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Abstract

This paper explores numerically the efficiency of `1 minimization for the recovery of sparse sig-
nals from compressed sampling measurements in the noiseless case. This numerical exploration
is driven by a new greedy pursuit algorithm that computes sparse vectors that are difficult to
recover by `1 minimization. The supports of these pathological vectors are also used to select
sub-matrices that are ill-conditionned. This allows us to challenge theoretical identifiability cri-
teria based on polytopes analysis and on restricted isometry conditions. We evaluate numerically
the theoretical analysis without resorting to Monte-Carlo sampling, which tends to avoid worst
case scenarios. 1
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1. Introduction

1.1. Compressed Sampling

Compressed sampling acquisition. Compressed sampling is a new sampling theory that uses a
fixed set of linear measurements together with a non-linear reconstruction. For the recovery of a
signal from a small number of measurements to be efficient, compressed sampling makes use of
a sampling operator that is drawn from certain random distributions.

The idea of performing randomized compressed acquisition of signals was introduced inde-
pendently by Candès et al. [1] and Donoho [2]. This emerging sampling paradigm could have far
reaching applications in several fields where data acquisition is slow and costly, such as medical
imaging [3] or astronomical imaging [4]. It is thus important to better understand the theoretical
guarantees of perfect recovery that randomized acquisition can offer.
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`1 recovery. The sampling operator computes the projection of the data x ∈ RN on a set of
P � N sampling vectors, which can be written as a matrix-vector multiplication y = Ax where
A ∈ RP×N is the sampling matrix.

The signal x can be recovered either exactly or accurately from these measurements y by
exploiting its exact or approximate sparsity, which means that all entries x but a few are zero or
small. With a proper change of basis, this is extended to signals which are sparse in an orthogonal
basis, such as a wavelet basis for natural images.

Throughout this paper, we consider the case where the entries of A = (ai)N−1
i=0 ∈ RP×N are

independent and identically distributed (iid) N(0, 1/P). We note that many theoretical recovery
results extends to more general random distributions such as Bernoulli matrices, random pro-
jectors [5] or partial Fourier measurements [6]. The greedy algorithm described in this paper is
expected to work also well for these distributions. In particular, the heuristics developed in this
paper are expected to be accurate for distributions that are exactly or approximately invariant
under rotation, which holds true when all entries of A are drawn independently from the gaussian
distribution.

1.2. Identifiability

For noiseless measurements y = Ax, the recovery of a sparse vector x is achieved by solving
the convex program

min
x̃∈RN
||x̃||1 subj. to Ax̃ = y, where ||x̃||1 =

∑
i

|x̃i|. (1)

Such an `1 recovery program has been introduced by Chen, Donoho and Saunders under the
name of Basis Pursuit (BP) for sparse coding [7]. The vector x is said to be identifiable if the
solution x? to (1) is unique and coincides exactly with x.

The optimization problem (1) can be recast as a linear program, which can be solved using
iterative methods such as interior points algorithms [7] or the Douglas Rachford algorithm [8, 9].

Other recovery methods with theoretical recovery guarantees exist. Basis pursuit denoising
[7] is able to cope with noisy measurements, and can be solved for instance with proximal it-
erative thresholding algorithms [10, 11, 12, 13], accelerated iterative thresholding [14, 15] and
the Nesterov algorithm [16]. Greedy algorithms such as CoSaMP [17] have been proved to work
under conditions similar to `1 minimization. Non-convex regularization using `p functionals
for p < 1 can be solved approximately using re-weighting schemes [18, 19], and can improve
numerically the recovery.

Remark 1. Since we are interested in the recovery with `1 minimization from noiseless mea-
surements, the identifiability of x depends only on sign(x). In the following, and without loss of
generality, we consider vectors x ∈ RN such that the entries xi ∈ {−1, 0, 1},∀ i.

2. Criteria for Identifiability

To ensure identifiability, several sufficient conditions on x were considered in the literature.
Of particular interest are those relying on the sparsity (or cardinality of the support) ||x||0 = |I(x)|,
where the support of x is

I(x) = {i \ xi , 0} .
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With high probability on the sampling matrix A, a sparsity-based recovery criterion asserts that
any vector satisfying

||x||0 = # {i \ xi , 0} 6 ρ(P/N)P (2)

is identifiable for ρ(η) > 0, where η = P/N < 1 corresponds to the undersampling rate, so that
η−1 > 1 is the redundancy of A.

For a given undersampling ratio η < 1, a critical question is to know as precisely as possible
the value of ρ(η), since this value gives a threshold (possibly in a worst case setting) below
which exact or accurate recovery by `1-minimization is theoretically guaranteed. Many recovery
criteria have been proposed in the literature. They lead to different estimates of ρ(η), possibly
with robustness to noise or imperfect sparsity.

