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ABSTRACT
The numerical kernel approach to difference imaging has been implemented and applied
to gravitational microlensing events observed by the PLANET collaboration. The effect of
an error in the source-star coordinates is explored and a new algorithm is presented for
determining the precise coordinates of the microlens in blended events, essential for accurate
photometry of difference images. It is shown how the photometric reference flux need not
be measured directly from the reference image but can be obtained from measurements of
the difference images combined with the knowledge of the statistical flux uncertainties. The
improved performance of the new algorithm, relative to ISIS2, is demonstrated.

Key words: methods: statistical – techniques: image processing – techniques: photometric.

1 IN T RO D U C T I O N

Over the last 15 years, gravitational microlensing (Einstein 1936)
has been observed routinely and used in the study of dark baryonic
matter (Alcock et al. 1993; Aubourg et al. 1993) and stellar atmo-
spheres (Albrow et al. 1999, 2001a,b; Fields et al. 2003; Cassan
et al. 2004), and in the search for extrasolar planets (Albrow et al.

�E-mail: michael.albrow@canterbury.ac.nz
†http://www.beatricetinsleyinstitute.org/

2000, 2001c; Gaudi et al. 2002; Bond et al. 2004; Udalski et al.
2005; Beaulieu et al. 2006; Dong et al. 2008; Gaudi et al. 2008).
The PLANET collaboration (Albrow et al. 1998) operates a number
of 1-m class telescopes distributed around the southern hemisphere
and performs round-the-clock CCD photometry of microlensing
events that have been discovered and alerted in real time by the
OGLE (Udalski et al. 1994; Udalski 2003) and MOA (Bond et al.
2002) microlensing surveys.

In this paper, we discuss recent advances in the PLANET dif-
ference imaging reduction pipeline, focusing on several subtleties
inherent in the reduction of blended microlensing events. In what
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follows, we use the convention

D = R ⊗ K − T∑
ij Kij

(1)

for difference image D, reference image R, target image T and
convolution kernel K. That is, a difference image is defined as the
convolved reference minus the target, normalized so that it is on the
effective exposure scale of the reference.

We illustrate the methods using a sample data set of images of
microlensing event OGLE 2008-BLG-229 that were taken using
the Elizabeth 1.0-m telescope at the South African Astronomical
Observatory (SAAO) during PLANET operations in 2008. The mi-
crolensing event was alerted by OGLE on 2008 May 3 and ini-
tially was predicted to have low magnification. Subsequent obser-
vations revealed a blended moderate magnification event, peaking
with magnification A0 = 7.24 on 2008 July 18. OGLE data and
parameters for the event can be obtained from the OGLE Early
Warning System website.1 The SAAO observations consist of 84
images, spanning the time from 7 days before maximum until 23
days after maximum.

2 TH E R E D U C T I O N PI P E L I N E

2.1 Introduction

In our first years of operation, PLANET photometry was performed
both in real time at the telescopes and offline using the DOPHOT point
spread function (PSF)-fitting code (Schechter, Mateo & Saha 1993)
under a reduction pipeline written mainly by JPB. Following the
development of the ISIS code (Alard & Lupton 1998), we adopted
the difference imaging method for obtaining our best photometry
offline, while still employing the DOPHOT pipeline at the telescope
sites. In the 2006 season, we began using a difference imaging
photometric pipeline at the telescope sites and for our final offline
photometry. The offline version, known as PYSIS2, was developed by
MDA, and is based on the ISIS2 code of Alard (2000). An adaptation
of PYSIS by CC, known as WISIS, is used for most of the real-time
at-telescope reductions, while the PYSIS2 code is used at the Perth
Observatory. The pipelines allow single images to be reduced im-
mediately after observation using an existing reference template.
As better quality images are acquired, the reference template can
be updated and the previously observed images rereduced.

2.2 Image registration

The ISIS code requires that all images be fully registered to an
astrometric reference. Bright stars are located on all frames and
cross-correlation of their positions followed by an iterative rejection
scheme is used to define an astrometric transformation for each
target image.

