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Localization of objects in automotive scenes with spatial and temporal

information

Capucine LEGRAND 1,2, Vincent FREMONT 2 and Frédéric LARGE 1

Abstract— In the context of automotive driving assistance,
this paper describes a generic (i.e. applicable to both vehicle
interior and exterior scenes) vision based approach for scene
content analysis. It makes use of temporal and spatial informa-
tion from a stereoscopic sequence of images to localize objects
and estimate their position and motion. The proposed method
is divided into three steps. First, image features are selected,
tracked and reconstructed in the 3D world space. Second,
a clustering step is processed in the 5D space made of the
positions and 2D motions parameters. The last step is devoted
to clusters interpretation: it is out of the scope of the paper,
however orientations are given to illustrate the capabilities of
the proposed approach. The paper is organized as follows: first,
the use of temporal and spatial information from a stereoscopic
sequence is investigated. A state of the art of existing methods
is presented. Then, a generic approach for object segmentation
is proposed. Lastly, experimental results are presented.

I. INTRODUCTION

Throughout his drive, the driver observes and analyzes his

environment mostly by vision. Vision gives him detection,

localization and motion of the content of the scene. In the

same way, driving assistance systems need to perform the

same tasks. Considering a road scene characterized by the

complexity of its geometric structure and by its dynamics,

close and fast objects are susceptible to be the most dan-

gerous ones. Two complementary vision techniques are well

adapted to detect and segment such objects:

• Stereovision, which uses disparities, i.e. spatial differ-

ences between two simultaneous images taken from two

different points of view. By analogy with a biological

binocular vision system, the two sensors allow depth

perception, with a better accuracy for close objects that

can be more easily extracted from a disparity map.

• Apparent motion analysis, which uses the temporal

differences between two images taken from the same

point of view at different instants. Motion information

is used by all biological vision systems to localize mov-

ing camouflaged objects. Objects with bigger relative

motion, such as vehicle, can be more easily extracted

from a motion field.

These two classes of approaches are usually investigated

separately [1] [2] when real time constraints are needed. In

the following sections, it is suggested to combine them in

order to get a more efficient road scene analysis, in terms

of reliability and robustness. Some key choices are proposed
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so that it remains compatible with automotive application

computation times.

The remainder of this paper is as follows: section II lists

existing literature methods for automotive scene analysis,

section III describes the proposed approach and section IV

discusses the obtained experimental results.

II. RELATED WORK

Various methods using temporal, spatial information or

both of them from a stereoscopic images sequence can be

mentioned. Hereafter, it is proposed to briefly go through

these approaches, those based on the motion, then those

using only the stereoscopic information and finally those

combining stereovision and motion.

A. Motion based methods

Temporal approaches for object segmentation in a road

scene have to deal with various cases depending on whether

the pair of cameras and the obstacles are static or mobile.

Methods for the analysis of road scenes address the general

case, where both the pair of cameras and the obstacles are

moving.

A common approach consists in calculating the egomotion to

cancel it and come down to a static camera case. To estimate

egomotion, the motion of the road can be calculated by the

use of a probabilistic function as in [3], or by wavelets in

[2]. The optical flow [4] is also used, by Giachetti [5] with

vehicle motion hypotheses, and by Enkelmann [6] with a

planar world hypothesis. The obstacles are then identified

by extracting the areas where the motion is different from

the estimated global motion of the scene. Without calculating

explicitly the egomotion, Torr [7] assumes that objects are

far from the camera and characterizes the motion of the

background as an affine transformation. Areas that do not

fit this hypothesis are then identified as objects in motion.

Those constraints may not always be realistic. Moreover,

the methods based only on motion estimation lack a robust

detection of obstacles when their relative velocity is too

small. That leads to the following observation: they cannot

be considered as the best candidates to tackle the difficulties

of 3D localization of road scene obstacles.

B. Stereoscopic based methods

Two classes of stereoscopic approaches are proposed in

the literature. The first aims at reconstructing the 3D scene

[1], or part of it (the road in [8]) from the perceived ele-

ments. The road plan can thus be rebuilt using the disparity

map, making the elements located above this plan easier



to identify as objects. Criteria on position, orientation [9],

neighborhood, or disparity similarity [10] are used to gather

or to separate detected objects. The second class deals with

specific representation of the disparities that may be better

adapted to some applications. In [11] a representation called

”v-disparities” makes the road appear as a slanted segment

and obstacles as vertical segments. Bertozzi [12] rectifies the

images in order to match, by projection, pixels associated

with the road in both images, and thus rejects the objects

that do not belong to the road.

