implemented.  The primary source of information on the health of 
the engines comes from measurement during flights.  Several variables such as 
the core speed, the oil pressure and quantity, the fan speed, etc. are measured, 
together with environmental variables such as the outside temperature, altitude, 
aircraft speed, etc. 
 In this paper, we describe the design of a procedure aiming at visualizing 
successive data measured on aircraft engines.  The data are multi-dimensional 
measurements on the engines, which are projected on a self-organizing map in 
order to allow us to follow the trajectories of these data over time.  The 
trajectories consist in a succession of points on the map, each of them 
corresponding to the two-dimensional projection of the multi-dimensional 
vector of engine measurements.  Analyzing the trajectories aims at visualizing 
any deviation from a normal behavior, making it possible to anticipate an 
operation failure. 
 However rough engine measurements are inappropriate for such an analysis; 
they are indeed influenced by external conditions, and may in addition vary 
between engines.  In this work, we first process the data by a General Linear 
Model (GLM), to eliminate the effect of engines and of measured 
environmental conditions.  The residuals are then used as inputs to a Self-
Organizing Map for the easy visualization of trajectories. 

Keywords: aircraft engine maintenance, fault detection, general linear models, 
self-organizing maps. 



1   Introduction 

Security issues in the aircrafts are a major concern for obvious reasons.  Among the 
many aspects of security issues, ensuring a proper operation of engines over their 
lifetime is an important task. 

Aircraft engines are built with a high level of security norms.  They undergo 
regularly a full maintenance with disassembling, replacement of parts, etc.  In 
addition, between two such maintenances, many parameters are measured on the 
engines during the flights.  These parameters are recorded, and used both at short and 
long terms for immediate action and alarm generation respectively. 

In this work, we are interested in the long-term monitoring of aircraft engines.  
Measurements on the engines during flights are used to detect any deviation from a 
“normal” behavior, making it possible to anticipate possible faults.  This fault 
anticipation is aimed to facilitate the maintenance of aircraft engines.   

Self-Organizing Maps are here used to provide experts a supplementary tool to 
visualize easily the evolution of the data measured on the engines.  The evolution is 
characterized by a trajectory on the two-dimensional Self-Organizing Map.  
Abnormal aging and fault appearance will result in deviation of this trajectory, with 
respect to normal conditions.  The output of this data mining study is therefore a 
visual tool that can be used by experts, in addition to their traditional tools based on 
quantitative inspection of some measured variables.  Self-Organizing Maps are useful 
tools for fault detection and prediction in plants and machines (see [1], [2], [3], [4], 
[5], for example). 

Analyzing the rough variables measured on the engines during flights is however 
not appropriate.  Indeed these measurements may vary from one engine to another, 
and may also vary according to “environmental” conditions (such as the altitude, the 
outside temperature, the speed of the aircraft, etc.).  In this work, we first remove the 
effects of environmental (measured) variables, and the engine effects, from the rough 
measurements.  The residuals of the regression are then used for further analysis by 
Self-Organizing maps. 

The following of this paper is organized as follows.  In Section 2, the data are 
described and notations are defined.  Section 3 presents the methodology: Section 3.1 
describes how the effects of engines and of environmental variables are removed by a 
General Linear Model, and Section 3.2 shows the visual analysis of the GLM 
residuals by Self-Organizing Maps.  Section 4 describes the experimental results, 
before some conclusions in Section 5. 

2   Data 

Measurements are collected on a set of I engines.  On each engine i (1 ≤ i ≤ I), ni sets 
of measurements are performed successively.  Usually one set is measured during 
each flight; there is thus no guarantee that the time intervals between two sets of 
measures are approximately equal.  Each set of observations is denoted by Zij, with 
1 ≤ i ≤ I and 1 ≤ j ≤ ni. 



Each set Zij contains both variables related to the behavior of the engine, and 
variables that are related to the environment.  Let us denote the p engine variables by 
Yij

1,…, Yij
p and the q environmental variables by Xij

1,…, Xij
q.  Each set of 

measurements is thus a vector Zij, where 

Zij = (Yij ,Xij) = (Yij
1,…, Yij

p, Xij
1, …, Xij

q) . (1) 

In this study, the variables at disposal are those listed in Table 1. 