An innovation introduced to our offline pipeline in 2007 was the
removal of the requirement to fully register images. Instead, we
register the images only by a shift in X and Y to the nearest pixel,
thus avoiding the need for interpolation and resampling. Resampling
is generally undesirable since it introduces correlations between
adjacent pixels, meaning that their flux uncertainties are no longer
described by Poisson statistics. In the case of images that are close to
or below critical spatial sampling, resampling introduces an artefact

1 http://ogle.astrouw.edu.pl/ogle3/ews/ews.html

where stellar PSFs are not constant or slowly varying across an
image, but depend on the subpixel location of their centroids. Such
images usually do not subtract cleanly. Integer-pixel registration
was handled in our modified version of ISIS by offsetting the kernel
centroid by the subpixel registration residual. We note that this
approach is somewhat less flexible than the standard ISIS code, in
that it cannot work with sets of images with rotations relative to
each other.

2.3 Difference imaging with a numerical kernel

In 2008, we have developed a new version of the code, PYSIS3,
that is no longer based on ISIS image subtraction. Instead, for the
difference-imaging step, we have implemented the algorithm of
Bramich (2008). In this method, the kernel is represented as a nu-
merical pixel array, rather than the decomposition of Gaussians
multiplied by polynomials used in ISIS. The numerical kernel is able
to accommodate images with irregular PSFs, for instance trailed im-
ages, that ISIS cannot cope with. An implicit feature of the method
is that complete registration is not required and the kernel naturally
incorporates subpixel offsets. Image registration in PYSIS3 is hence
restricted to integer pixel shifts. Bramich (2008) shows examples of
how the new algorithm outperforms ISIS. DMB’s code has been used
successfully to discover new variable stars in the globular cluster
NGC 6366 (Arellano Ferro et al. 2008).

Our implementation has been used for the analysis of several
microlensing events, appearing in forthcoming papers on MOA
2007-BLG-197 (Cassan et al., in preparation), OGLE 2004-BLG-
482 (Zub et al., in preparation) and OGLE 2007-BLG-472 (Kains
et al. 2008), and for a transit search (Miller & Albrow, in prepara-
tion). There are several specific details of our implementation that
we note here.

First, the algorithm is generally more computationally intensive
than ISIS, and the computation time scales strongly with the number
of pixels required for the kernel array. For microlensing events, we
generally reduce only a subsection of the images, typically 250 ×
250 pixels centred on the microlens. Our plate scales are typically
around 0.3 arcsec pixel−1.

Secondly, results depend on the size of the pixel array chosen
for the kernel. The kernel needs to be large enough to encapsulate
the transformation between reference and target, but not so large
that it introduces noise into the convolution. We have found the best
results by employing a circular kernel with a radius (in pixels) given
by

Rkernel = min
[
7, 4

(
FWHMtarget − FWHMreference

)]
, (2)

where FWHMtarget and FWHMreference are the full width at half-
maximum (in pixel units) of the microlens on the target and ref-
erence images. Regions of the kernel that are located more that 7
pixels from its centre are represented by 3 × 3 binned pixels in
order to reduce noise. The values for the binned kernel pixels are
computed from the equations in Bramich (2008), but using a 3 × 3
boxcar-smoothed version of the reference image.

Thirdly, to prevent saturated stars that have irregular PSFs from
entering the kernel determination, we mask a circular area of radius
15 pixels around all pixels that are saturated in either the reference
or target image as well as masking the microlens itself. The default
behaviour is to use all the remaining image pixels to determine the
kernel using the Bramich (2008) algorithm. In cases where images
are contaminated by artefacts, such as diffraction spikes, that are
not easily masked, we have found that using ‘stamps’ around bright
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unsaturated stars rather than the entire unmasked image renders a
kernel that is less prone to contamination.

Fourthly, the photometric scaling factor,

s ≡
∑

ij

Kij , (3)

where K is the convolution kernel, represents the relative difference
in effective exposure time between the reference and target images,
i.e. it accounts for differences in both exposure time and atmospheric
transparency. For each target, if s is significantly different from
the ratio of true exposure times, this usually indicates a poorly
subtracted target or one affected by cloud.