These approaches, often very specific, do not take use of the

motion of the obstacles in the scene, and are not generic

enough for most of the automotive applications.

C. Stereokinetic based methods

The simplest stereokinetic methods use independently a

motion based method and a stereoscopic method. In [13]

segmentation is processed separately on motion and disparity,

and the results are fused together by comparison. A prob-

abilistic fusion can also be used [14] for this segmentation

step. Another approach is to use the stereoscopic information

as a way to improve the results of a motion based method.

In [15], 2D motion vectors (optical flow) are segmented

by using 3D models of motion and hypotheses on the

camera motion. The stereoscopic matching completes the

monovision analysis by adding depth information. In [16], a

rough stereoscopic matching of segmented areas extracted in

both left and right images allows to eliminate discontinuities

and occultations in the scene. Some other methods use the

stereoscopic information to extract areas where temporal in-

formation brings added value. In [17], features not matching

the planar world assumption are associated with interest

areas. The motion of segments belonging to these areas is

then estimated through the use of a Kalman filter, in order

to bring them together into objects.

The last major approach consist in estimating and segmenting

at the same time all the motion fields, i.e. to use simulta-

neously spatial and temporal information. This is done for

example in [18] where disparity, segment fields and optical

flow are estimated simultaneously.

The stereokinetic based methods have been proved to be

efficient but are still more complex than previous ones.

D. Work orientations

The method proposed in this paper aims to maintain the

effectiveness of stereokinetic methods that allows temporal

and spatial information complementarities while reducing the

complexity and specificity. A method without preconception

or assumption, which operates in real time, is chosen. To

increase speed and robustness, we choose a sparse processing

approach, by working on image features, not on all pixels.

The principle of the proposed method is to combine these

features according to their position in the space as well as

their instantaneous 2D displacement. Hence, points with the

same projected motion between two instants belong generally

to the same object if they are neighbours.

III. PROPOSED METHOD

Let us consider a 3D point: ~p =
[

X Y Z
⌉T

and

its rigid motion ~V =
[

Vx Vy Vz

]T
. With a calibrated

stereoscopic system with rectified parallel cameras (pinhole

model), four images are available at times t − 1 and t: It
r,

It
l , It−1

r and It−1

l . The following relation between the 3D

point and its projection (xr(t), yr(t)) in right image at t is:

X(t) =
xr(t).b

d(t)
Y (t) =

yr(t).b

d(t)
and Z(t) =

f.b

d(t)
(1)

with d(t) = xl(t) − xr(t) the disparity, b the

baseline and f the focal length. The projected

motion on the image, also called optical flow, is

(u, v) = (xr(t)− xr(t− 1), yr(t)− yr(t− 1)).

As Fig.1 shows, a three steps method is proposed: ex-

traction of 3D features from the scene, segmentation of the

features in blobs and interpretation of these blobs.

Fig. 1. Method diagram

• The extraction step aims at obtaining, for each feature,

3D localization [X, Y, Z]T and apparent 2D motion

(u, v) characteristics as illustrated on Fig.2.

• The segmentation of the features in blobs allows to

associate to a same object, the points belonging to the

same spatial area and the ones having the same pro-

jected motion during a period of time. This clustering

step is illustrated Fig.2.

Fig. 2. Features extraction and segmentation

• Once obstacles are localized, dangerous ones are de-

tected and objects are identified (vehicle, background,

pedestrian, and others), in a last interpretation step.

A. Features extraction

The proposed method is based on features selection, their

tracking and their reconstruction in the 3D space.



1) Features selection: here ”Features” stands for seg-

ments, corners, points of interest or boundaries in the image.

Working with features rather than with points is preferred

because of temporal and spatial quality matching consid-

erations. Moreover, easily identifiable features enhance the

matching strength. The use of points of interest instead

of working on all the pixels also reduces significantly the

computation time.