Table 1.  Engine and environmental variables  

Engine variables Environmental variables 
Yij

1 core speed Xij
1 Mach 

Yij
2 oil pressure Xij

2 Engine bleed valve 1 
Yij

3 HPC discharge stat. pres. Xij
3 Engine bleed valve 2 

Yij
4 HPC discharge temp. Xij

4 Engine bleed valve 3 
Yij

5 Exhaust gas temp. Xij
5 Engine bleed valve 4 

Yij
6 Oil temperature Xij

6 Isolation valve left 
Yij

7 Fuel flow Xij
7 Altitude 

  Xij
8 HPT active clearance 

  Xij
9 LPT active clearance 

  Xij
10 Total air temperature 

  Xij
11 Nacelle temperature 

  Xij
12 ECS Pack 1 flow 

  Xij
13 ECS Pack 2 flow 

 
The goal of this study is to visualize the Yij vectors.  The visualization of the 

successive measurements j for a specific engine i corresponds to a trajectory. 

3   Methodology 

Rough Yij measurements of the engine variables cannot be used as such for the 
analysis.  Indeed the Yij strongly depend on 

• engine effects, i.e. the fact that the engines may differ, and on 
• environmental effects, i.e. the dependence of the engine variables Yij on 

the environmental conditions Xij. 
Both dependences lead to differences in observed variables that have nothing to do 
with aging or fault anticipation.  It is therefore important to remove these effects 
before further analysis. 

In this work, we use a GLM (General Linear Model) [6] to remove these effects, 
since the independent variables are of two types : categorical (engine effect) and real-
valued (environmental variables).  The use of GLM implies two hypotheses.  First, it 
is assumed that the effect of the environment is effectively measured in the 
environmental variables Xij; obviously, non-measured effects cannot be removed.  
Secondly, it is assumed that the relation between the engine variables Yij and the 
environmental variables Xij is linear; this last assumption is probably not perfectly 
correct, but it will be shown in the experimental section that even under this 



hypothesis, the statistical significance of the Xij effects is high; this justifies a 
posteriori to remove at least the linear part (first-order approximation) of the relation. 

The residuals of the regression of the Yij variables over the Xij.ones and the motor 
effects are then used for the analysis.  A Self-Organizing Map is used to visualize the 
two-dimensional projection of the residuals corresponding to each vector Yij.  Then, 
the different states j (1 ≤ j ≤ ni) of a single engine are linked together to form a 
trajectory. 

The next two subsections detail how to perform the GLM regression on the engine 
variables, and how to use the Self-Organizing Maps on the GLM residuals. 

3.1  Computation of the residuals (so-called corrected values) 

The computation of the values obtained by removing the effects of the environment 
variables and of the engine is done by using a General Linear Model, where the 
explanatory variables are of two kinds: one variable is categorical (the engine 
number), the others are real-valued variables (the environment variables). 

For each engine variable m = 1, …, p, the GLM model can be written as:  

Yij
m = μm + αi

m + λ1
m Xij

1 + … + λq
m Xij

q+ εij
m, (2) 

where i = 1,…, I, is the engine number, j is the flight number, αi
m is the engine effect 

on the m-th variable, Xij
1, …, Xij

q are the environmental variables, λ1
m ,…, λq

m are the 
regression coefficients for the m-th variable, and the error term εij

m is centered with 
variance σm

2.  The parameters αi
m, λ1

m,…, λq
m, are estimated by the least squares 

method, and in order to avoid colinearity, we have to add the constraint 0
1

=∑
=

I

i

m
iinα .  

Note that it is possible to model the motor effect by a random term Ai
m instead of 

the fixed effect αi
m ; Ai

m is also supposed to be centered with variance σA
2.  Even if 

the model is slightly different, the residuals are the same.  
Fisher statistics allows us to verify the significance of the models and to confirm 

the interest of the adjustment of engine variable for the environmental ones and the 
motor effect.  

Let us denote by Rij
m , m = 1, …, p the residuals (2), equal to the estimated 

values m
ijε̂ .  The residuals are the values adjusted for the motor effect and the 

environment variables. 