Fifthly, for images that have poor spatial sampling – either close to
or even below critical sampling – we use the following technique.
The registered images are oversampled by a factor of 2 in each
direction using cubic O-MOMS interpolation (Blu, Thevenaz &
Unser 2001). This type of resampling does not transfer flux across
original-pixel boundaries. A stack of typically 10 of the best of
these images are then mapped on to the best-seeing image and
combined to make a reference image. Since our individual images
usually have random subpixel dithers, this process generally results
in an oversampled reference so long as the initial undersampling
is not too severe. This approach is similar to that employed in
R. Gilliland’s code for difference imaging of undersampled HST
WFPC2 images (Gilliland et al. 2000; Albrow et al. 2001d). We
note that this approach is still under development and is not used
for the sample data set of images for OGLE 2008-BLG-229 in this
paper, which are not undersampled.

2.4 Photometry

To extract photometric measurements from our difference images,
we first use the BPHOT program from ISIS to compute the PSF of the
reference image. This PSF is then convolved with the previously
computed kernel to produce a PSF for each target image. The PSF
is then normalized and resampled at the subpixel lens coordinates
using cubic O-MOMS interpolation. Any residual background is
removed from the difference image using a low-order polynomial
model. Finally, the PSF is fitted to the difference image using op-
timal extraction, i.e. each pixel weighted by the inverse of its flux
variance.

2.4.1 Flux errors from imprecise coordinates

All of the microlensing events towards the Galactic bulge are
blended to some extent in regular ground-based imaging, i.e. the
PSF of the microlensed source star overlaps with nearby stars. One
implication of this is that the coordinates of the true source star
are often displaced by perhaps several tenths of an arcsec from the
centroid of the PSF.

When performing photometry on a set of difference images by
PSF fitting, small errors in target location lead to systematic under-
estimates of the flux. In Fig. 1, we show how the flux measurement
depends on coordinate displacement, �R (measured in units of
FWHM), under a Gaussian PSF assumption. The two limiting cases,
shown as lines, are (i) optimal PSF fitting in the zero-background
limit and (ii) unweighted PSF fitting, essentially the background-
limited case. In both limits, the flux error scales as the square of the
ratio of the coordinate error to the FWHM of the PSF. This means
that a flux error due to an incorrectly positioned PSF is more serious
for images with better seeing and that such a coordinate error intro-
duces scatter into a light curve derived from a set of variable-seeing
(or even variable-background) images.

Figure 1. Flux determined at offset coordinates relative to the flux at the
correct coordinates as a function of coordinate offset, �R in units of PSF
FWHM. Solid line for unweighted PSF fitting, dashed line for optimal PSF
fitting with zero background, both under the assumption of a Gaussian
PSF. The three distinct groups of data points are computed from the SAAO
difference images for OGLE 2008-BLG-229, with the PSF shifted in x by 0.2
(green), 0.5 (red) and 1.0 pixels (blue) (0.06, 0.16, 0.31 arcsec, respectively)
from their correct value.

We can demonstrate this effect using our test case of SAAO
OGLE 2008-BLG-229. We have created difference images using
as a reference template a single good-seeing image, number 18,
acquired close to the peak of the microlensing event. We have
performed optimal photometry on the set of difference images at the
correct coordinates (i.e. zero-offset) and again with the coordinates
shifted in X by 0.2, 0.5 and 1.0 pixels (0.06, 0.16, 0.31 arcsec) from
their correct position. The three displayed groups of data points
in Fig. 1 show the flux measured at the offset coordinates relative
to the flux at the correct position for the three sets of displaced-
coordinate measurements. The figure shows that, as predicted, the
measured difference flux decreases and its dispersion increases with
coordinate offset.

It is important to note that, for difference-image photometry, the
above effect applies to difference fluxes, �Fi. The total flux is given
by Fi = F 0 − �Fi, where F0 is the flux on the reference image,
R in equation (1). This means that the place in the light curve
where coordinate errors are manifested most strongly depends on
the choice of reference image. The flux error is largest for regions of
the light curve where the magnification is most different from that
of the reference image. Consequently, such errors can be minimized
for a given part of a light curve (for instance, some part of a light
curve suspected to display an anomaly) by choosing a reference
image where the source star has a similar magnification.