2.1. Deterministic Necessary Conditions
Generic deterministic necessary conditions based on the mutual coherence of the matrix A

where introduced by several authors, see for instance [20, 21, 22, 23, 24, 25]. They usually lead
to overly pessimistic sparsity bounds, especially for random matrices.

These necessary recovery conditions are refined by considering not only the sparsity ||x||0 but
also the support and the sign pattern of the non-zero entries of x indexed by the support I(x) of x.
Such criteria use the interactions between the columns of AI = (ai)i∈I and the other ones (ai)i<I ,
where the sub-matrix AI is the restriction of A to the columns indexed by I(x). Fuchs [26] proved
that a sufficient condition for x to be identifiable is

F(x) = max
i<I
|〈ai, d(x)〉| < 1 (3)

where d(x) = AI(A∗I AI)−1 sign(xI), (4)

see also Tropp [27] for a similar result.
Wainwright [28] considers a condition of the form (3) to ensure sparsity pattern recovery

from noisy measurements by solving the penalized `1 optimization (the so-called Basis Pur-
suit DeNoising, BPDN [7]). He also established that violation of (3) is sufficient for failure of
the BPDN in recovering the support set. This analysis was specialized to the case of standard
gaussian sensing matrices to derive sharp sufficient conditions of identifiability of the optimal
decoder, as well as necessary conditions that any recovery procedure should satisfy to guarantee
identifiability of sparse enough vectors[29].

2.2. Restricted Isometry Based Criteria
The seminal work of Donoho [2] and Candès et al. [1, 30] has focused on the stability of the

compressed sampling decoder. This analysis leads to an estimation of ρ(P/N) which is nearly
constant up to a logarithmic term.

Candès et al. [1, 30] introduced the restricted isometry property (RIP), with the RIP constants
0 < δmin

s 6 δmax
s < 1. These constants are the smallest numbers such that for every vector x ∈ RN

with ||x||0 6 s,
(1 − δmin

s )||x||2 6 ||Ax||2 6 (1 + δmax
s )||x||2. (5)

Condition (5) is equivalent to saying that for all I such that |I| = s, the smallest and largest
eigenvalues λmin(A∗I AI) and λmax(A∗I AI) of the Gram matrix A∗I AI are respectively bounded below
and above by 1 − δmin

s and 1 + δmax
s . Thus, the RIP constants are equivalently defined as

δmin
s = max

|I|=s
δmin(AI) and δmax

s = max
|I|=s
δmax(AI) (6)
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where
{
δmin(AI) = 1 − λmin(A∗I AI),
δmax(AI) = λmax(A∗I AI) − 1 .

The original work of Candès et al. [1] considers a symmetric RIP constant δs = max(δmax
s , δ

min
s ).

These authors proved that a small enough value of δ2s ensures identifiability of all s-sparse vec-
tors. For instance, it is proved in [31] that δ2s 6

√
2 − 1 guarantees identifiability of all s-sparse

vectors. This is achieved with high probability on A if s 6 CP/ log(N/P), which corresponds to
condition (2) with ρ(η) 6 C/ log(η−1) with η−1 = N/P the redundancy of the matrix A.

It turns out that the largest and smallest eigenvalues λmin(A∗I AI) and λmax(A∗I AI) do not deviate
from 1 at the same rate. Using asymmetric RIP constants, Foucart and Lai [32] have shown that

(4
√

2 − 3)δmin
2s + δ

max
2s < 4(

√
2 − 1) (7)

implies identifiability of all s-sparse vectors. Blanchard et al. [33] determine ρ0 such that with
high probability on A

||x||0 6 ρ0(P/N)P (8)

ensures that condition (7) is in force. Condition (8) guarantees not only identifiability, but also
robustness to noisy measurements. This however causes the function ρ0(η) to be quite small, and
for instance ρ0(1/2) = 0.003 and ρ0(1/4) = 0.0027.

2.3. Topologically-based Criteria

Donoho [34, 35] gave a topological necessary and sufficient condition for the identifiability
of a vector by considering the lower-dimensional projection A(B1) of the `1 ball

B1 = {x̃ \ ||x̃||1 6 1} .

The centro-symmetric polytope A(B1) is the image of the `1 ball, and is also the convex hull of
{±ai}i. The ||x||0-dimensional face fx ⊂ A(B1) selected by x is the convex hull of {sign(xi)ai}i∈I .
Donoho [34] showed that

x is identifiable ⇐⇒ fx ∈ ∂A(B1) , (9)

where ∂A(B1) is the boundary of the polytope A(B1). Dossal [36] proved that this topological
condition is equivalent to having x as the limit of xn where F(xn) < 1, where F is defined in (3).
This can be interpreted as x being in the closure of the set of all vectors satisfying (3).