As the mobile camera sees the scene from different view-

points, the description of a point must be invariant to ro-

tations, translations and illumination changes. Mozos shows

[19] that the method of Harris [20] has a better repeatability

and a good stability with regard to heavy computing time

methods such as SIFT [21]. This method is based on the

maximization of a self correlation function between a win-

dow and the same window shifted in several directions.

2) Features tracking: most of the methods used to track

points are based on the hypothesis that each point keeps

its luminance and its neighborhood. The tracking can be

performed either by correlation, differential or frequency-

based methods. According to [22], differential methods,

based on the resolution of the optical flow equation, have two

main advantages: direct subpixel motion estimation and low

computation cost. Features tracking must be fast and precise

for a good 3D reconstruction. As mentioned in the study of

Barron [23], the differential method of Lucas and Kanade

[24] fits these criteria. In this method, the optical flow is

calculated by forming hypotheses of luminance conservation

and weak motions between two consecutive images. This

method is based on the optical flow equation stemming from

a Taylor development and on the hypothesis of a locally

constant flow on a neighborhood. Finally, the optical flow is

found as the vector that matches the best with the equation

in this neighborhood.

To improve the tracking, points maximizing four proposed

confidence criteria are chosen:

• the quality criterion Cql is defined during the selection

of Harris points: the matrix based on autocorrelation

introduced by Harris is used:

M(x, y) = e
−(x2+y2)

2σ2
⊗

[

I2

x IxIy

IxIy I2

y

]

(2)

with ⊗ the convolution operator, σ2 the variance, and Ix

(resp. Iy) the first order derivative of image I in x (resp.

y) direction. The confidence criteria Cql is defined with

the Harris function:

Cql(p
t
n(x, y)) =

Det(M(x, y))− 0.04× (Trace(M(x, y))2
(3)

with pt−1

n (x′, y′) the nth point detected at time t − 1
with coordinates (x′, y′) tracked at time t in pt

n(x, y)
with coordinates (x, y).

• the temporal criterion Ctp increases the trust in points

that are easy to track:

if ∃ pt−1

n (x′, y′) and Ctp(p
t−1

n (x′, y′)) < 1
Ctp(p

t
n(x, y)) = Ctp(p

t−1

n (x′, y′)) + 0.1
else if ∃ pt−1

n (x′, y′) and Ctp(p
t−1

n (x′, y′)) = 1
Ctp(p

t
n(x, y)) = Ctp(p

t−1

n (x′, y′))
else

Ctp(p
t
n(x, y)) = 0.1

(4)

• the similarity criterion Csim discredits the small similar

points on a neighbourhood (a w×w window) between

two values of time with a correlation indicator:

Csim(pt
n(x, y)) =

∑

w
2

i=−w
2

∑

w
2

j=−w
2

|I
t
(x+i,y+j)−It−1

(x′+i,y′+j)|

w2

(5)

• the motion criterion Cmot eliminates the points with

inconsistent optical flow:

if
√

(x− x′)2 + (y − y′)2 < Smot

Cmot(p
t
n(x, y)) = 1

else

Cmot(p
t
n(x, y)) = 0

(6)

with Smot a threshold on the motion norm. This thresh-

old is tuned considering the projection in the image of

the maximal relative motion of an object in the scene.

The final confidence criterion is calculated for each point:

if Cmot(p
t
n) = 0

C(pt
n(x, y)) = 0

else

C(pt
n(x, y)) =

Cql+Ctp+(1−Csim)+Cmot

4

(7)

An example of optical flow is presented Fig.3: the 2D

motion is represent, between two consecutives moments, for

points selected in the image.

3) 3D reconstruction: the 3D reconstruction of features is

done through the two entry images at time t (left and right

images). The sparse disparity map of the image is calculated.

Then, the depth of the points of interest can be deduced, as

well as their 3D positions.

Matching the points of interest between the left and the

right images is based on correlation methods by comparing

their neighborhoods. This matching research is made only

along the horizontal axis because the images are supposed

to be rectified. Furthermore, to make the results more ro-

bust, the correlations between the right and left images

are crossed. The optimization approach of ”Winner-Takes-

All” [25] indicates that the best matching between the two

correlation windows corresponds to the extremum of a cost

function (SAD or ZNCC for example). The SAD (Sum of

Absolute Differences) and ZNCC (Zero mean Normalized

Cross Correlation) methods were evaluated: the obtained

results confirm the conclusions of [25] and the ZNCC method

has finally been preferred for its invariance in the uniform

variations of luminance in the images, even if it increases the

computing time. An example of disparity map obtained by

ZNCC is illustrated Fig.3, the more the points are far from

the camera, the darker they are.