2.4.2 Precise coordinates for blended events

For high-magnification events, the true source location may be dis-
cerned from images taken near peak magnification, when the flux
from the true microlensed source star dominates that from nearby
blended stars. For data sets comprised of images that have precise
registration, a sum of the absolute values of the difference images
can be used successfully to refine the coordinates from their initial
estimate, even for relatively low-magnification events. This method
was used in PYSIS2.

In our current circumstance, we have sets of images that are reg-
istered only to the nearest pixel. The method of stacking difference
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Figure 2. Sample images 78 (left; good seeing) and 83 (right; poor see-
ing) from the SAAO observations of OGLE 2008-BLG-229. Top row: di-
rect images registered to the nearest pixel, linear grey-scale encompassing
95 per cent of pixel values. Second row: difference images, linear grey-scale
range −400 to +400. Third row: difference images after subtraction of PSF
fitted at correct coordinates. Bottom row: difference images after subtraction
of PSF fitted at coordinates shifted by +1 pixel in X.

images could, in principle, be applied to these data, provided each
of the difference images is first shifted by the subpixel registration
residual. However, such a shift requires accurate knowledge of the
subpixel residuals and involves interpolation and resampling, a pro-
cess that is inaccurate for images with near- or below-critical spatial
sampling.

A better way, that retains the original sampling, is to use the
residuals from PSF fits to the difference images. In Appendix A,
we introduce a new algorithm to refine the source-star coordinates
by minimizing these residuals over all images. In our photometric
code, the algorithm operates as an integral part of the measurement
process.

In Fig. 2, we show direct, difference and residual images for two
sample observations, numbered 78 (good seeing) and 83 (poor see-
ing) in the SAAO data set for OGLE 2008-BLG-229. Both images
were taken during the final days of data, when the source was at
a magnification, A ≈ 2.5. The reference image was again image
number 18, taken near peak magnification, A ≈ 7.

Our coordinate algorithm resulted in a change of 0.54 pixels
(0.17 arcsec) in the location of the target star relative to the posi-
tion found from our best-seeing image (which was adopted as the
astrometric reference). Using the correct coordinates, the residual
images (difference images after subtraction of the fitted PSF) are
very clean.

The effect of a coordinate offset of 1 pixel (0.3 arcsec) is to pro-
duce a residual image with large positive and negative flux features
remaining. The effect of such an offset on the light curve can be

Figure 3. Light curves for OGLE 2008-BLG-229: (a) using single template
image from near peak, (b) as for (a) but with a 1 pixel coordinate offset,
(c) combination of 10 images for reference template, (d) best light curve
obtained using ISIS2.

tested. We compare difference-flux light curves in a blend-free way
by mapping them to a point-source point-mass lens model as fol-
lows. At time ti, the unblended flux from the source star is given
by

Fi = AiFbase = F0 − �Fi, (4)

where Ai is the magnification that we constrain to be defined by
the OGLE geometric parameters for the event (u0 = 0.139, tE =
53.994 d, t0 = JD2454665.780), F 0 is the unblended source flux on
the reference image and Fbase is the unblended baseline source flux.
For each light curve, we solve for F0 and Fbase by minimizing

χ 2 ≡
∑

i

(AiFbase − F0 + �Fi)
2

σ 2
i

. (5)

Light curves for the whole data set are shown in Fig. 3 for the
correct coordinates and for those with a 1-pixel offset. An increased
scatter is visible in the light curve corresponding to the offset coordi-
nates. In the same figure, we also show the best light curves we have
derived using a template created from the 10 best-seeing images us-
ing PYSIS3 and ISIS2. Fig. 4 shows the corresponding residuals. The
effect of a coordinate error can be seen through comparison of the
upper two panels, particularly during the last 10 days’ data points
when the magnification is most different from that of the reference
image. The superior performance of the new numerical-kernel algo-
rithm can be discerned through comparison of the two lower panels,
where the ISIS2 light curve residuals (panel d) have a 53 per cent
greater rms scatter than the PYSIS3 residuals (panel c). We note that
there is an apparent systematic residual in all the displayed light
curves, where the earliest data points lie below the magnification
curve. This is likely due to the fact that we have constrained, rather
than fitted, the underlying geometric model.
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Figure 4. Light curve residuals for OGLE 2008-BLG-229 corresponding
to Fig. 3 after subtraction of a best-fitting PSPL model with the geometric
parameters set to be those found from OGLE. Error bars are suppressed for
clarity.