Using (9), Donoho and Tanner [34, 37] determine, in the noiseless case y = Ax, a precise
asymptotic value for ρ(η) in (2) when P and N tend to infinity. For instance ρ(1/2) ≈ 0.089 and
ρ(1/4) ≈ 0.065.

The function ρ(η) induced by the topological condition (9) is sharper than ρ0(η) defined in
(8)obtained from the RIP-based condition (7). This can be interpreted in the light of several argu-
ments. First, ρ(η) originates from an asymptotic analysis performed under a union bound, while
the topological analysis gives a sharp asymptotic bound. Furthermore, condition (9) exploits
fully the exact geometry of `1 minimization, while the RIP condition is more flexible and applies
to other sparse recovery schemes including non-convex `p-minimization and greedy pursuit, see
for instance [17]. However, the RIP condition ensures robustness to compressible signals and
stability to noise if BP is replaced with a noise-aware variant [1], while condition (9) does not
imply such a stability property.
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2.4. Numerical Evaluation of Recovery Criteria

The numerical evaluation of compressed sensing is usually performed by Monte-Carlo sam-
pling over the set of s-sparse vectors. Numerous simulations suggest that recovery of most
s-sparse vectors is obtained for values of s/P that can be as large as 1/4 for reasonable problem
sizes (N, P), see for instance [38]. We intend to perform a worse case analysis which Monte-
Carlo sampling fails to capture.

The asymptotic evaluation of ρ(P/N) performed by Donoho and Tanner [34, 37] suggests that
these Monte-Carlo simulations are far from capturing the true value of ρ(P/N). This is because
pathological sparse vectors that are not identifiable are difficult to find by random sampling. In
the noiseless case, an asymptotic explanation for these over-optimistic Monte-Carlo simulations
is given by Tanner and Donoho [37], that analyze the recovery of almost all sparse vectors, see
also [39] for simulations with matrices drawn from several random ensembles.

The situation for recovery conditions based on restricted isometry constants is even worse,
since they are intractable to compute exactly. Although no exact asymptotic for these conditions
is known, the careful asymptotic analysis of Blanchard et al. [33] suggests that the RIP leads to
small estimates for ρ(P/N).

The work of Juditsky and Nemirovski studies a necessary and sufficient condition that en-
sures recovery of all s-sparse vectors [40]. They also show that their analysis lead to verifiable
sufficient conditions for identifiability by solving BP. A numerical exploration is carried out for
small scale problems and with values of η = P/N close to one. Instead of testing the RIP condi-
tion (5) which is combinatorial, d’Aspremont and El Ghaoui [41] propose a semidefinite convex
relaxation to derive a bound on the nullspace property of a matrix A. This allowed them to
compute numerical bounds of critical sparsity levels ensuring exact recovery. Our work is com-
plementary to these approaches, because we study heuristics that lead to fast greedy algorithms
that enable an exploration in high dimension and for high or low redundancies.

2.5. Contributions

This paper studies both topological and RIP conditions, and find non-asymptotic upper bounds
on the sparsity conditions obtained by both approaches. We show numerically that the bounds
provided by both approaches are quite sharp in a non-asymptotic regime.

Our main contribution is a new greedy pursuit algorithm that can be used to challenge both
kinds of conditions. For example, for (N, P) = (4000, 1000), the algorithm computes a non-
identifiable vector x such that ||x||0 = 79. The algorithm also reveals that δmax

10 > 0.58 and
δmin

10 > 0.42 so that condition (7) is not fulfilled even for s = 5.
This is the first time a numerical scheme leads to such a conclusion, mainly because previous

experimental studies where based on Monte-Carlo sampling of sparse vectors. Such random-
ized numerical experiments tend to avoid pathological cases, and are thus far from reaching the
theoretical bounds. For instance, using the distribution of the eigenvalues of a Wishart matrix,
it can be shown that the probability that a random sub-matrix AI of |I| = 10 columns satisfies
λmax(A∗I AI) > 1.58 is less than 4× 10−6, whereas our algorithm is able to find such a sub-matrix.

3. Greedy Singular Value Pursuit

The problem of computing lower bounds on s-restricted isometry constants corresponds to
selecting support I of size s = |I| so that the matrix AI is ill-conditionned. Before detailing in
Section 5 fast algorithms that select this support I as the support I = I(x) of an appropriate signed
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vector x, we show in this section a brute force greedy scheme that directly computes the support
I.