3.2  Self-Organizing Maps on the residuals 

Next we consider a n by n Kohonen map [7] and train it with the p-dimensional 
residuals Rij

m (m = 1, …, p).  We use the SOM toolbox for Matlab [8] for the 
experiments. In that way, each flight j of each engine i is projected on a Kohonen 
class on the map.  We can identify the different locations on the map by looking at the 
corresponding code-vectors and at their components, and then give a description of 
the clusters.  For each engine i, we define the sequence of the class numbers 
corresponding to the successive flights j = 1, …, ni.  This sequence is the trajectory of 



engine i.  In this way we get a visual representation of the successive states of the 
engines on the Kohonen map.  Then we can compare these trajectories by introducing 
a measure of distance between them. 

4   Experiments 

We consider real data which consist in the observation of I = 91 engines.  Each engine 
is measured for a number of flights between 500 and 800.  There are 7 engine 
variables and 13 environment variables, as illustrated in Table 1. 

4.1  Justification of the computation of adjusted variables 

To justify the computation of the residuals (i.e. the values adjusted for engine effect 
and environment variables), we can for example show the result of a PCA on the raw 
data and use different colors for 5 different engines.  We see (Fig.1, left) that each 
engine clearly defines a cluster in the projection on the first two principal 
components.  Fig.1, right also shows that the histograms of the engine variables (Yij4 
is illustrated) depend on the engine. 

 

 

Fig. 1. Left: the first two principal components for five engines. The data are the 7-dimensional 
engine variables.  Right; the values of variable Y4 (HPC discharge temperature) for 4 engines. 

The correlation between variables can be illustrated too.  As an example, Figure 2 
shows variable Y5 (EGT) as a function of variable X10 (Total Air Temperature) in four 
engines.  It is obvious that both variables are strongly dependent. 

These few examples clearly show that it is necessary to remove the effects of the 
engine and of the environmental variables, by computing the residuals in model (2). 

4.2  Self-Organizing Maps on adjusted variables and trajectories 

After the extraction of the residuals Rij as detailed in Section 3.1, the second step 
consists in training a 20 by 20 Kohonen map on these residuals.  Figure 3 shows the 



map obtained, colored according to each of the 7 engine variables.  It is clearly visible 
that the organization of the map is successful (all variables are smoothly varying on 
the map). 

 

Fig. 2. Almost linear dependence between variable Y5 (EGT) and variable X10 (Total Air 
Temperature).  

 
Fig. 3. 20x20 self-organizing map on the residuals.  The first plot shows the U-matrix, the other 
ones display the distribution of the 7 engine variables R1 – R7 over the map. 

We can see that variables R1, R3, R4, R5, R7 on one hand, and R2 and R6 on another 
hand, form high-correlated groups of variables (his property can be verified by 
computing the correlation matrix). 

The 400 classes are then grouped (hierarchical clustering) into 5 super-classes, as 
shown in Figure 4. Finally, Figure 5 shows the trajectories of the engines.  As 
examples, the trajectories of engines 6, 25 and 88 are illustrated.  



 

Fig. 4. Five super-classes are shown after hierarchical clustering of the 400 classes.  The 
centroids are also shown inside each class. 

  

  

  

Fig. 5. Left, trajectories of engines 6, 25 and 88 on the Kohonen map; the dots color indicates 
the evolution along the trajectory (from red to blue, through yellow and green).  The 
background shows the level of the EGT variable (R5).  Right: the residuals for the same 
engines. 

We observe that the trajectories have different shapes.  Looking at the graphs of 
the 7 adjusted engine variables (Figure 5 right), we conclude that the visual 



representations on the Kohonen map provide a synthetic representation for the 
temporal evolution of the engines. 

The next step is then to characterize the different shapes of trajectories, to define a 
suitable distance measure between these trajectories, and to define typical behaviors 
related to typical faults.  

5   Conclusions 

The proposed method is a useful tool to summarize and represent the temporal 
evolution of an aircraft engine flight after flight.  Further work will consist in defining 
classes for the trajectories and in associating each class to some specific behavior. 
Using the maintenance reports which contain the a posteriori measured data related to 
each engine, it will be possible to identify the classes with possible failures. So the 
visual examination of such trajectories will help anticipating faults in aircraft engines. 
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