2.4.3 Reference flux

The output of our difference-image photometry is the difference in
flux, �Fi, between each target image, i, and a photometric refer-
ence image. The reference image may be a single observation, as
in the preceding sections, but more commonly is created from a
combination of images with the best seeing and lowest sky back-
ground. In order to interpret our observations, we require the flux,
Fi = F 0 − �Fi, where F0 is the flux on the reference image. In
a model-dependent sense, a deblended F0 can be derived as a fit-
ting parameter as done above. More usually, particularly during the
time when observations are being acquired, F0 is measured from a
PSF-fit at the lens coordinates on the reference image. Often this
estimation is in error due to the crowded nature of the Galactic bulge
fields in which we observe.

An incorrect value for F0 can, to some extent, be compensated
for in the microlens blend fraction,

fbl ≡ Fs

Fs + Fb

, (6)

where for magnification A, the baseline flux (Fs + Fb) increases to

F = FsA + Fb = (Fs + Fb) [fblA + (1 − fbl)] (7)

and the blend fraction is derived from light curve fitting. However,
blending parameters so derived are inconsistent between different
data sets for the same event, may take on non-physical values, and
certainly no longer have the correct physical interpretation as the
fraction of light contributing to the stellar PSF at baseline from the
microlensing source star.

A more successful approach that we have developed is to choose
F0 so that the photometric uncertainties in the set of �Fi measure-
ments are consistent with Poisson noise for fluxes Fi = F 0 − �Fi.
The algorithm for this determination, referred to as the Poisson ref-
erence flux, is detailed in Appendix B. The method uses information
from all suitable images and the variance in the Poisson reference
flux scales roughly with the inverse of the number of images. This
variance is generally smaller than the variance for a direct flux mea-
surement from the reference image, which scales with the inverse
of the number of individual images incorporated into the reference.
For our sample light curve, the reference flux is measured directly
as F 0 = 101, 820 ± 90 ADU (likely to include extra blended light),
while the Poisson method yields F 0 = 93, 570 ± 40 ADU.

3 SU M M A RY

Difference imaging has proved to be a powerful technique in the
measurement of gravitational microlensing flux variations and for
variable stars and transiting extrasolar planets. The numerical ker-
nel method introduced by Bramich (2008) represents a significant
advance over the analytic kernel of Alard & Lupton (1998).

In this paper, we have shown that, for blended microlensing
events, precise determination of the coordinates of the microlens
is necessary to obtain accurate photometry. We have presented a
new algorithm, based on photometric residuals, to measure such
coordinates to high precision.

Additionally, we have introduced a new method to measure the
reference flux in a manner that does not depend on an (often inac-
curate) analysis of the photometric reference image. The Poisson
reference flux method produces a more accurate and precise deter-
mination of the unmagnified source flux than a direct measurement
from the reference image.

A comparison has been made between photometry from our new
code and photometry using ISIS for SAAO images of microlensing
event OGLE 2008-BLG-229. The new code produces measure-
ments that display significantly less scatter about a point-source
point-mass-lens light curve based on the OGLE-determined geo-
metric parameters for the event.
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APPENDIX A : R EFINING THE LENS
POSITION

A1 Target position from a single difference image

We wish to find subpixel offsets, �x and �y, that create the best
match of a PSF model P to a difference image D. Expand the PSF
model to first order in �x and �y,

P = P0 + �x Px + �y Py, (A1)

and thereby write the residual image2 as

R = D − �F P, (A2)

where P0 is the unshifted PSF, �F is the difference flux, and the x
and y gradients of the unshifted PSF are

Px ≡ ∂P0

∂x
, Py ≡ ∂P0

∂y
. (A3)

The PSF is normalized to∑
i

Pi = 1 (A4)

when summed over pixels i. With σ 2
i = Var[Di] the variance of the

data Di in pixel i, the χ 2 statistic measuring the ‘badness-of-fit’ is

χ 2 =
∑

i

(
Ri

σi

)2

= |R|2. (A5)

Here we adopt the convenient notation

〈A |B〉 ≡
∑

i

Ai Bi

σ 2
i

|A|2 ≡ 〈A |A〉 (A6)

for the inverse-variance weighted ‘dot product’ of ‘image vectors’
A and B, and note that χ 2 is the squared norm of the residual image
R.