3.1. Support Extensions

The exact computation of the RIP constants δmin
s and δmax

s is combinatorial since it requires
an exhaustive enumeration of all sub-matrices AI for |I| = s, which might take an exponential
time in N. Here we compute good approximate lower-bounds δ̃min

s and δ̃max
s by considering only

a small sub-set of the whole set of supports.
The set of all supports is a lattice ordered by inclusion, that is visualized using a graph

structure, as depicted in Figure 1 for N = 4. A small sub-set of this lattice is computed by several
traversals, starting from the singleton supports I of size |I| = 1. Figure 1 shows in dashed line
an example of such a traversal. The idea behind our numerical scheme is to select carefully this
traversal.

Figure 1: Lattice of the set of supports, for N = 4. Dashed: a possible path followed by the algorithm to select a matrix
AI with I = {0, 2, 3}.

3.2. Greedy Pursuit Algorithm

A step of the traversal, that follows an edge in the lattice, corresponds to a greedy extension
I ← I ∪ {i} computed by adding a properly selected index i < I to increase the size of a support I.
According to (6), this new index is added so as to maximize the value of δmin(AI∪i) or δmax(AI∪i).
The corresponding singular value pursuit is described in Algorithm 1 for the computation of δ̃max

s .
A similar algorithm computes δ̃min

s by adding at each step the index i that maximizes δmin(AI∪{i}).
Figure 4 shows examples of the lower bounds δ̃min

s and δ̃max
s computed with this brute-force

greedy singular value pursuit for several values of s.

4. Interior Facets and Non-Identifiable Vectors

The brute force greedy scheme is computationally too intensive to be applicable to large
scale sampling matrices. This is because the evaluation of the isometry constants δmin(AI∪{i}) or
δmax(AI∪{i}) is required for all candidate extensions i < I. This necessitates the computation of
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Algorithm 1: Greedy singular value pursuit.

Initialization: set I(1) = {{0}, {1}, . . . , {N − 1}} ;
for k = 2, . . . , s do

Initialization: I(k) = ∅ ;
for I ∈ I(k−1) do

Compute i? = argmax
i<I

δmax(AI∪{i}) ;

Set I(k) ← I(k) ∪ {I ∪ {i?}} ;
Set k ← k + 1.

Return: δ̃max
s = max

I∈I(s)
δmax(AI).

a large amount of minimum and maximum singular values of P × s matrices for an increasing
value of s.

Furthermore, the direct extension of supports is suitable to detect ill-conditioned sub-matrices,
but does not make sense to compute sparse non-identifiable vectors x ∈ RN . Indeed, this requires
not only the computation of a support I, but also the optimization of a sign xi ∈ {+1,−1} for each
i ∈ I = I(x) to make the vector as difficult as possible to identify.

To address both issues, we derive in this section two heuristics that indicate whether x is a
good candidate for both non-identifiability and to select an ill-posed sub-matrix AI(x).

4.1. An Heuristic for Identifiability
From (9) we deduce that a non identifiable vector x corresponds to a face fx belonging to the

interior of the polytope A(B1). In other words, the distance of the face fx to the center of the
polytope is a good indicator of identifiability. This distance is stated in the following result.

Proposition 1. For any vector x such that rank(AI) = |I| for I = I(x), the distance from the face
fx to 0 is 1

||d(x)||2
, where d(x) = AI(A∗I AI)−1 sign(xI).

Proof. Distance of fx to the 0 is the maximum of the distance between any hyperplane H con-
taining fx and 0. The definition of d(x) implies that A∗I d(x) = sign(xI), which in turn yields
〈d(x), (sign xi)ai〉 = 1 for all i ∈ I. The hyperplane

Hx = {u \ 〈d(x), u〉 = 1}

is such that for all i ∈ I, (sign xi)ai ∈ Hx and thus fx ⊂ Hx. The distance between Hx and 0 is
1/||d(x)||2.
Let H1 = {u \ 〈c, u〉 = 1} be another hyperplane such that (sign xi)ai ∈ H1, for all i ∈ I. The
distance between H1 and 0 is 1

||c|| . For all i ∈ I, we have 〈c, ai〉 = 〈d(x), ai〉 and thus 〈c −
d(x), ai〉 = 0. Since d(x) ∈ Span(ai)i∈I , 〈c−d(x), d(x)〉 = 0 and then ||c||2 = ||c−d(x)||2+||d(x)||22 >
||d(x)||22, which completes the proof.

Figure 2 illustrates this proposition for P = 2 and N = 3. This property, together with
condition (9), suggests that a vector x having a small value of 1/||d(x)||2 is more likely to be
non-identifiable. This heuristic is particularly relevant when the matrix is random and invariant
under rotation, which is true when all entries of A are iid gaussian.