Fig. 3. Sparse optical flow and disparity map (light points are near to the
camera and dark points are far) on a virtual sequence

Since stereoscopic system characteristics are known, the

points of interest are then reconstructed in the 3D space at

any given time, using their disparity d(t) in equation (1).

B. Features segmentation

At this step, two types of information are available for

each point: 3D position [X, Y, Z]T and projected motion

(u, v). These five variables are used in a clustering procedure

in order to bring together points that have a close 3D

localization and a similar optical flow. It has to be noticed

that the optical flow is preferred to 3D motion (available from

3D positions at two instants), because of the lower quality

of the disparity map, that is not accurate enough to obtain

an exploitable 3D motion.

Thus, a partition P = {C1, C2, . . . , Ck} is to be achieved

from a set J = {p1, p2, . . . , pn} of points of interest with:

C1∪C2 . . .∪Ck = P and Ci∩Cj = φ with i, j = 1, 2, . . . , k.

A choice of various unsupervised methods is available to

proceed this clustering task [26]. The Hierarchical Ascending

Classification (HAC) is chosen because of its easy way to

use, for the possibility to deal with large data sets with few

variables and because it is swift.

The HAC principle is to collect points according to a

criterion of distance to classify in homogeneous groups the

features points whose characteristics in different dimensions

resemble most each other in a criterion of distance sense.

This method determines among n individuals, the two indi-

viduals that look most alike with regard to the p specified

variables (p = 5 in our case), and brings them together to

form a cluster. At this level there are n−1 clusters, one being

formed by two individuals, the n−2 others containing only a

single individual. This process is iterated to determine which

are the two clusters which look most alike, and by bringing

them together. This operation is repeated until a single cluster

grouping all individuals is obtained. This process is based on

the choice of a similarity criterion between the individuals

and an aggregation criterion (dissimilarity between clusters).

The inter-classes distance used is the Euclidian distance.

And, the aggregation criterion is the Ward criterion which

consists in choosing at every stage the clusters that can be

gathered with the minimal increase of intra-classes inertia.

This criterion minimizes the variance within groups and

maximizes the variance between groups and thus promotes

the extraction of well separated clusters. The HAC leads in

a stack of partitions that must be cut at a given threshold

(tuned manually) for clustering.

To improve this clustering step, it is proposed to calculate the

rigid motion of each cluster found to first eliminate the points

with aberrant motion (compared to the motion of the cluster

in which they are clustered) and second to group together

clusters where the same motion is observed. The optical

flow and depth constraints are expressed in the disparities

space. Indeed, this space is projective and, for a parallel

camera stereo rig, the noise is isotropic [27]. To estimate 3D

motion, the linear system combining these two constraints

is solved. For small rotation a linearization gives the 3D

motion equation: ~V ≈ ~T − ~X~Ω with ~T =
[

tx ty tz
]T

an

instantaneous translation vector, and ~Ω =
[

ωx ωy ωz

]T

an instantaneous rotation vector. In the disparities space, this

constraint can be written:






d(t)

d(t+1)
x(t + 1)− x(t)

d(t)

d(t+1)
y(t + 1)− y(t)
d(t)

d(t+1)
f − f






=







d(t)

b
0 0 0 f −y(t)

0 d(t)

b
0 −f 0 x(t)

0 0 d(t)

b
y(t) −x(t) 0























tx
ty
tz
ωx

ωy

ωz

















(8)

The second constraint is the depth constraint of Harville [28].

Z(x, y, t) + Vz(x, y, t) = Z(x + vx, y + vy, t + 1) (9)

Equation (9) is also written in the disparities space as (the

notation t is omitted for reading simplification):

−

∂d

∂t
=

d

fb

[

f ∂d
∂x

f ∂d
∂y

−(−d + x ∂d
∂x

+ y ∂d
∂y

)
]





1 0 0 0 Z −Y

0 1 0 −Z 0 X

0 0 1 Y −X 0





















tx
ty
tz
ωx

ωy

ωz

















(10)

Equations (8) and (10) are stacked into a linear system

solved by the Singular Values Decomposition method (SVD).