Starting with �F = �x = �y = 0, we calculate the difference
flux �F , for fixed �x and �y, by optimally scaling the shifted PSF
P to fit the difference image D, giving

�F = 〈D |P〉
|P |2 , (A7)

and the corresponding variance

Var[�F ] = 1

|P |2 . (A8)

Next, we update the image position, for fixed �F , by scaling the
PSF gradient images to fit the residuals,

�x → �x + 〈R |Px〉
�F |Px |2 (A9)

�y → �y + 〈R |Py〉
�F |Py |2 (A10)

with variances

Var[�x] = 1

(�F )2 |Px |2
(A11)

Var[�y] = 1

(�F )2 |Py |2
. (A12)

2 Note that �x > 0 shifts the PSF peak to smaller x, and similarly for y. We
adopt this sign convention to simplify the equations.

The above results minimize χ 2 = |R|2 if �F , �x and �y are
independent, and if σ i are fixed. As these assumptions are only
approximately true, iteration is required. We find that the iteration
is faster and more stable if we take account of R being a linear
function of �x and �y. We then have two coupled equations,

�x = 〈D − �F
(

P0 + �y Py

)|Px〉
�F |Px |2 , (A13)

�y = 〈D − �F (P0 − �x Px)|Py〉
�F |Py |2 . (A14)

Write these in matrix form as

H ·
(

�F �x

�F �y

)
=

(
〈D − �F P0 |Px〉
〈D − �F P0 |Py〉

)
, (A15)

with the Hessian matrix

H =
( |Px |2 〈Px |Py〉

〈Px |Py〉 |Py |2
)

. (A16)

The solution is(
�F �x

�F �y

)
= H−1 ·

(
〈D − �F P0 |Px〉
〈D − �F P0 |Py〉

)
, (A17)

where the inverse of the Hessian matrix is

H−1 = 1

det(H )

(
|Py |2 −〈Px |Py〉

−〈Px |Py〉 |Px |2
)

, (A18)

with the Hessian determinant

det(H ) = |Px |2 |Py |2 − 〈Px |Py〉2. (A19)

The subpixel shift is then

�x = 〈D − �F P0|
(|Py |2 Px − 〈Px |Py〉 Py

)〉
�F det(H )

, (A20)

�y = 〈D − �F P0|
(|Px |2 Py − 〈Px |Py〉 Px

)〉
�F det(H )

. (A21)

Since H−1 is the parameter covariance matrix, the diagonal ele-
ments give the variances

Var[�x] = |Py |2
(�F )2 det(H )

, (A22)

Var[�y] = |Px |2
(�F )2 det(H )

, (A23)

and the off-diagonal element gives the covariance

Cov[�x, �y] = −〈Px |Py〉
(�F )2 det(H )

. (A24)

Note that with �F in the denominator, these expressions be-
come problematic when �F ≈ 0. Such images carry very little
information about the target location. Fortunately, when we opti-
mally average over several images, the inverse-variance weights
shift the �F factors to the numerator, so that these images receive
low weight.