Figure 3 estimates with a Monte-Carlo sampling the ratio of vectors that are identifiable,
according to the sparsity ||x||0 and to a quantized value of ||d(x)||2. The curve parameterized by
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Figure 2: Geometry of `1 recovery, for N = 3 and P = 2. The vector x1 = (2,−3, 0) is not identifiable because fx1 is
inside the polytope A(B1), and has a large ||d(x1)||. On the contrary, x2 = (−5, 0, 3) is identifiable because fx1 ∈ ∂A(B1),
and it has a small ||d(x1)||.

||d(x)||2 exhibits a phase transition that is even sharper than the curve parameterized by sparsity
(each dot on the curves accounts for 1000 random realizations of the signal).
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Figure 3: Left: ratio of identifiable vectors as a function of ||x||0, for (P,N) = (250, 1000). Right: ratio of identifiable
vectors as a function of ||d(x)||2.

The numerical evidence provided by Figure 3 suggests that non-identifiable vectors might be
found not just by increasing the sparsity of a given vector, but also by decreasing the value of
1/||d(x)||2.

4.2. An Heuristic for Matrix Conditioning
Bounding Singular Values by Clustering. We define two regions of RP associated to a non-zero
vector d ∈ RP  Cd =

{
v ∈ RP \ |〈d, v〉| > 1

}
,

Cc
d =
{
v ∈ RP \ |〈d, v〉| 6 1

}
.
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Remark 2. In the normalized case—columns of A have unit `2-norm— Cd and its complement
have a nice geometrical interpretation. In such a case, Cd corresponds to a double-spherical
cap, whose radius r satisfies r2 = 1 − 1/||d||2. Similarly, Cc

d defines a band on the unit sphere in
RP.

The following proposition shows that clustering the vectors {ai}i∈I within these regions allows
one to bound below the maximum or minimum RIP constants.

Proposition 2. If {ai}i∈I ⊂ Cd, then

δmax
s > s/||d||2 − 1. (10)

If {ai}i∈I ⊂ C
c
d and if d ∈ Span(ai)i∈I then

δmin
s > 1 − s/||d||2. (11)

Proof. We prove (10) and (11) can be proved similarly. The orthogonal projection d̃ of d onto
Span(ai)i∈I reads d̃ = AI A+I d = (A+I )∗A∗I d where A+I = (A∗I AI)−1A∗I is the pseudo-inverse of AI .

Since {ai}i∈I ⊂ Cd, we have

∀ i ∈ I, 〈d̃, ai〉 = 〈d, ai〉 > 1.

This shows that
||A∗I d̃||2 =

∑
i∈I

|〈d̃, ai〉|
2 = ||A∗I d||2 > s,

and hence
||d||2 > ||d̃||2 > λmin(A+I (A+I )∗)||A∗I d||2 >

s
λmax(A∗I AI)

.

Remark 3. Given a sub-matrix AI , a precise estimate of δmax(AI) is obtained by maximizing the
right hand side of (10). This is achieved by identifying the region Cd that encloses the columns
of AI , and corresponding to the smallest ||d||.

Clustering with appropriate d. Finding such an optimal cluster of points is however difficult in
high dimension. It is thus desirable to compute an approximate clustering based on a well chosen
vector d for the region Cd.

In the following, we use the set of signs

{xi}i∈I ∈ {+1,−1}|I|

so that I = I(x), and we guide our choice of d based on the signed vectors {xiai}I . In particu-
lar, we require that the boundary of the cap Cd passes through all these signed vectors, which
corresponds to

∀ i ∈ I, 〈xiai, d(x)〉 = 1.

The following proposition shows that the vector d(x), already introduced in (4) is a reasonable
choice that matches this constraint.
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Proposition 3. For a given set of signs {xi}i∈I such that AI has full rank, the vector

d(x) = AI(A∗I AI)−1x, (12)

satisfies
∀ i ∈ I, 〈xiai, d(x)〉 = 1. (13)

Any other region Cd with another vector d that satisfies this property leads to a worse lower
bound on δmax

s .

Proof. By definition 〈ai, d(x)〉 = xi, and any other vector d with this property satisfies ||d|| >
||d(x)||2. Indeed, 〈ai, d − d(x)〉 = 0, and since d(x) ∈ Span(ai)i∈I , we have 〈d(x), d − d(x)〉 = 0
implying that ||d||2 = ||d − d(x)||2 + ||d(x)||22 > ||d(x)||22. In view of the right hand side of (10), the
conclusion follows.

This region Cd(x) is an optimal choice to estimate δmax(AI) using (10) if we restrict the choice
to regions whose boundary contains the vectors {xiai}i∈I , which corresponds to condition (13).
Better estimates might be obtained using another region Cd that pass only through a subset of
these vectors, or that is defined using different signs, but it is not obvious how to compute them
efficiently in high dimension. Once a set of signs x is fixed, the vector d(x) (and corresponding
region) is fast to compute as it only requires inverting an overdetermined linear system.