Outliers are rejected by the method of M-estimators intro-

duced by Huber [29]. The clusters with similar motion are

combined.



C. Clusters interpretation

This very last stage depends a lot on the application

and is not detailed in this paper devoted to generic part.

Nevertheless, some orientations are proposed for the cases

presented in the next section.

To interpret the clusters, it is necessary to distinguish the

background from other objects. The cluster the most dis-

persed in the 3D space is identified as the background. To

identify the other objects, it is possible to determine the

category of these objects (pedestrian, car, truck) based on

the knowledge about their real size, by using 3D information.

Moreover, the localization of 3D obstacles allows to calculate

the distance which separates the camera from these objects

and to deduce, with motion information, an estimate of the

time to collision. It can thus lead to accurate information on

the clusters, even if this stage requires a priori knowledge.

IV. RESULTS

The first steps of the proposed method (features extrac-

tion and clustering) were experimented on both virtual and

real sequences, representative of typical automotive scenes.

Moreover, sequences of cockpit as well as outside frontal

scenes have been used to validate the genericity of the

approach. Only frontal sequences, more challenging, are

presented here.

The computational efficiency of the method has been evalu-

ated with several number of clusters and features. A highter

number of clusters or features tend to improve the results,

however it implies longer computation time. Hence, an

arbitrary number of 5 clusers and 150 features has been

choosen as the best observed compromise. Running on a

1.7GHz laptop computer using windows 2000, on a C/C++

implementation with no particular code optimization, the

proposed approach averages 10 frames per second with 150

features per image.

The following figures are showing the raw output of the

method before inetrpretation. Each feature point is assigned

to a cluster that is represented by a specific shape and color.

Fig.4 illustrates the results obtained on the virtual sequence.

The cluster composed of squares (see (a) in Fig.4) is associ-

ated to the crossed vehicle. Outliers (see (b) in Fig.4) come

from the way the scene has been built: repeated textures

lead to locally inconsistencies in the disparities. The ”circles”

cluster corresponds to motionless distant points (for which

the disparity is undetermined). The other clusters can be

associated with other objects of the background. Similar

results have been obtained with sequences acquired on real

cameras as illustrated in Fig.5. Results allow to localise

the vehicles over time. In Fig.5 frontal vehicles are well

detected by the same color in each image. The added value

of this stereokinetic approach with regard to a method using

only the motion or only the stereoscopic information is

illustrated Fig.6. To show this added-value, the stereokinetic

results are compared with results obtained with the same

clustering method used only on motion data or only on 3D

data. Motion based clustering does not separate objects with

similar motion: see (a) and (b) in Fig.6 (top). A stereoscopic

Fig. 4. Clustering results on a virtual sequence (Bounding boxes and arrows
are manually added for reading simplification)

Fig. 5. Clustering results on a real sequence at different times

based approach with a clustering driven mostly by depth

information also leads to misclassified objects, as shown in

(c) and (d) in Fig.6 (middle). These problems are solved with

the use of the mixed proposed method. Each cluster (see

(e), (f) and (g) in Fig.6 (bottom)) corresponds to one object.

A last cluster (triangles) does not verify this observation.



However it can be easily filtered by considering the density

of the associated points.

First experimental results tend to prove that this algorithm

Fig. 6. Clustering results with motion based method (top), stereovision
based method (middle), and stereokinetic based method (bottom)

is a good candidate for automotive scenes interpretation.

Further more the clustering can be improved by tracking

each cluster.

V. CONCLUSION AND ORIENTATIONS

In the automotive scope, the danger often comes from fast

and/or close obstacles. Vision based methods exploiting both

temporal and spatial information from a sequence of stereo-

scopic images are well suited to localize such obstacles.

In this paper, a generic approach is proposed. It consists in

3 steps: selection and tracking of feature points, clustering

of the points according to their position and motion, and

interpretation of the clusters. Experiments on both indoor

vehicle applications such as occupant characterization (not

presented here), and outside application such as frontal

obstacle detection, allowed to validate the genericity of

the approach. The obtained results turned out exploitable

on all the tested sequences. However the classification can

be furthermore improved with 3D motion estimation and

tracking of the clusters. The interpretation step, specific to

the targetted application, remains to be implemented.
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