A2 Lens position from many images

In fitting a microlensing data set, we have many difference images
Dj, and the corresponding PSFs P j. The above analysis provides
estimates (with error bars) that we correspondingly label �Fj for
the difference fluxes, �xj and �yj for the subpixel offsets.
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The difference fluxes are different for each image, but the subpixel
shift establishing the lens position on the reference image should be
the same for all images. The optimal average of the estimates �xj

from individual images is

�x =
∑

j wj �xj∑
j wj

Var[�x] = 1∑
j wj

(A25)

with inverse-variance weights wj = 1/Var[�xj]. Explicit evaluation
using (A.20) and (A.22) gives

�x =
∑

j �F 〈D − �F P0|Px − 〈Px |Py 〉
|Py |2 Py〉∑

j (�F )2
(
|Px |2 − 〈Px |Py 〉2

|Py |2
) , (A26)

Var[�x] = 1∑
j (�F )2

(
|Px |2 − 〈Px |Py 〉2

|Py |2
) . (A27)

The corresponding expressions for �y and Var [ �y ] are found by
reversing x and y. For clarity, we omit the index j that labels every
term in the sums over images j.

Note that the �F factors appear in the numerator only, so that
difference images with �Fj ≈ 0 are included in the sums but with
appropriately low weight. In our implementation, the algorithm
typically converges to ∼ 10−3 pixels in ∼4 iterations.

APPENDIX B: C OMPUTING THE POISSON
RE FERENCE FLUX

We retain here the convention (equation 1) where a difference image
is on the same effective exposure scale as the reference image and a
negative difference flux results when the target star is brighter than
it is on the reference. The expected pixel-integrated star flux on a
target image is then

〈F 〉 = (F0 − �F ) s , (B1)

where F0 is the pixel-integrated flux of the lens star in the reference
image (ADU), �F is the pixel-integrated differential flux of the lens
star in the difference image (ADU) and s is the exposure scale factor
between the reference image and the target image (equation 3).
Assuming a noiseless reference image, the variance in flux of the
lens on a single difference image is given approximately by

Var[F ] = Npix σ 2
0

g2 s2
+ Npix Fsky

g s2
+ F0 − �F

g s
, (B2)

where σ 2
0 is the readout noise variance (e−/pix)2, g is the gain

(e−/ADU), Fsky is the background flux (ADU/pixel) on the target
image and Npix is the effective number of pixels in the photometric
aperture. The different denominators for each of the three terms in
equation (B2) are due to the readout noise being measured in units
of electrons, Fsky in units of target-frame ADU and F 0 − �F in
units of reference-frame ADU. An estimate of the reference flux

from this single difference image is therefore

F0 = g s Var[F ] − Npix σ 2
0

g s
− Npix Fsky

s
+ �F, (B3)

with variance

Var[F0] 
 Var[�F ]. (B4)

An optimal estimate for F0 is obtained by combining such measure-
ments from all target images,

〈F0〉 =
∑

j

F0,j

Var[F0,j ]∑
j

1
Var[F0,j ]

, (B5)

with associated variance,

Var[〈F0〉] = 1∑
j

1
Var[F0,j ]

. (B6)

For aperture photometry measurements, Npix is the number of pix-
els in the photometric aperture. In the case of optimal PSF-fitting
photometry, Npix is the effective number of sky pixels, which we de-
fine to be equal to the variance in the flux measurement that is due
to the background divided by the background variance per pixel.
To estimate Npix, consider the background-limited case, where the
noise variance is the same on each pixel, V0, and is the dominant
contributor to the variance in the flux measurement. If our optimal
extraction is confined to some aperture, then the variance in the
measured flux is

Var[�F ] =
(∑

x,y P (x, y)
)2

∑
x,y

P (x,y)2

V0

≡ NpixV0, (B7)

where P (x, y) is the PSF and hence

Npix =
(∑

x,y P (x, y)
)2

∑
x,y P (x, y)2

. (B8)

Under a Gaussian PSF,

P (r) = 1

2πσ 2
e−r2/2σ 2

, (B9)

where � is the FWHM,

Npix =
(∫

P dx dy
)2∫

P 2 dx dy
= 4 π σ 2 = π �2

2 ln 2
, (B10)

equivalent to an aperture of radius 2σ . For a Gaussian truncated at
r = R, this equates to

Npix = 4πσ 2 (1 − e−R2/2σ 2
)2

1 − e−R2/σ 2 = π�2

2 ln 2

(1 − e−4 ln 2R2/�2
)2

1 − e−8 ln 2R2/�2 . (B11)

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 397, 2099–2105

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/397/4/2099/999680 by guest on 11 June 2021