Remark 4. When the columns of A have unit norm, it is worth noting the following geometrical
facts:

• Any other choice of d in Proposition 3 leads to a larger spherical cap Cd.

• The cap Cd(x) draws a circle on the unit sphere which is a circumcircle cap since it passes
through all the points {xiai}i∈I . The vector d(x) intersects the circumcircle at its circum-
center.

5. Greedy Pursuits Using d(x)

Proposition 2 together with Proposition 3 suggest that efficient bounds on the restricted isom-
etry constants are obtained by finding a sparse vector x that maximizes or minimizes 1/||d(x)||2.
Similarly, Proposition 1 suggests that minimizing 1/||d(x)||2 is a good strategy to search for sparse
non-identifiable vectors. This section shows how the minimization or maximization of 1/||d(x)||2
can be performed approximately using greedy algorithms.

5.1. Minimal and Maximal Extensions
To extract a sub-matrix AI with a large isometry constant δmax(AI), we thus propose a greedy

scheme that iteratively extends both the support I and the set of signs. An elementary step of the
scheme extends the sign vector x into

x̃ = x + ζ∆i with ζ ∈ {+1,−1},

for i < I, where ∆i is the Dirac vector at location i. The support is thus extended from I = I(x) to
Ĩ = I(x̃) = I∪{i}. In view of Propositions 2 and 3 (see (16)), the choice of i and ζ should be made
in order to minimize or maximize ||d(x̃)||. The following proposition gives essential guidelines to
reformulate and solve this optimization problem.
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Proposition 4. Let ãi ∈ Span(a j, j ∈ Ĩ) be the dual vector such that

∀ j ∈ I, 〈ãi, a j〉 = 0 and 〈ãi, ai〉 = 1 .

Then
||d(x̃)||2 = ||d(x)||22 + ||ãi||

2|〈d(x), ai〉 − ζ |
2 .

Proof. Since d(x) ∈ Span(a j, j ∈ I) and I ⊂ Ĩ, we have

〈d(x) − d(x̃), d(x)〉 = 0.

Consequently
||d(x̃)||22 = ||d(x)||22 + ||d(x) − d(x̃)||22.

Moreover, we have
d(x̃) − d(x) = −ãi(〈d(x), a j〉 − ζ), ∀ j ∈ Ĩ ,

which implies that
||d(x) − d(x̃)|| = ||ãi|||〈d(x), ai〉 − ζ | .

Finding an extension that maximizes (resp. minimizes) ||d(x̃)|| is thus equivalent to maximiz-
ing (resp. minimizing) ||ãi|||〈d(x), ai〉 − ζ | over both i and ζ. Calculating ||ãi|| for all possible
i < I is computationally demanding since it requires the solution of an over-determined system
of linear equations for each i.

We thus select an approximately optimal extension by maximizing or minimizing |〈d(x), ai〉−

ζ | instead of ||ãi|||〈d(x), ai〉 − ζ |. This optimization can be solved in closed form, and defines the
extension x̃ = x + ζ+∆i+ that maximizes 1/||d(x)||2 i+ = argmin

j<I(x)
|1 − |〈d(x), a j〉||,

ζ+ = sign(〈d(x), ai+〉).
(14)

Similarly, the extension x̃ = x + ζ−∆i− that minimizes 1/||d(x)||2 i− = argmax
j<I(x)

|〈d(x), a j〉|,

ζ− = − sign(〈d(x), ai−〉).
(15)

5.2. Greedy Pursuit Algorithms
Starting from an initial candidate set of 1-sparse vectors Σ(1)

max = {∆0,∆1, . . . ,∆N−1}, the
greedy pursuit algorithm for maximizing 1/||d(x)||2 builds a candidate set Σ(k)

max for each spar-
sity k 6 s. The algorithm iteratively applies the extension (14) to each x ∈ Σ(k−1)

max to obtain
Σ

(k)
max.

As our algorithm is greedy by nature, the selection rule (14) may be too stringent, and im-
portant candidate extensions can be missed while the algorithm evolves. We thus use a weak
greedy selection rule which keeps the R > 1 best candidate extensions. This selection of the best
R extensions of a given x ∈ Σ(k−1)

max is written

argmin
j<I(x)

[R] |1 − |〈d(x), a j〉|,

11



where the notation argmin[R] indicates that we select the list of the R elements of I(x)c corre-
sponding to the smallest values of |1 − |〈d(x), a j〉||.

The algorithm is accelerated by pruning the candidate set Σ(k)
max at each iteration. This pruning

corresponds to the extraction of the Q vectors x ∈ Σ(k)
max corresponding to the largest values of

||d(x)||2, which is formally written as

argmin
x∈Σ(k)

max

[Q] ||d(x)||2.

Algorithm 2 details the steps of the resulting maximum pursuit algorithm.

Algorithm 2: Maximum greedy pursuit algorithm.
Parameter: pruning rate Q, extension rate R, sparsity s ;
Initialization: set Σ(1)

max = {∆0,∆1, . . . ,∆N−1} ;
for k = 2, . . . , s do

Initialization: Σ(k)
max = ∅ ;

for each x ∈ Σ(k−1)
max do

Compute Ĩ = argmin
j<I(x)

[R] |1 − |〈d(x), a j〉|| ;

for each i ∈ Ĩ do
Compute ζ+ = sign(〈d(x), ai〉) ;
Set Σ(k)

max ← Σ
(k)
max ∪ {x + ζ+∆i} ;

Pruning: Set Σ(k)
max = argmin

x∈Σ(k)
max

[Q] ||d(x)||2 ;

Set k ← k + 1.

Similarly, a minimum greedy pursuit algorithm builds a set of k-sparse vectors Σ(k)
min for min-

imizing 1/||d(x)||2 by iteratively applying the extension (15) to each x ∈ Σ(k−1)
min to obtain Σ(k)

min.
Algorithm 3 below summarizes the steps of the algorithm.

Algorithm 3: Minimum greedy pursuit algorithm.
Parameter: pruning rate Q, extension rate R, sparsity s. ;
Initialization: set Σ(1)

min = {∆0,∆1, . . . ,∆N−1} ;
for k = 2, . . . , s do

Initialization: Σ(k)
min = ∅ ;

for each x ∈ Σ(k−1)
min do

Compute Ĩ = argmax
j<I(x)

[R]|〈d(x), a j〉| ;

for each i ∈ Ĩ do
Compute ζ− = − sign(〈d(x), ai〉) ;
Set Σ(k)

min ← Σ
(k)
min ∪ {x + ζ

−∆i} ;

Pruning: Set Σ(k)
min = argmax

x∈Σ(k)
min

[Q] ||d(x)||2 ;

Set k ← k + 1.

12



P 125 250 500 1000
s?(1/4, P) 10 20 42 79
dρ(1/4)Pe 9 17 33 65

Table 1: Our numerically computed critical sparsity levels s?(1/4, P) versus the theoretical upper-bound of [34]
ρ(1/4)P ∼ 0.065P.

6. Numerical Results

We apply our greedy pursuit Algorithm 3 to obtain sparse non identifiable vectors, and Al-
gorithms 2 and 3 to get lower bounds on the restricted isometry constants.

6.1. Non Identifiable Vectors
Proposition 1 suggests that a sparse vector with a small value of 1/||d(x)||2 is likely to be

difficult to identify. We thus use the candidate set Σ(s)
min computed with the minimum greedy

pursuit Algorithm 3 as a pool of s-sparse vectors to challenge the compressed sensing recovery.
Given η = P/N 6 1, we compute

s?(η, P) = min
{
s \ ∃ x not identifiable in Σ(s)

min

}
.

The computation of s? is carried out using a dichotomy search on the sparsity s to find some
candidate set Σ(s)

min that contains a non-identifiable vector. Each time, the identifiability is tested
by solving the BP problem (1). We use a Douglas-Rachford iterative splitting scheme which is
computationally efficient to solve (1) for large scale data, see for instance [8, 9], even though any
other solver can be used.

Table 1 reports our numerical findings for η = 1/4, and compares this numerical evidence
with the sharp theoretical bound of Donoho [34] ρ(1/4) ∼ 0.065. For instance, with N = 1000
and P = 250, we are able to find a 20-sparse vector that is non-identifiable. In contrast, Monte
Carlo sampling with 1000 random vectors for each sparsity s does not reveal any non-identifiable
vector for s < 54, as shown in Figure 3.

6.2. Sub-Matrix Conditioning
Proposition 2, applied to the region Cd(x) defined from Proposition 3 leads to the following

lower bounds on the RIP constants{
δmax

s > s/||d(x)||22 − 1,
δmin

s > 1 − s/||d(x)||22,
(16)

and these bounds are expected to be reasonably tight since d(x) pass through the points {xiai}i∈I(x).

Empirical sparsity bounds for RIP condition. We thus use the candidate set Σ(s)
max which is the

outcome of Algorithm 2 to compute a numerical lower bound on the upper restricted isometry
constant

δ̃max
s = max

x∈Σ(s)
max

δmax(AI(x)).

Similarly, a numerical lower bound on the lower restricted isometry constant is obtained through
Algorithm 3

δ̃min
s = max

x∈Σ(s)
min

δmin(AI(x)).
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Empirical evaluation of our greedy pursuit bound. To assess the performance of our greedy
pursuits, Algorithms 3 and 2 (with R = Q = 1), we compare it with the brute force pursuit,
Algorithm 1, that is expected to perform better since at each of its step, it maximizes the RIP
constants. Figure 4 shows that this is indeed the case, but the gap between the two estimates of
the RIP constants provided by the two methods is rather small. This provides numerical evidence
that the heuristic (16) is remarkably accurate in practice.

We also compared the performance of Algorithms 3 and 2 for several values of the parameters
Q and R: greedy pursuit with no pruning (Q = N, R = 1), and pruned weak greedy pursuit with
Q = N/4 and R = 4. The results are depicted in Figure 5. The increase in performance brought
by the pruned weak greedy variant becomes slightly more salient as the sparsity level increases.
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0.5

0.6
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1.2

 

 

Figure 4: Comparison of the brute force greedy singular value pursuit and our greedy pursuit with Q = N, R = 1 for
(N, P) = (2000, 500). Solid and dashed lines correspond respectively to δ̃max

s and δ̃min
s , as a function of s on the x axis.

Figure 6 shows that for a fixed value of η = P/N and s/P = 10−2, the estimates of the
RIP constants provided by Algorithms 3 and 2 are close to being constant when the size (P =
100s,N = P/η) of the sensing matrix varies. This is consistent with the asymptotic upper bound
of the restricted isometry constants provided by Blanchard et al. [33]. This numerical result
tends to prove that the existence of ill-conditioned sub-matrices at such small sparsity levels is
not restricted to small dimensions.

Empirical sparsity bounds for RIP condition. For each undersampling rate value η = P/N 6
1, we compute s?0 (η, P), the minimum sparsity s for which our empirical estimates invalidate
condition (7), hence `1-identifiability, i.e.

(4
√

2 − 3)δ̃min
2s + δ̃

max
2s > 4(

√
2 − 1) . (17)

Figure 7 depicts our numerical estimate of the bound (7) for varying s. Table 2 reports our
numerically computed critical sparsity levels s?0 (η, P) for η = 1/4, and compares this numerical
evidence with the theoretical bound of Blanchard et al. [33] ρ0(1/4) ∼ 0.0027.
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Figure 5: Comparison of the different variants of Algorithm 3 and 2 for (N, P) = (8000, 2000). Solid and dashed lines
correspond respectively to δ̃max

s and δ̃min
s , as a function of s on the x axis. Circles: greedy pursuit Q = R = 1. Asterisks:

pruned weak greedy pursuit Q = N/4, R = 4. The curves without circles or asterisks corresponds to the asymptotic
upper bounds of [33].

P 250 500 1000 2000
s?0 (1/4, P) 2 3 5 8
dρ0(1/4)Pe 1 2 3 6

Table 2: Our numerically computed critical sparsity levels s?0 (η, P) versus the theoretical upper-bound of [33] ρ0(1/4)P ∼
0.0027P.

Importance of the sign information. Computing δmax
s or δmin

s requires the selection of a poorly
conditioned sub-matrix AI , and thus a careful selection of a support I. Our estimations δ̃max

s or
δ̃min

s make use of Algorithms 2 and 3, which not only build supports I but also signs {xi}i∈I .
One can thus wonder how much these signs are useful for the computation of a support I.
We thus compare our estimation δ̃max

s , with an estimation obtained with algorithm 2 without
taking into account sign information. This corresponds to remove the sign computation ζ+ =
sign(〈d(x), ai+〉) obtained from (14) and impose ζ+ = 1. Figure 8 shows that the sign information
is crucial to obtain efficient restricted isometry bounds.

Computational speed. A chief advantage of our (weak) greedy algorithm over the greedy sin-
gular value pursuit is that it has a much lower computational load while leading to comparable
estimates of the RIP constants. This is clearly testified by the execution times reported in Table 3
for two typical problem sizes. Note also that the pruned weak greedy variant is faster than the
greedy version owing to the pruning step.
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Figure 6: Plot of δ̃max
s (solid curves) and δ̃min

s (dashed curves) as a function of s on the x axis, for two values of η = P/N
and for P = 100s. The curves are obtained by averaging the value of δ̃max

s and δ̃min
s for 5 realizations of the random

matrix A.

7. Conclusion

We have proposed in this paper a new greedy algorithm to find sparse vectors that are not
identifiable and sub-matrices with a small number of columns that are ill-conditioned. This al-
lows us to check numerically sparsity-based criteria for compressed sampling recovery based
either on polytope projection or on the RIP. Our numerical findings shows that even in a non-
asymptotic setting, the worse case theoretical bounds are quite sharp, which contrast with con-
clusions that are usually drawn from Monte Carlo sampling of sparse vectors.
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